Effects of Ibuprofen and Diclofenac Pre-Treatment on Viability and Apoptosis Processes in Human Dental Pulp Stem Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Isolation
2.2. hDPSCs’ Characterisation
2.3. Ibuprofen and Diclofenac Treatment
2.4. Immunofluorescence Staining
2.5. MTT Assay
2.6. Gene Expression
2.7. Statistical Analysis
3. Results
3.1. Characterisation of Isolated DPSC Populations
3.2. Effect of Ibuprofen and Diclofenac Pre-Treatment on Characteristics, Morphology, and Immunophenotype of DPSCs
3.3. Effect of Ibuprofen and Diclofenac Pre-Treatment on Viability of DPSCs
3.4. Effect of Ibuprofen and Diclofenac on Angiogenic Growth Factors’ Expression (VEGFA and HGF)
3.5. Ibuprofen and Diclofenac Significantly Affect the mRNA Expression of Selected Genes in Apoptosis Signalling Pathways
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NSAIDs | nonsteroidal anti-inflammatory drugs |
DPSCs | dental pulp stem cells |
HGF | hepatocyte growth factor |
VEGFA | vascular endothelial growth factor alpha |
CASP9 | caspase 9 |
BCL2 | B-cell lymphoma 2 |
CASP3 | caspase 3 |
BAK | B-cell lymphoma 2 antagonists 1 |
BAX | B-cell lymphoma 2 associated X |
IBU | ibuprofen |
DIC | diclofenac |
FBS | foetal bovine serum |
DMEM | Dulbecco’s modified Eagle medium |
ISCT | International Society for Cellular Therapy |
PI | propidium iodide |
MTT | tetrazolium salt |
References
- Xue, N.; Ding, X.; Huang, R.; Jiang, R.; Huang, H.; Pan, X.; Min, W.; Chen, J.; Duan, J.-A.; Liu, P.; et al. Bone Tissue Engineering in the Treatment of Bone Defects. Pharmaceuticals 2022, 15, 879. [Google Scholar] [CrossRef]
- Zhai, Q.; Dong, Z.; Wang, W.; Li, B.; Jin, Y. Dental stem cell and dental tissue regeneration. Front. Med. 2019, 13, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Janjua, O.S.; Qureshi, S.M.; Shaikh, M.S.; Alnazzawi, A.; Rodriguez-Lozano, F.J.; Pecci-Lloret, M.P.; Zafar, M.S. Autogenous Tooth Bone Grafts for Repair and Regeneration of Maxillofacial Defects: A Narrative Review. Int. J. Environ. Res. Public Health 2022, 19, 3690. [Google Scholar] [CrossRef] [PubMed]
- Goh, B.T.; Lee, S.; Tideman, H.; Stoelinga, P.J.W. Mandibular reconstruction in adults: A review. Int. J. Oral Maxillofac. Surg. 2008, 37, 597–605. [Google Scholar] [CrossRef]
- Schmidt, A.H. Autologous bone graft: Is it still the gold standard? Injury 2021, 52, S18–S22. [Google Scholar] [CrossRef] [PubMed]
- Chamieh, F.; Collignon, A.-M.; Coyac, B.R.; Lesieur, J.; Ribes, S.; Sadoine, J.; Llorens, A.; Nicoletti, A.; Letourneur, D.; Colombier, M.-L.; et al. Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells. Sci. Rep. 2016, 6, 38814. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Nakamura-Yamada, S.; Konoki, R.; Baba, S. Promising advances in clinical trials of dental tissue-derived cell-based regenerative medicine. Stem Cell Res. Ther. 2020, 11, 175. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Monjaraz, B.; Santiago-Osorio, E.; Ledesma-Martínez, E.; Alcauter-Zavala, A.; Mendoza-Núñez, V.M. Retrieval of a periodontally compromised tooth by allogeneic grafting of mesenchymal stem cells from dental pulp: A case report. J. Int. Med. Res. 2018, 46, 2983–2993. [Google Scholar] [CrossRef] [PubMed]
