Insights and Advancements in Periodontal Tissue Engineering and Bone Regeneration
Abstract
:1. Introduction
2. Periodontal Regeneration and Bone Cellular Biology
3. Biomaterials and the Purpose of Using Scaffold Design for Periodontal Regeneration
3.1. The Strategies of Periodontal Regeneration
3.2. Biomaterials for Guided Tissue Regeneration (GTR)
3.3. In Situ Tissue Engineering Biomaterials
4. Controlled Delivery Systems for the Regeneration of Periodontal Tissues
4.1. Scaffold in Combination with Growth Factors
4.1.1. Platelet-Derived Growth Factor (PDGF)
4.1.2. Fibroblast-Derived Growth Factor (FGF)
4.1.3. Transforming β Growth Factor (TGF-β)
4.1.4. Insulin-like Growth Factor (IGF)
4.2. Novel Findings in Scaffolds Incorporating Growth Factors for Enhanced Periodontal Regeneration
5. Cell-Based Tissue Engineering
5.1. Bone-Marrow-Derived MSCs (BMSCs) for Periodontal Regeneration
5.2. Adipose-Derived Cells
5.3. Dental-Derived Mesenchymal Stem Cells for Periodontal Tissue Engineering
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DSCs | Dental stem cells |
GTR | Guided tissue regeneration |
GBR | Guided bone regeneration |
PTR | Periodontal tissue regeneration |
PDL | Periodontal ligament |
TNF | Tumor necrosis factor |
RANK | Receptor of nuclear factor-kappa |
OPG | Osteoprotegerin |
e-PTFE | Expanded Polytetrafluoroethylene |
PGA | Polyglycolic acid |
PLA | Polylactic acid |
GFs | Growth factors |
FGFs | Fibroblast growth factor |
VEGFs | Vascular endothelial growth factor |
IGFs | Insulin-like growth factor |
TGF | Transforming growth factor |
PDGFs | Platelet-derived growth factors |
BMPs | Bone morphogenic proteins |
GEM | Growth factor enhanced matrix |
MSCs | Mesenchymal stem cells |
GDF | Growth and differentiation factor |
DPSCs | Dental pulp stem cells |
SHED | Stem cells from human exfoliated deciduous |
PDLSCs | Periodontal ligament stem cells |
DFPCs | Dental follicle precursor cells |
SCAP | Stem cells from apical papilla |
BMSCs | Bone-marrow-derived MSCs |
GFP | Green fluorescent protein |
ADSCs | Adipose-derived stem cells |
TGSCs | Tooth germ stem cells |
References
- Sadek, K.M.; El Moshy, S.; Radwan, I.A.; Rady, D.; Abbass, M.M.S.; El-Rashidy, A.A.; Dörfer, C.E.; El-Sayed, K.M.F. Molecular Basis beyond Interrelated Bone Resorption/Regeneration in Periodontal Diseases: A Concise Review. Int. J. Mol. Sci. 2023, 24, 4599. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.-Q.; Hu, C.-H.; Jin, F.; Zhang, L.-S.; Xuan, K. Contributions of Bioactive Molecules in Stem Cell-Based Periodontal Regeneration. Int. J. Mol. Sci. 2018, 19, 1016. [Google Scholar] [CrossRef] [PubMed]
- Isola, G.; Santonocito, S.; Distefano, A.; Polizzi, A.; Vaccaro, M.; Raciti, G.; Alibrandi, A.; Li Volti, G. Impact of periodontitis on gingival crevicular fluid miRNAs profiles associated with cardiovascular disease risk. J. Periodontal Res. 2023, 58, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Isola, G.; Polizzi, A.; Santonocito, S.; Alibrandi, A.; Pesce, P.; Kocher, T. Effect of quadrantwise versus full-mouth subgingival instrumentation on clinical and microbiological parameters in periodontitis patients: A randomized clinical trial. J. Periodontal Res. 2024; Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Villar, C.C.; Cochran, D.L. Regeneration of Periodontal Tissues: Guided Tissue Regeneration. Dent. Clin. N. Am. 2010, 54, 73–92. [Google Scholar] [CrossRef] [PubMed]
- Langer, R.; Vacanti, J.P. Tissue Engineering. Science 1993, 260, 920–926. [Google Scholar] [CrossRef] [PubMed]
- Frasheri, I.; Tsakiridou, N.D.; Hickel, R.; Folwaczny, M. The molecular weight of hyaluronic acid influences metabolic activity and osteogenic differentiation of periodontal ligament cells. Clin. Oral Investig. 2023, 27, 5905–5911. [Google Scholar] [CrossRef] [PubMed]
