The Influence of an Eight-Week Home Exercise Program on Spatiotemporal and Kinetic Characteristics of Gait and Knee Function in Women with Severe Knee Osteoarthritis Scheduled for Arthroplasty
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Preoperative Home Exercise Program
2.4. Gait Characteristics Measurement
2.5. Leg Extensor Muscle Strength Measurement
2.6. Active Knee Range of Motion Measurement
2.7. Timed Up and Go Test Measurement
2.8. Self-Reported Knee OA-Related Health Status Scoring
2.9. Statistics
3. Results
3.1. Gait Data
3.2. Leg Extensor Muscle Strength
3.3. Knee Range of Motion and Pain
3.4. Timed Up and Go Test
3.5. Self-Reported Knee OA-Related Health Status
3.6. Correlations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Exercises | Progression | Description |
---|---|---|
Ex. 1 | Walk at a medium pace, hands move along the sides. | |
Stationary walking | 1–8 weeks | 1 repetition of 3 min. |
Ex. 2 | While walking, do knee lifts as high as possible. Walk at a medium pace, hands move along the sides. | |
High knee walking | 1–8 weeks | 1 repetition of 1 min. |
Ex. 3 | While sitting, place a ball between your knees and press the ball with the knees for 2–3 s and then relax. | |
Hip adductors strength | 1–2 weeks | 1 set of 16 repetitions at low resistance. |
3–4 weeks | 2 sets of 16 repetitions at low resistance. | |
5–6 weeks | 1 set of 16 repetitions at moderate resistance. | |
7–8 weeks | 2 sets of 16 repetitions at moderate resistance. | |
Ex. 4 | While sitting, tie a rubber band around your knees and push your knees outward against the rubber band. Exertion held for 2–3 s and then relaxed. | |
Hip abductors strength | 1–2 weeks | 1 set of 10–16 repetitions at low resistance. |
3–4 weeks | 2 sets of 10–16 repetitions at low resistance. | |
5–6 weeks | 1 set of 10–16 repetitions at moderate resistance. | |
7–8 weeks | 2 sets of 10–16 repetitions at moderate resistance. | |
Ex. 5 | While sitting, straighten the lower limb against the rubber band placed under the foot. Hold for 2–3 s, relax. Do the exercise alternately. | |
Knee extensor strength | 1–2 weeks | 1 set of 16 repetitions at low resistance. |
3–4 weeks | 2 sets of 16 repetitions at low resistance. | |
5–6 weeks | 1 set of 16 repetitions at moderate resistance. | |
7–8 weeks | 2 sets of 16 repetitions at moderate resistance. | |
Ex. 6 | Sit on the chair. Make 3 “attempts” to get up from the chair (without actually getting up). Get up on the 4th time. | |
Leg extensor strength, balance | 1–2 weeks | 1 set of 12 repetitions at low resistance. |
3–4 weeks | 2 sets of 12 repetitions at low resistance. | |
5–6 weeks | 1 set of 12 repetitions at moderate resistance. | |
7–8 weeks | 2 sets of 12 repetitions at moderate resistance. | |
Ex. 7 | Stand behind the chair, hold the backrest. Rise on your toes and hold the position for 2–3 s. | |
Dorsiflexor strength, balance | 1–2 weeks | 1 set of 20 repetitions at low resistance. |
3–4 weeks | 2 sets of 20 repetitions at low resistance. | |
5–6 weeks | 1 set of 20 repetitions at moderate resistance. | |
7–8 weeks | 2 sets of 20 repetitions at moderate resistance. | |
Ex. 8 | Stand behind the chair, hold the backrest. Stand on your heels and hold the position for 2–3 s. | |
Plantarflexor strength, balance | 1–2 weeks | 1 set of 20 repetitions at low resistance. |
3–4 weeks | 2 sets of 20 repetitions at low resistance. | |
5–6 weeks | 1 set of 20 repetitions at moderate resistance. | |