- Meesuk, L.; Suwanprateeb, J.; Thammarakcharoen, F.; Tantrawatpan, C.; Kheolamai, P.; Palang, I.; Tantikanlayaporn, D.; Manochantr, S. Osteogenic differentiation and proliferation potentials of human bone marrow and umbilical cord-derived mesenchymal stem cells on the 3D-printed hydroxyapatite scaffolds. Sci. Rep. 2022, 12, 19509. [Google Scholar] [CrossRef]
- Kusuma, G.D.; Carthew, J.; Lim, R.; Frith, J.E. Effect of the Microenvironment on Mesenchymal Stem Cell Paracrine Signaling: Opportunities to Engineer the Therapeutic Effect. Stem Cells Dev. 2017, 26, 617–631. [Google Scholar] [CrossRef]
- Oryan, A.; Kamali, A.; Moshiri, A.; Baghaban Eslaminejad, M. Role of Mesenchymal Stem Cells in Bone Regenerative Medicine: What Is the Evidence? Cells Tissues Organs 2017, 204, 59–83. [Google Scholar] [CrossRef]
- Hoang, D.M.; Pham, P.T.; Bach, T.Q.; Ngo, A.T.L.; Nguyen, Q.T.; Phan, T.T.K.; Nguyen, G.H.; Le, P.T.T.; Hoang, V.T.; Forsyth, N.R.; et al. Stem cell-based therapy for human diseases. Signal Transduct. Target. Ther. 2022, 7, 272. [Google Scholar] [CrossRef]
- Sui, B.-D.; Hu, C.-H.; Liu, A.-Q.; Zheng, C.-X.; Xuan, K.; Jin, Y. Stem cell-based bone regeneration in diseased microenvironments: Challenges and solutions. Biomaterials 2019, 196, 18–30. [Google Scholar] [CrossRef]
- Musiał-Wysocka, A.; Kot, M.; Majka, M. The Pros and Cons of Mesenchymal Stem Cell-Based Therapies. Cell Transplant. 2019, 28, 801–812. [Google Scholar] [CrossRef]
- Hersh, E.V.; Moore, P.A.; Grosser, T.; Polomano, R.C.; Farrar, J.T.; Saraghi, M.; Juska, S.A.; Mitchell, C.H.; Theken, K.N. Nonsteroidal Anti-Inflammatory Drugs and Opioids in Postsurgical Dental Pain. J. Dent. Res. 2020, 99, 777–786. [Google Scholar] [CrossRef]
- Wongrakpanich, S.; Wongrakpanich, A.; Melhado, K.; Rangaswami, J. A Comprehensive Review of Non-Steroidal Anti-Inflammatory Drug Use in the Elderly. Aging Dis. 2018, 9, 143–150. [Google Scholar] [CrossRef]
- Kulesza, A.; Zielniok, K.; Hawryluk, J.; Paczek, L.; Burdzinska, A. Ibuprofen in Therapeutic Concentrations Affects the Secretion of Human Bone Marrow Mesenchymal Stromal Cells, but Not Their Proliferative and Migratory Capacity. Biomolecules 2022, 12, 287. [Google Scholar] [CrossRef]
- Pountos, I.; Georgouli, T.; Calori, G.M.; Giannoudis, P.V. Do nonsteroidal anti-inflammatory drugs affect bone healing? A critical analysis. Sci. World J. 2012, 2012, 606404. [Google Scholar] [CrossRef]
- Ibuprofen = 98 GC 15687-27-1. Available online: http://www.sigmaaldrich.com/ (accessed on 3 May 2024).
- Diclofenac 15307-79-6. Available online: http://www.sigmaaldrich.com/ (accessed on 3 May 2024).