- Lauritano, D.; Limongelli, L.; Moreo, G.; Favia, G.; Carinci, F. Nanomaterials for Periodontal Tissue Engineering: Chitosan-Based Scaffolds. A Systematic Review. Nanomaterials 2020, 10, 605. [Google Scholar] [CrossRef]
- Xu, K.; Li, Y.D.; Ren, L.Y.; Song, H.L.; Yang, Q.Y.; Xu, D.L. Long non-coding RNA X-Inactive Specific Transcript (XIST) interacting with USF2 promotes osteogenic differentiation of periodontal ligament stem cells through regulation of WDR72 transcription. J. Periodontal Res. 2023, 58, 1235–1247. [Google Scholar] [CrossRef]
- Henkel, J.; Woodruff, M.; Epari, D.; Steck, R.; Glatt, V.; Dickinson, I.C.; Choong, P.; Schuetz, M.A.; Hutmacher, D.W. Bone regeneration based on tissue engineering conceptions—A 21st century perspective. Bone Res. 2013, 1, 216–248. [Google Scholar] [CrossRef] [PubMed]
- Giannobile, W.V. Commentary: Treatment of periodontitis: Destroyed periodontal tissues can be regenerated under certain conditions. J. Periodontol. 2014, 85, 1151–1154. [Google Scholar] [CrossRef] [PubMed]
- Retzepi, M.; Donos, N. Guided bone regeneration: Biological principle and therapeutic applications. Clin. Oral Implant. Res. 2010, 21, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Larsson, L.; Decker, A.M.; Nibali, L.; Pilipchuk, S.P.; Berglundh, T.; Giannobile, W.V. Regenerative medicine for periodontal and peri-implant diseases. J. Dent. Res. 2016, 95, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Balaban, Y.E.; Akbaba, S.; Bozkurt, S.B.; Buyuksungur, A.; Akgun, E.E.; Gonen, Z.B.; Salkin, H.; Tezcaner, A.; Hakki, S.S. Local application of gingiva-derived mesenchymal stem cells on experimental periodontitis in rats. J. Periodontol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Yang, G.; Li, J.; Ding, M.; Zhou, N.; Dong, H.; Mou, Y. Stem cell therapies for periodontal tissue regeneration: A network meta-analysis of preclinical studies. Stem Cell Res. Ther. 2020, 11, 427. [Google Scholar] [CrossRef]
- Giannobile, W.V.; Al-Shammari, K.F.; Sarment, D.P. Matrix molecules and growth factors as indicators of periodontal disease activity. Periodontol. 2000 2003, 31, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Hienz, S.A.; Paliwal, S.; Ivanovski, S. Mechanisms of bone resorption in periodontitis. J. Immunol. Res. 2015, 2015, 615486. [Google Scholar] [CrossRef] [PubMed]
- Teitelbaum, S.L. Osteoclasts: What do they do and how do they do it? Am. J. Pathol. 2007, 170, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Omi, M.; Mishina, Y. Roles of osteoclasts in alveolar bone remodeling. Genesis 2022, 60, e23490. [Google Scholar] [CrossRef] [PubMed]
- Nanci, A.; Bosshardt, D.D. Structure of periodontal tissues in health and disease. Periodontol. 2000 2006, 40, 11. [Google Scholar] [CrossRef] [PubMed]
- Wiebe, S.H.; Hafezi, M.; Sandhu, H.S.; Sims, S.M.; Dixon, S.J. Osteoclast activation in inflammatory periodontal diseases. Oral Dis. 1996, 2, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, K.; Yoshie, H.; Seymour, G.J. T cell regulation of the immune response to infection in periodontal diseases. Histol. Histopathol. 2003, 18, 889–896. [Google Scholar] [PubMed]
- Goldring, S.R. Inflammatory mediators as essential elements in bone remodeling. Calcif. Tissue Int. 2003, 73, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Alshujaa, B.; Talmac, A.C.; Altindal, D.; Alsafadi, A.; Ertugrul, A.S. Clinical and radiographic evaluation of the use of PRF, CGF, and autogenous bone in the treatment of periodontal intrabony defects: Treatment of periodontal defect by using autologous products. J. Periodontol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Tietmann, C.; Jepsen, S.; Heibrok, H.; Wenzel, S.; Jepsen, K. Long-term stability of regenerative periodontal surgery and orthodontic tooth movement in stage IV periodontitis: 10-year data of a retrospective study. J. Periodontol. 2023, 94, 1176–1186. [Google Scholar] [CrossRef] [PubMed]