7–8 weeks | 2 sets of 20 repetitions at moderate resistance. | |
Ex. 9 | Stand behind the chair, hold the backrest. Move your straight leg to the side. Toes pointed forward. Do the exercise alternately. | |
Gluteus maximus strength, balance | 1–2 weeks | 1 set of 20 repetitions at low resistance. |
3–4 weeks | 2 sets of 20 repetitions at low resistance. | |
5–6 weeks | 1 set of 20 repetitions at moderate resistance. | |
7–8 weeks | 2 sets of 20 repetitions at moderate resistance. | |
Ex. 10 | Stand behind the chair, hold the backrest. Start squatting until you reach a semi-squat. Make sure your knees do not go over the line of your toes. | |
Knee flexors and extensors strength | 1–2 weeks | 1–2 sets of 16 repetitions at low resistance. |
3–4 weeks | 1–2 sets of 16 repetitions at low resistance. | |
5–6 weeks | 2–3 sets of 16 repetitions at moderate resistance. | |
7–8 weeks | 2–3 sets of 16 repetitions at moderate resistance. | |
Ex. 11 | Stand on one foot as long as possible. Repeat with other side. | |
Balance | 1–2 weeks | 1 set of 8 repetitions at low resistance. |
3–4 weeks | 2 sets of 8 repetitions at low resistance. | |
5–6 weeks | 1 set of 8 repetitions at moderate resistance. | |
7–8 weeks | 2 sets of 8 repetitions at moderate resistance. | |
Ex. 12 | While sitting, extend one leg forward and place it on the heel. Bend forward to feel the stretch in the back of your thigh. Perform the exercise alternately and with maximally tolerable knee extension. Hold for 6–8 s. | |
Hamstring stretch | 1–2 weeks | 1 set of 16 repetitions at low resistance. |
3–4 weeks | 2 sets of 16 repetitions at low resistance. | |
5–6 weeks | 1 set of 16 repetitions at moderate resistance. | |
7–8 weeks | 2 sets of 16 repetitions at moderate resistance. | |
Ex. 13 | While sitting, extend one leg forward and place it on the heel. Bend forward to feel the stretch in the back of your thigh. Perform the exercise alternately and with maximally tolerable knee extension and ankle dorsiflexion. Hold for 6–8 s. | |
Hamstring stretch | 1–8 weeks | 1 set of 6 repetitions. |
Ex. 14 | While sitting, extend one leg forward and place it on the heel. Pull your toes towards you as much as possible. Perform the exercise alternately and with maximally tolerable ankle dorsiflexion. Hold for 6–8 s. | |
Gastrocnemius stretch | 1–8 weeks | 1 set with 6 repetitions. |
Ex. 15 | Rest lying down. | |
Relaxation | 1–8 weeks | Breathe deeply and relax. |
References
- Vos, T.; Flaxman, A.D.; Naghavi, M.; Lozano, R.; Michaud, C.; Ezzati, M.; Shibuya, K.; Salomon, J.A.; Abdalla, S.; Aboyans, V.; et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2163–2196. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, I.N.; Bohensky, M.A.; Zomer, E.; Tacey, M.; Gorelik, A.; Brand, C.A.; De Steiger, R. The projected burden of primary total knee and hip replacement for osteoarthritis in Australia to the year 2030. BMC Musculoskelet. Disord. 2019, 20, 90. [Google Scholar] [CrossRef] [PubMed]
- Cross, M.; Smith, E.; Hoy, D.; Nolte, S.; Ackerman, I.; Fransen, M.; Bridgett, L.; Williams, S.; Guillemin, F.; Hill, C.L.; et al. The global burden of hip and knee osteoarthritis: Estimates from the global burden of disease 2010 study. Ann. Rheum. Dis. 2014, 73, 1323–1330. [Google Scholar] [CrossRef]
- Cieza, A.; Causey, K.; Kamenov, K.; Hanson, S.W.; Chatterji, S.; Vos, T. Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: A systematic analysis for the Global Burden of Disease Study. Lancet 2021, 396, 2006–2017, Erratum in Lancet 2021, 397, 198. https://doi.org/10.1016/S0140-6736(20)32592-7. [Google Scholar] [CrossRef]