- Leidgens, V.; Seliger, C.; Jachnik, B.; Welz, T.; Leukel, P.; Vollmann-Zwerenz, A.; Bogdahn, U.; Kreutz, M.; Grauer, O.M.; Hau, P. Ibuprofen and Diclofenac Restrict Migration and Proliferation of Human Glioma Cells by Distinct Molecular Mechanisms. PLoS ONE 2015, 10, e0140613. [Google Scholar] [CrossRef]
- Weiser, T.; Schepers, C.; Mück, T.; Lange, R. Pharmacokinetic Properties of Ibuprofen (IBU) from the Fixed-Dose Combination IBU/Caffeine (400/100 mg; FDC) in Comparison with 400 mg IBU as Acid or Lysinate under Fasted and Fed Conditions—Data from 2 Single-Center, Single-Dose, Randomized Crossover Studies in Healthy Volunteers. Clin. Pharmacol. Drug Dev. 2019, 8, 742–753. [Google Scholar] [CrossRef]
- Altman, R.; Bosch, B.; Brune, K.; Patrignani, P.; Young, C. Advances in NSAID development: Evolution of diclofenac products using pharmaceutical technology. Drugs 2015, 75, 859–877. [Google Scholar] [CrossRef]
- Lissy, M.; Stiff, D.D.; Kowalski, M.M.; Moore, K.A. Single-dose pharmacokinetic study of rapidly dispersing diclofenac potassium formulations in healthy volunteers. Curr. Med. Res. Opin. 2009, 25, 2423–2428. [Google Scholar] [CrossRef]
- Salkın, H.; Basaran, K.E. Effects of non-steroidal anti-inflammatory drug (ibuprofen) in low and high dose on stemness and biological characteristics of human dental pulp-derived mesenchymal stem cells. Connect. Tissue Res. 2023, 64, 14–25. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, RESEARCH0034. [Google Scholar] [CrossRef]
- Cottrell, J.; O’Connor, J.P. Effect of Non-Steroidal Anti-Inflammatory Drugs on Bone Healing. Pharmaceuticals 2010, 3, 1668–1693. [Google Scholar] [CrossRef]
- Moshiri, A.; Shahrezaee, M.; Shekarchi, B.; Oryan, A.; Azma, K. Three-Dimensional Porous Gelapin–Simvastatin Scaffolds Promoted Bone Defect Healing in Rabbits. Calcif. Tissue Int. 2015, 96, 552–564. [Google Scholar] [CrossRef]
- Aimetti, M.; Ferrarotti, F.; Gamba, M.N.; Giraudi, M.; Romano, F. Regenerative Treatment of Periodontal Intrabony Defects Using Autologous Dental Pulp Stem Cells: A 1-Year Follow-Up Case Series. Restorative Dent. 2018, 38, 9. [Google Scholar] [CrossRef]
- d’Aquino, R.; De Rosa, A.; Lanza, V.; Tirino, V.; Laino, L.; Graziano, A.; Desiderio, V.; Laino, G.; Papaccio, G. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur. Cell. Mater. 2009, 18, 75–83. [Google Scholar] [CrossRef]
- Xuan, K.; Li, B.; Guo, H.; Sun, W.; Kou, X.; He, X.; Zhang, Y.; Sun, J.; Liu, A.; Liao, L.; et al. Deciduous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth. Sci. Transl. Med. 2018, 10, eaaf3227. [Google Scholar] [CrossRef]
- Sui, B.-D.; Hu, C.-H.; Zheng, C.-X.; Shuai, Y.; He, X.-N.; Gao, P.-P.; Zhao, P.; Li, M.; Zhang, X.-Y.; He, T.; et al. Recipient Glycemic Micro-environments Govern Therapeutic Effects of Mesenchymal Stem Cell Infusion on Osteopenia. Theranostics 2017, 7, 1225–1244. [Google Scholar] [CrossRef]
- Zheng, C.; Chen, J.; Liu, S.; Jin, Y. Stem cell-based bone and dental regeneration: A view of microenvironmental modulation. Int. J. Oral Sci. 2019, 11, 23. [Google Scholar] [CrossRef]
- Hadjicharalambous, C.; Alpantaki, K.; Chatzinikolaidou, M. Effects of NSAIDs on pre-osteoblast viability and osteogenic differentiation. Exp. Ther. Med. 2021, 22, 740. [Google Scholar] [CrossRef]
- Bailey, E.; Worthington, H.V.; van Wijk, A.; Yates, J.M.; Coulthard, P.; Afzal, Z. Ibuprofen and/or paracetamol (acetaminophen) for pain relief after surgical removal of lower wisdom teeth. Cochrane Database Syst. Rev. 2013. [Google Scholar] [CrossRef]
- Ong, C.K.-S.; Lirk, P.; Seymour, R.A.; Jenkins, B.J. The Efficacy of Preemptive Analgesia for Acute Postoperative Pain Management: A Meta-Analysis. Anesth. Analg. 2005, 100, 757–773. [Google Scholar] [CrossRef]