- Tu, C.C.; Zheng, Z.C.; Cheng, N.C.; Yu, J.; Tai, W.C.; Pan, Y.X.; Chang, P.C. Alveolar mucosal cell spheroids promote extraction socket healing and osseous defect regeneration. J. Periodontol. 2024, 95, 372–383. [Google Scholar] [CrossRef] [PubMed]
- Petean, I.B.F.; Silva-Sousa, A.C.; Cronenbold, T.J.; Mazzi-Chaves, J.F.; da Silva, L.A.B.; Segato, R.A.B.; de Castro, G.A.P.; Kuchler, E.C.; Paula-Silva, F.W.G.; Sousa-Neto, M.D. Genetic, cellular and molecular aspects involved in apical periodontitis. Braz. Dent. J. 2022, 33, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Galli, M.; Yao, Y.; Giannobile, W.V.; Wang, H.-L. Current and future trends in periodontal tissue engineering and bone regeneration. Plast. Aesthet. Res. 2021, 8, 3. [Google Scholar] [CrossRef]
- Gottlow, J.; Nyman, S.; Karring, T.; Lindhe, J. New attachment formation as the result of controlled tissue regeneration. J. Clin. Periodontol. 1984, 11, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Karring, T.; Nyman, S.; Gottlow, J.A.N.; Laurell, L. Development of the biological concept of guided tissue regeneration—Animal and human studies. Periodontol. 2000 1993, 1, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Woo, H.N.; Cho, Y.J.; Tarafder, S.; Lee, C.H. The recent advances in scaffolds for integrated periodontal regeneration. Bioact. Mater. 2021, 6, 3328–3342. [Google Scholar] [CrossRef]
- Han, J.; Menicanin, D.; Gronthos, S.; Bartold, P. Stem cells, tissue engineering and periodontal regeneration. Aust. Dent. J. 2014, 59, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, A.M. Guided Tissue and Bone Regeneration Membranes: A Review of Biomaterials and Techniques for Periodontal Treatments. Polymers 2023, 15, 3355. [Google Scholar] [CrossRef] [PubMed]
- Sculean, A.; Nikolidakis, D.; Schwarz, F. Regeneration of periodontal tissues: Combinations of barrier membranes and grafting materials–Biological foundation and preclinical evidence: A systematic review. J. Clin. Periodontol. 2008, 35, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Pouliou, M.M.; Fragkioudakis, I.; Doufexi, A.E.; Batas, L. The role of rhFGF-2 in periodontal defect bone fill: A systematic review of the literature. J. Periodontal Res. 2023, 58, 733–744. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Kerns, D.G. Mechanisms of Guided Bone Regeneration: A Review. Open Dent. J. 2014, 8, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Madhuri, S.V. Membranes for periodontal regeneration. Int. J. Pharm. Sci. Invent. 2016, 5, 19–24. [Google Scholar]
- Behring, J.; Junker, R.; Walboomers, X.F.; Chessnut, B.; Jansen, J.A. Toward guided tissue and bone regeneration: Morphology, attachment, proliferation, and migration of cells cultured on collagen barrier membranes. A systematic review. Odontology 2008, 96, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Gentile, P.; Chiono, V.; Tonda-Turo, C.; Ferreira, A.M.; Ciardelli, G. Polymeric membranes for guided bone regeneration. Biotechnol. J. 2011, 6, 1187–1197. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Wu, C.; Shi, H.; Luo, X.; Sun, H.; Wang, Q.; Zhang, D. Advances in Barrier Membranes for Guided Bone Regeneration Techniques. Front. Bioeng. Biotechnol. 2022, 10, 921576. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.U.; Bilal, B.; Nazir, M.S.; Naqvi, S.A.R.; Ali, Z.; Nadeem, S.; Muhammad, N.; Palvasha, B.A.; Mohyuddin, A. Recent progress in materials development and biological properties of GTR membranes for periodontal regeneration. Chem. Biol. Drug Des. 2021, 98, 1007–1024. [Google Scholar] [CrossRef] [PubMed]