- Katz, J.N.; Arant, K.R.; Loeser, R.F. Diagnosis and Treatment of Hip and Knee Osteoarthritis: A Review. JAMA 2021, 325, 568–578. [Google Scholar] [CrossRef]
- Tonelli, S.M.; Rakel, B.A.; Cooper, N.A.; Angstom, W.L.; Sluka, K.A. Women with knee osteoarthritis have more pain and poorer function than men, but similar physical activity prior to total knee replacement. Biol. Sex Differ. 2011, 2, 12. [Google Scholar] [CrossRef]
- Klug, A.; Gramlich, Y.; Rudert, M.; Drees, P.; Hoffmann, R.; Weißenberger, M.; Kutzner, K.P. The projected volume of primary and revision total knee arthroplasty will place an immense burden on future health care systems over the next 30 years. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 3287–3298. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.H.; Huang, G.S.; Chang, H.F.; Chen, C.Y.; Kang, C.Y.; Wang, C.C.; Lin, C.; Yang, J.-H.; Su, W.; Kao, S.Y.; et al. Gender differences between WOMAC index scores, health-related quality of life and physical performance in an elderly Taiwanese population with knee osteoarthritis. BMJ Open 2015, 5, e008542. [Google Scholar] [CrossRef]
- RACGP (The Royal Australian College of General Practitioners). Guideline for the Management of Knee and Hip Osteoarthritis. 2nd ed. Available online: https://www.racgp.org.au (accessed on 4 July 2024).
- Yunus, M.H.M.; Nordin, A.; Kamal, H. Pathophysiological Perspective of Osteoarthritis. Medicina 2020, 56, 614. [Google Scholar] [CrossRef]
- Zeng, C.Y.; Zhang, Z.R.; Tang, Z.M.; Hua, F.Z. Benefits and Mechanisms of Exercise Training for Knee Osteoarthritis. Front. Physiol. 2021, 12, 794062. [Google Scholar] [CrossRef]
- Roberts, M.; Mongeon, D.; Prince, F. Biomechanical parameters for gait analysis: A systematic review of healthy human gait. Phys. Ther. Rehabil. 2017, 4, 6. [Google Scholar] [CrossRef]
- Bortone, I.; Sardone, R.; Lampignano, L.; Castellana, F.; Zupo, R.; Lozupone, M.; Moretti, B.; Giannelli, G.; Panza, F. How gait influences frailty models and health-related outcomes in clinical-based and population-based studies: A systematic review. J. Cachexia Sarcopenia Muscle 2021, 12, 274–297. [Google Scholar] [CrossRef]
- Pirker, W.; Katzenschlager, R. Gait disorders in adults and the elderly: A clinical guide. Wien. Klin. Wochenschr. 2017, 129, 81–95. [Google Scholar] [CrossRef]
- Chambers, H.G.; Sutherland, D.H. A practical guide to gait analysis. J. Am. Acad. Orthop. Surg. 2002, 10, 222–231. [Google Scholar] [CrossRef]
- Cimolin, V.; Galli, M. Summary measures for clinical gait analysis: A literature review. Gait Posture 2014, 39, 1005–1010. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Hu, S.; Zhao, R.; Zhang, Y.; Huang, L.; Shi, J.; Li, P.; Wei, X. Gait analysis of bilateral knee osteoarthritis and its correlation with Western Ontario and McMaster University Osteoarthritis Index assessment. Medicina 2022, 58, 1419. [Google Scholar] [CrossRef]
- Arnaldo, L.-J.; Anselmo, F.-N. Chapter 3—Gait analysis: Overview, trends, and challenges. In Optical Fiber Sensors for the Next Generation of Rehabilitation Robotics; Arnaldo, L.-J., Anselmo, F.-N., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 53–64. ISBN 978-0-323-85952-3. [Google Scholar]
- Fukaya, T.; Mutsuzaki, H.; Mori, K. Influence of Pain on Knee Joint Movement and Moment during the Stance Phase in Patients with Severe Bilateral Knee Osteoarthritis: A Pilot Study. Medicina 2019, 55, 756. [Google Scholar] [CrossRef]