- Ji, R.-R.; Chamessian, A.; Zhang, Y.-Q. Pain regulation by non-neuronal cells and inflammation. Science 2016, 354, 572–577. [Google Scholar] [CrossRef]
- Nagi, R.; Yashoda Devi, B.K.; Rakesh, N.; Reddy, S.S.; Patil, D.J. Clinical implications of prescribing nonsteroidal anti-inflammatory drugs in oral health care—A review. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2015, 119, 264–271. [Google Scholar] [CrossRef]
- Diomede, F.; Rajan, T.S.; Gatta, V.; D’Aurora, M.; Merciaro, I.; Marchisio, M.; Muttini, A.; Caputi, S.; Bramanti, P.; Mazzon, E.; et al. Stemness Maintenance Properties in Human Oral Stem Cells after Long-Term Passage. Stem Cells Int. 2017, 2017, 1–14. [Google Scholar] [CrossRef]
- Wang, H.; Zhong, Q.; Yang, T.; Qi, Y.; Fu, M.; Yang, X.; Qiao, L.; Ling, Q.; Liu, S.; Zhao, Y. Comparative characterization of SHED and DPSCs during extended cultivation in vitro. Mol. Med. Rep. 2018, 17, 6551–6559. [Google Scholar] [CrossRef]
- Gronthos, S.; Brahim, J.; Li, W.; Fisher, L.W.; Cherman, N.; Boyde, A.; DenBesten, P.; Robey, P.G.; Shi, S. Stem cell properties of human dental pulp stem cells. J. Dent. Res. 2002, 81, 531–535. [Google Scholar] [CrossRef]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.C.; Krause, D.S.; Deans, R.J.; Keating, A.; Prockop, D.J.; Horwitz, E.M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.; Raabe, O.; Addicks, K.; Wenisch, S.; Arnhold, S. Effects of non-steroidal anti-inflammatory drugs on proliferation, differentiation and migration in equine mesenchymal stem cells. Cell Biol. Int. 2011, 35, 235–248. [Google Scholar] [CrossRef]
- Kudo, C.; Kori, M.; Matsuzaki, K.; Yamai, K.; Nakajima, A.; Shibuya, A.; Niwa, H.; Kamisaki, Y.; Wada, K. Diclofenac inhibits proliferation and differentiation of neural stem cells. Biochem. Pharmacol. 2003, 66, 289–295. [Google Scholar] [CrossRef] [PubMed]
- De Luca, A.; Gallo, M.; Aldinucci, D.; Ribatti, D.; Lamura, L.; D’Alessio, A.; De Filippi, R.; Pinto, A.; Normanno, N. Role of the EGFR ligand/receptor system in the secretion of angiogenic factors in mesenchymal stem cells. J. Cell. Physiol. 2011, 226, 2131–2138. [Google Scholar] [CrossRef]
- Hankenson, K.D.; Dishowitz, M.; Gray, C.; Schenker, M. Angiogenesis in bone regeneration. Injury 2011, 42, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Han, Z.; Han, Z.C.; Li, Z. Proangiogenic Features of Mesenchymal Stem Cells and Their Therapeutic Applications. Stem Cells Int. 2016, 2016, 1314709. [Google Scholar] [CrossRef]
- Ge, Q.; Zhang, H.; Hou, J.; Wan, L.; Cheng, W.; Wang, X.; Dong, D.; Chen, C.; Xia, J.; Guo, J.; et al. VEGF secreted by mesenchymal stem cells mediates the differentiation of endothelial progenitor cells into endothelial cells via paracrine mechanisms. Mol. Med. Rep. 2017, 17, 1667–1675. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, A.D.; Olsen, B.R. How vascular endothelial growth factor-A (VEGF) regulates differentiation of mesenchymal stem cells. J. Histochem. Cytochem. 2014, 62, 103–108. [Google Scholar] [CrossRef]
- Sulpice, E.; Ding, S.; Muscatelli-Groux, B.; Bergé, M.; Han, Z.C.; Plouet, J.; Tobelem, G.; Merkulova-Rainon, T. Cross-talk between the VEGF-A and HGF signalling pathways in endothelial cells. Biol. Cell 2009, 101, 525–539. [Google Scholar] [CrossRef]
- Matsumura, A.; Kubota, T.; Taiyoh, H.; Fujiwara, H.; Okamoto, K.; Ichikawa, D.; Shiozaki, A.; Komatsu, S.; Nakanishi, M.; Kuriu, Y.; et al. HGF regulates VEGF expression via the c-Met receptor downstream pathways, PI3K/Akt, MAPK and STAT3, in CT26 murine cells. Int. J. Oncol. 2013, 42, 535–542. [Google Scholar] [CrossRef]