- Alauddin, M.S.; Hayei, N.A.A.; Sabarudin, M.A.; Baharin, N.H.M. Barrier Membrane in Regenerative Therapy: A Narrative Review. Membranes 2022, 12, 444. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.-D.; Seol, Y.-J.; Lee, Y.-M.; Rhyu, I.-C.; Ryoo, H.-M.; Ku, Y. An overview of biomaterials in periodontology and implant dentistry. Adv. Mater. Sci. Eng. 2017, 2017, 1948241. [Google Scholar] [CrossRef]
- Matichescu, A.; Ardelean, L.C.; Rusu, L.-C.; Craciun, D.; Bratu, E.A.; Babucea, M.; Leretter, M. Advanced Biomaterials and Techniques for Oral Tissue Engineering and Regeneration—A Review. Materials 2020, 13, 5303. [Google Scholar] [CrossRef] [PubMed]
- Marin, E.; Boschetto, F.; Pezzotti, G. Biomaterials and biocompatibility: An historical overview. J. Biomed. Mater. Res. A 2020, 108, 1617–1633. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; He, M.; Xu, X.; Wu, Z.; Tao, J.; Yin, F.; Luo, K.; Jiang, J. Cementum protein 1 gene-modified adipose-derived mesenchymal stem cell sheets enhance periodontal regeneration in osteoporosis rat. J. Periodontal Res. 2023, 58, 755–768. [Google Scholar] [CrossRef] [PubMed]
- Han, P.; Johnson, N.; Abdal-hay, A.; Moran, C.S.; Salomon, C.; Ivanovski, S. Effects of periodontal cells-derived extracellular vesicles on mesenchymal stromal cell function. J. Periodontal Res. 2023, 58, 1188–1200. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Huang, X.; Gu, L. Periodontal Bifunctional Biomaterials: Progress and Perspectives. Materials 2021, 14, 7588. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Hu, Y.; Deng, Y.; Su, J. Recent Advances in Design of Functional Biocompatible Hydrogels for Bone Tissue Engineering. Adv. Funct. Mater. 2021, 31, 2009432. [Google Scholar] [CrossRef]
- Sood, S.; Gupta, S.; Mahendra, A. Gene therapy with growth factors for periodontal tissue engineering-A review. Med. Oral Patol. Oral Cir. Bucal 2012, 17, e301–e310. [Google Scholar] [CrossRef]
- Oliveira, É.R.; Nie, L.; Podstawczyk, D.; Allahbakhsh, A.; Ratnayake, J.; Brasil, D.L.; Shavandi, A. Advances in Growth Factor Delivery for Bone Tissue Engineering. Int. J. Mol. Sci. 2021, 22, 903. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, H.S.; Pashkuleva, I. Biomimetic supramolecular designs for the controlled release of growth factors in bone regeneration. Adv. Drug Deliv. Rev. 2015, 94, 63–76. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.J.; Hyder, M.N.; Quadir, M.A.; Courchesne, N.-M.D.; Seeherman, H.J.; Nevins, M.; Spector, M.; Hammond, P.T. Adaptive growth factor delivery from a polyelectrolyte coating promotes synergistic bone tissue repair and reconstruction. Proc. Natl. Acad. Sci. USA 2014, 111, 12847–12852. [Google Scholar] [CrossRef] [PubMed]
- Hussein, K.H.; Park, K.-M.; Kang, K.-S.; Woo, H.-M. Biocompatibility evaluation of tissue-engineered decellularized scaffolds for biomedical application. Mater. Sci. Eng. C 2016, 67, 766–778. [Google Scholar] [CrossRef] [PubMed]
- Javed, F.; Al-Askar, M.; Al-Rasheed, A.; Al-Hezaimi, K. Significance of the platelet-derived growth factor in periodontal tissue regeneration. Arch. Oral Biol. 2011, 56, 1476–1484. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, Q.; Wang, X.; Wu, Y.; Zhang, Z.; Mao, J.; Gong, S. Proanthocyanidin enhances the endogenous regeneration of alveolar bone by elevating the autophagy of PDLSCs. J. Periodontal Res. 2023, 58, 1300–1314. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yang, X.; Wang, X.; Wang, X.; Zhang, J.; Gao, Y.; Pan, J.; Wang, S. Identifying genes for regulating osteogenic differentiation of human periodontal ligament stem cells in inflammatory environments by bioinformatics analysis. J. Periodontal Res. 2024, 59, 311–324. [Google Scholar] [CrossRef] [PubMed]