- Astephen, J.L.; Deluzio, K.J.; Caldwell, G.E.; Dunbar, M.J. Biomechanical changes at the hip, knee, and ankle joints during gait are associated with knee osteoarthritis severity. J. Orthop. Res. 2008, 26, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Sylvester, A.D.; Lautzenheiser, S.G.; Kramer, P.A. Muscle forces and the demands of human walking. Biol. Open 2021, 10, bio058595. [Google Scholar] [CrossRef]
- Patterson, B.E.; Girdwood, M.A.; West, T.J.; Bruder, A.M.; Øiestad, B.E.; Juhl, C.; Culvenor, A.G. Muscle strength and osteoarthritis of the knee: A systematic review and meta-analysis of longitudinal studies. Skeletal Radiol. 2023, 52, 2085–2097. [Google Scholar] [CrossRef]
- Bae, K.-C.; Son, E.-S.; Yon, C.-J.; Park, J.; Kim, D.-H. Assessment of Quadriceps Muscle in Advanced Knee Osteoarthritis and Correlation with Lower Limb Alignment. Medicina 2024, 60, 1983. [Google Scholar] [CrossRef] [PubMed]
- Zeni, J.A., Jr.; Higginson, J.S. Dynamic knee joint stiffness in subjects with a progressive increase in severity of knee osteoarthritis. Clin. Biomech. 2009, 24, 366–371, Erratum in Clin. Biomech. 2009, 24, 531. [Google Scholar] [CrossRef] [PubMed]
- Bellamy, N.; Buchanan, W.W.; Goldsmith, C.H.; Campbell, J.; Stitt, L.W. Validation study of WOMAC: A health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J. Rheumatol. 1988, 15, 1833–1840. [Google Scholar]
- Hussain, I.; Kim, S.E.; Kwon, C.; Hoon, S.K.; Kim, H.C.; Ku, Y.; Ro, D.H. Estimation of patient-reported outcome measures based on features of knee joint muscle co-activation in advanced knee osteoarthritis. Sci. Rep. 2024, 14, 12428. [Google Scholar] [CrossRef]
- Raposo, F.; Ramos, M.; Lúcia Cruz, A. Effects of exercise on knee osteoarthritis: A systematic review. Musculoskelet. Care 2021, 19, 399–435. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.F.; Liou, T.H.; Chen, C.H.; Huang, Y.C.; Chang, K.H. Effects of elastic-band exercise on lower-extremity function among female patients with osteoarthritis of the knee. Disabil. Rehabil. 2012, 34, 1727–1735. [Google Scholar] [CrossRef]
- Goff, A.J.; De Oliveira Silva, D.; Merolli, M.; Bell, E.C.; Crossley, K.M.; Barton, C.J. Patient education improves pain and function in people with knee osteoarthritis with better effects when combined with exercise therapy: A systematic review. J. Physiother. 2021, 67, 177–189. [Google Scholar] [CrossRef]
- Kolasinski, S.L.; Neogi, T.; Hochberg, M.C.; Oatis, C.; Guyatt, G.; Block, J.; Callahan, L.; Copenhaver, C.; Dodge, C.; Felson, D.; et al. 2019 American College of Rheumatology/Arthritis Foundation Guideline for the Management of Osteoarthritis of the Hand, Hip, and Knee. Arthritis Care Res. 2020, 72, 149–162, Erratum in Arthritis Care Res. 2021, 73, 764. [Google Scholar] [CrossRef]
- Brosseau, L.; Taki, J.; Desjardins, B.; Thevenot, O.; Fransen, M.; Wells, G.A.; Imoto, A.M.; Toupin-April, K.; Westby, M.; Álvarez Gallardo, I.C.; et al. The Ottawa panel clinical practice guidelines for the management of knee osteoarthritis. Part two: Strengthening exercise programs. Clin. Rehabil. 2017, 31, 596–611. [Google Scholar] [CrossRef]
- Lin, D.H.; Lin, C.H.; Lin, Y.F.; Jan, M.H. Efficacy of 2 non-weight-bearing interventions, proprioception training versus strength training, for patients with knee osteoarthritis: A randomized clinical trial. J. Orthop. Sports Phys. Ther. 2009, 39, 450–457. [Google Scholar] [CrossRef]