- Manzano-Moreno, F.J.; Costela-Ruiz, V.J.; Melguizo-Rodríguez, L.; Illescas-Montes, R.; García-Martínez, O.; Ruiz, C.; Ramos-Torrecillas, J. Inhibition of VEGF gene expression in osteoblast cells by different NSAIDs. Arch. Oral Biol. 2018, 92, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Tan, T.; Liu, P. Regulation of Autophagy by Non-Steroidal Anti-Inflammatory Drugs in Cancer. Cancer Manag. Res. 2020, 12, 4595–4604. [Google Scholar] [CrossRef] [PubMed]
- Ghadiri, E.; Ahmadi, R.; Rostami, E. The Effects of Ibuprofen Cytoxic Dose on caspase-3, -8 and -9 Activity level in cervical cancer (Hela) cells. J. Babol Univ. Med. Sci. 2019, 21, 372–377. [Google Scholar] [CrossRef]
- Akrami, H.; Aminzadeh, S.; Fallahi, H. Inhibitory effect of ibuprofen on tumor survival and angiogenesis in gastric cancer cell. Tumor Biol. 2015, 36, 3237–3243. [Google Scholar] [CrossRef] [PubMed]
- Gan, T.J. Diclofenac: An update on its mechanism of action and safety profile. Curr. Med. Res. Opin. 2010, 26, 1715–1731. [Google Scholar] [CrossRef]
- Grosser, T.; Fries, S.; FitzGerald, G.A. Biological basis for the cardiovascular consequences of COX-2 inhibition: Therapeutic challenges and opportunities. J. Clin. Investig. 2006, 116, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, F.; Shang, L. Advances in antitumor effects of NSAIDs. Cancer Manag. Res. 2018, 10, 4631–4640. [Google Scholar] [CrossRef]
Vascular endothelial growth factor alpha (VEGFA; Hs00900055_m1) |
hepatocyte growth factor (HGF; Hs00300159_m1) |
B-cell lymphoma 2 associated X (BAX; Hs00180269_m1) |
B-cell lymphoma 2 antagonist 1 (BAK; Hs00832876_g1) |
caspase 9 (CASP9; Hs00962278_m1) |
caspase 3 (CASP3; Hs00234387_m1) |
B-cell lymphoma 2 (BCL2; Hs00608023_m1) |
beta-2-microglobulin (B2M; Hs99999907) |
glyceraldehyde-3-phosphate dehydrogenase (GAPDH; Hs99999905) |
HGF | BAK | CASP9 | CASP3 | BCL2 | |||
---|---|---|---|---|---|---|---|
72 h | 48 h | 24 h | 72 h | 72 h | 24 h | 48 h | |
150 µM IBU | ↓p ≤ 0.0121 | ↑p ≤ 0.0081 | |||||
300 µM IBU | ↑p ≤ 0.0040 | ↑p ≤ 0.0162 | ↑p ≤ 0.0107 | ||||
1.5 µM DIC | ↑p ≤ 0.0392 | ↑p ≤ 0.0162 | ↑p ≤ 0.0283 | ||||
3 µM DIC | ↑p ≤ 0.0040 | ↑p ≤ 0.0040 | ↑p ≤ 0.0172 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamičková, A.; Kyselovic, J.; Adamička, M.; Chomaničová, N.; Valášková, S.; Šalingová, B.; Molitorisová, M.; Červenák, Z.; Danišovič, Ľ.; Gažová, A. Effects of Ibuprofen and Diclofenac Pre-Treatment on Viability and Apoptosis Processes in Human Dental Pulp Stem Cells. Medicina 2024, 60, 787. https://doi.org/10.3390/medicina60050787
Adamičková A, Kyselovic J, Adamička M, Chomaničová N, Valášková S, Šalingová B, Molitorisová M, Červenák Z, Danišovič Ľ, Gažová A. Effects of Ibuprofen and Diclofenac Pre-Treatment on Viability and Apoptosis Processes in Human Dental Pulp Stem Cells. Medicina. 2024; 60(5):787. https://doi.org/10.3390/medicina60050787
Chicago/Turabian StyleAdamičková, Adriana, Jan Kyselovic, Matúš Adamička, Nikola Chomaničová, Simona Valášková, Barbara Šalingová, Miroslava Molitorisová, Zdenko Červenák, Ľuboš Danišovič, and Andrea Gažová. 2024. "Effects of Ibuprofen and Diclofenac Pre-Treatment on Viability and Apoptosis Processes in Human Dental Pulp Stem Cells" Medicina 60, no. 5: 787. https://doi.org/10.3390/medicina60050787
APA StyleAdamičková, A., Kyselovic, J., Adamička, M., Chomaničová, N., Valášková, S., Šalingová, B., Molitorisová, M., Červenák, Z., Danišovič, Ľ., & Gažová, A. (2024). Effects of Ibuprofen and Diclofenac Pre-Treatment on Viability and Apoptosis Processes in Human Dental Pulp Stem Cells. Medicina, 60(5), 787. https://doi.org/10.3390/medicina60050787