- Lynch, S.E.; Nixon, J.C.; Colvin, R.B.; Antoniades, H.N. Role of platelet-derived growth factor in wound healing: Synergistic effects with other growth factors. Proc. Natl. Acad. Sci. USA 1987, 84, 7696–7700. [Google Scholar] [CrossRef] [PubMed]
- Mihaylova, Z.; Tsikandelova, R.; Sanimirov, P.; Gateva, N.; Mitev, V.; Ishkitiev, N. Role of PDGF-BB in proliferation, differentiation and maintaining stem cell properties of PDL cells in vitro. Arch. Oral Biol. 2018, 85, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Ni, J.; Zhang, Z. ZEB1 interferes with human periodontal ligament stem cell proliferation and differentiation. Oral Dis. 2023. [Google Scholar] [CrossRef] [PubMed]
- Wen, W.; Pang, Y.; Tian, Y.; Xu, C.; Wang, J.; Wu, Y.; Xie, X. Osteogenic mesenchymal stem cells/progenitors in the periodontium. Oral Dis. 2023. [Google Scholar] [CrossRef] [PubMed]
- Quarto, N.; Amalric, F. Heparan sulfate proteoglycans as transducers of FGF-2 signalling. J. Cell Sci. 1994, 107, 3201–3212. [Google Scholar] [CrossRef] [PubMed]
- Spivak-Kroizman, T.; Lemmon, M.A.; Dikic, I.; Ladbury, J.E.; Pinchasi, D.; Huang, J.; Jaye, M.; Crumley, G.; Schlessinger, J.; Lax, I. Heparin-induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation, and cell proliferation. Cell 1994, 79, 1015–1024. [Google Scholar] [CrossRef] [PubMed]
- Cochran, D.L.; Oh, T.-J.; Mills, M.; Clem, D.; McClain, P.; Schallhorn, R.; McGuire, M.; Scheyer, E.; Giannobile, W.; Reddy, M.; et al. A Randomized Clinical Trial Evaluating rh-FGF-2/β-TCP in Periodontal Defects. J. Dent. Res. 2016, 95, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Kirkbride, K.C.; Townsend, T.A.; Bruinsma, M.W.; Barnett, J.V.; Blobe, G.C. Bone Morphogenetic Proteins Signal through the Transforming Growth Factor-β Type III Receptor. J. Biol. Chem. 2008, 283, 7628–7637. [Google Scholar] [CrossRef]
- Li, S.; Guan, X.; Yu, W.; Zhao, Z.; Sun, Y.; Bai, Y. Effect of human periodontal ligament stem cell-derived exosomes on cementoblast activity. Oral Dis. 2023. [Google Scholar] [CrossRef] [PubMed]
- Urist, M.R.; Strates, B.S. Bone Morphogenetic Protein. J. Dent. Res. 1971, 50, 1392–1406. [Google Scholar] [CrossRef] [PubMed]
- Klammert, U.; Mueller, T.D.; Hellmann, T.V.; Wuerzler, K.K.; Kotzsch, A.; Schliermann, A.; Schmitz, W.; Kuebler, A.C.; Sebald, W.; Nickel, J. GDF-5 can act as a context-dependent BMP-2 antagonist. BMC Biol. 2015, 13, 77. [Google Scholar] [CrossRef] [PubMed]
- Hatakeyama, Y.; Hatakeyama, J.; Maruya, Y.; Oka, K.; Tsuruga, E.; Inai, T.; Sawa, Y. Growth Differentiation Factor 5 (GDF-5) Induces Matrix Metalloproteinase 2 (MMP-2) Expression in Periodontal Ligament Cells and Modulates MMP-2 and MMP-13 Activity in Osteoblasts. Bone Tissue Regen. Insights 2010, 3, BTRI.S8120. [Google Scholar] [CrossRef]
- Iwata, T.; Yamato, M.; Ishikawa, I.; Ando, T.; Okano, T. Tissue Engineering in Periodontal Tissue. Anat. Rec. 2014, 297, 16–25. [Google Scholar] [CrossRef]
- Ward, E. A Review of Tissue Engineering for Periodontal Tissue Regeneration. J. Vet. Dent. 2022, 39, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Yamada, S.; Shanbhag, S.; Mustafa, K. Scaffolds in Periodontal Regenerative Treatment. Dent. Clin. N. Am. 2022, 66, 111–130. [Google Scholar] [CrossRef] [PubMed]
- Isola, G.; Tartaglia, G.M.; Santonocito, S.; Polizzi, A.; Williams, R.C.; Iorio-Siciliano, V. Impact of N-terminal pro-B-type natriuretic peptide and related inflammatory biomarkers on periodontal treatment outcomes in patients with periodontitis: An explorative human randomized-controlled clinical trial. J. Periodontol. 2023, 94, 1414–1424. [Google Scholar] [CrossRef] [PubMed]
- Vacanti, J.P.; Langer, R. Tissue engineering: The design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 1999, 354, S32–S34. [Google Scholar] [CrossRef] [PubMed]
- Isola, G.; Pesce, P.; Polizzi, A.; Lo Giudice, A.; Cicciù, M.; Scannapieco, F.A. Effects of minimally invasive non-surgical periodontal treatment (MINST) on C-reactive protein (CRP), lipoprotein-associated phospholipase and clinical outcomes in periodontitis patients: A 1-year randomized, controlled clinical trial. J. Periodontol. 2024; Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Lv, F.-J.; Tuan, R.S.; Cheung, K.M.C.; Leung, V.Y.L. Concise Review: The Surface Markers and Identity of Human Mesenchymal Stem Cells. Stem Cells 2014, 32, 1408–1419. [Google Scholar] [CrossRef] [PubMed]
- Polizzi, A.; Quinzi, V.; Lo Giudice, A.; Marzo, G.; Leonardi, R.; Isola, G. Accuracy of Artificial Intelligence Models in the Prediction of Periodontitis: A Systematic Review. JDR Clin. Trans. Res. 2024; Online ahead of print. [Google Scholar] [CrossRef]
- Hughes, F.J.; Ghuman, M.; Talal, A. Periodontal regeneration: A challenge for the tissue engineer? Proc. Inst. Mech. Eng. H 2010, 224, 1345–1358. [Google Scholar] [CrossRef] [PubMed]
- Taba, M.; Jin, Q.; Sugai, J.; Giannobile, W. Current concepts in periodontal bioengineering. Orthod. Craniofacial Res. 2005, 8, 292–302. [Google Scholar] [CrossRef]
- He, Q.; Zhang, J.; Liao, Y.; Alakpa, E.V.; Bunpetch, V.; Zhang, J.; Ouyang, H. Current advances in microsphere based cell culture and tissue engineering. Biotechnol. Adv. 2020, 39, 107459. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Ul-Islam, M.; Ikram, M.; Islam, S.U.; Ullah, M.W.; Israr, M.; Jang, J.H.; Yoon, S.; Park, J.K. Preparation and structural characterization of surface modified microporous bacterial cellulose scaffolds: A potential material for skin regeneration applications in vitro and in vivo. Int. J. Biol. Macromol. 2018, 117, 1200–1210. [Google Scholar] [CrossRef]
- Paz, A.G.; Maghaireh, H.; Mangano, F.G. Stem Cells in Dentistry: Types of Intra- and Extraoral Tissue-Derived Stem Cells and Clinical Applications. Stem Cells Int. 2018, 2018, 4313610. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Huang, H.; Li, G.; Yu, J.; Fang, F.; Qiu, W. Dental-derived mesenchymal stem cell sheets: A prospective tissue engineering for regenerative medicine. Stem Cell Res. Ther. 2022, 13, 38. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Nakamura-Yamada, S.; Kusano, K.; Baba, S. Clinical Potential and Current Progress of Dental Pulp Stem Cells for Various Systemic Diseases in Regenerative Medicine: A Concise Review. Int. J. Mol. Sci. 2019, 20, 1132. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Ferreira, L.d.A.Q.; Yu, B.; Ansari, S.; Moshaverinia, A. Dental-derived stem cells in tissue engineering: The role of biomaterials and host response. Regen. Biomater. 2024, 11, rbad100. [Google Scholar] [CrossRef] [PubMed]
- Andrukhov, O.; Behm, C.; Blufstein, A.; Rausch-Fan, X. Immunomodulatory properties of dental tissue-derived mesenchymal stem cells: Implication in disease and tissue regeneration. World J. Stem Cells 2019, 11, 604–617. [Google Scholar] [CrossRef] [PubMed]
- Sevari, S.P.; Ansari, S.; Chen, C.; Moshaverinia, A. Harnessing Dental Stem Cell Immunoregulation Using Cell-Laden Biomaterials. J. Dent. Res. 2021, 100, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Genova, T.; Cavagnetto, D.; Tasinato, F.; Petrillo, S.; Ruffinatti, F.A.; Mela, L.; Carossa, M.; Munaron, L.; Roato, I.; Mussano, F. Isolation and Characterization of Buccal Fat Pad and Dental Pulp MSCs from the Same Donor. Biomedicines 2021, 9, 265. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.-N.; Mar, K.; Chang, H.-C.; Chiang, Y.-L.; Hu, H.-Y.; Lai, C.-C.; Chu, R.-M.; Ma, C.M. A comparison between adipose tissue and dental pulp as sources of MSCs for tooth regeneration. Biomaterials 2011, 32, 6995–7005. [Google Scholar] [CrossRef] [PubMed]
Nonresorbable | Resorbable | |
Titanium mesh Titanium reinforced PTFE High-density polytetrafluoroethylene (d-PTFE) Expanded polytetrafluoroethylene (e-PTFE) | Polymeric-derived Collagen-derived | |
First Generation | Second Generation | Third Generation |
Titanium mesh Titanium-reinforced e-PTFE Cellulose acetate High-density PTFE Expanded e-PTFE | Synthetic Natural | Barrier membranes with antimicrobial activity Barrier membranes with growth factors Barrier membranes with bioactive calcium phosphate incorporation |
Biomaterials | Target Tissue | Characteristics |
---|---|---|
Hydroxyapatite | Alveolar bone and cementum | Osteoinductive and slow degradation |
Tricalcium phosphate | Alveolar bone and cementum | Osteoinductive and bioabsorbable |
Bioactive glass | Alveolar bone and cementum | Promote angiogenesis, osteogenesis, and antibacterial activity |
Collagen | Periodontal ligament | Biocompatible and low mechanical characteristics |
Chitosan | Alveolar bone, cementum and PDL | Biocompatible and antibacterial activity |
Composite biomaterials | Alveolar bone | Support GTR membrane and promote bone regeneration |
Fibroblast Growth Factor | Platelet-Derived Growth Factor | Insulin-like Growth Factor | Transforming Growth Factor Beta | Vascular Endothelial Growth Factor | Bone Morphogenic Proteins | |
---|---|---|---|---|---|---|
FGF | PDGF | IGF | TGF-β | VEGF | BMP | |
Mechanism | Neo-vascularization, Cellular multiplication | Cell growth | Osteogenic differentiation | Osteogenic, chondrogenic differentiation | Neo-vascularization | Osteogenesis |
Functions | Stimulating neo-vascularization by enhancing the osteoblast proliferation | Controller of the wound healing process | Inducing the proliferation of osteoblasts, bone matrix synthesis, activation of osteoclasts | Stimulating osteoprogenitor cell migration and regulating proliferation, differentiation, matrix synthesis | Controlling the activity of the endothelial cells and creating new blood vessels | Possess osteoinductive capabilities and stimulate bone formation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angjelova, A.; Jovanova, E.; Polizzi, A.; Annunziata, M.; Laganà, L.; Santonocito, S.; Isola, G. Insights and Advancements in Periodontal Tissue Engineering and Bone Regeneration. Medicina 2024, 60, 773. https://doi.org/10.3390/medicina60050773
Angjelova A, Jovanova E, Polizzi A, Annunziata M, Laganà L, Santonocito S, Isola G. Insights and Advancements in Periodontal Tissue Engineering and Bone Regeneration. Medicina. 2024; 60(5):773. https://doi.org/10.3390/medicina60050773
Chicago/Turabian StyleAngjelova, Angela, Elena Jovanova, Alessandro Polizzi, Marco Annunziata, Ludovica Laganà, Simona Santonocito, and Gaetano Isola. 2024. "Insights and Advancements in Periodontal Tissue Engineering and Bone Regeneration" Medicina 60, no. 5: 773. https://doi.org/10.3390/medicina60050773
APA StyleAngjelova, A., Jovanova, E., Polizzi, A., Annunziata, M., Laganà, L., Santonocito, S., & Isola, G. (2024). Insights and Advancements in Periodontal Tissue Engineering and Bone Regeneration. Medicina, 60(5), 773. https://doi.org/10.3390/medicina60050773