- Kuru Çolak, T.; Kavlak, B.; Aydoğdu, O.; Şahin, E.; Acar, G.; Demirbüken, İ.; Sarı, Z.; Çolak, İ.; Bulut, G.; Polat, M.G. The effects of therapeutic exercises on pain, muscle strength, functional capacity, balance and hemodynamic parameters in knee osteoarthritis patients: A randomized controlled study of supervised versus home exercises. Rheumatol. Int. 2017, 37, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Kubo, Y.; Sugiyama, S.; Takachu, R.; Sugiura, T.; Sawada, M.; Kobori, K.; Kobori, M. Effects of preoperative low-intensity training with slow movement on early quadriceps weakness after total knee arthroplasty in patients with knee osteoarthritis: A retrospective propensity score-matched study. BMC Sports Sci. Med. Rehabil. 2020, 12, 72. [Google Scholar] [CrossRef]
- Long, M.J.; McQueen, D.A.; Bangalore, V.G.; Schurman, J.R., 2nd. Using self-assessed health to predict patient outcomes after total knee replacement. Clin. Orthop. Relat. Res. 2005, 434, 189–192. [Google Scholar] [CrossRef]
- Ohno, C.; Ogawa, T.; Taniguchi, T.; Kinoshita, T.; Fujita, Y.; Nishimura, Y.; Yamada, H.; Tajima, F. Effect of 3-week preoperative rehabilitation on pain and daily physical activities in patients with severe osteoarthritis undergoing total knee arthroplasty. Br. J. Pain 2022, 16, 472–480. [Google Scholar] [CrossRef] [PubMed]
- Makarm, W.K.; Sharaf, D.M.; Zaghlol, R.S. Impact of home exercise program on self-efficacy and quality of life among primary knee osteoarthritis patients: A randomized controlled clinical study. Egypt. Rheumatol. Rehabil. 2021, 48, 28. [Google Scholar] [CrossRef]
- Si, J.; Sun, L.; Li, Z.; Zhu, W.; Yin, W.; Peng, L. Effectiveness of home-based exercise interventions on pain, physical function and quality of life in individuals with knee osteoarthritis: A systematic review and meta-analysis. J. Orthop. Surg. Res. 2023, 18, 503. [Google Scholar] [CrossRef]
- Baker, K.R.; Nelson, M.E.; Felson, D.T.; Layne, J.E.; Sarno, R.; Roubenoff, R. The efficacy of home based progressive strength training in older adults with knee osteoarthritis: A randomized controlled trial. J. Rheumatol. 2001, 28, 1655–1665. [Google Scholar] [PubMed]
- Yilmaz, M.; Sahin, M.; Algun, Z.C. Comparison of effectiveness of the home exercise program and the home exercise program taught by physiotherapist in knee osteoarthritis. J. Back. Musculoskelet. Rehabil. 2019, 32, 161–169. [Google Scholar] [CrossRef]
- Chang, S.Y.; Lin, Y.J.; Hsu, W.C.; Hsieh, L.F.; Lin, Y.H.; Chang, C.C.; Chou, Y.C.; Chen, L.F. Exercise Alters Gait Pattern but Not Knee Load in Patients with Knee Osteoarthritis. Biomed. Res. Int. 2016, 2016, 7468937. [Google Scholar] [CrossRef]
- Chen, H.; Zheng, X.; Huang, H.; Liu, C.; Wan, Q.; Shang, S. The effects of a home-based exercise intervention on elderly patients with knee osteoarthritis: A quasi-experimental study. BMC Musculoskelet. Disord. 2019, 20, 160. [Google Scholar] [CrossRef]
- Thomas, K.S.; Muir, K.R.; Doherty, M.; Jones, A.C.; O’Reilly, S.C.; Bassey, E.J. Home based exercise programme for knee pain and knee osteoarthritis: Randomised controlled trial. BMJ 2002, 325, 752. [Google Scholar] [CrossRef]
- Loew, L.; Brosseau, L.; Kenny, G.P.; Durand-Bush, N.; Poitras, S.; De Angelis, G.; Wells, G.A. Factors influencing adherence among older people with osteoarthritis. Clin. Rheumatol. 2016, 35, 2283–2291. [Google Scholar] [CrossRef] [PubMed]
- Bruce-Brand, R.A.; Walls, R.J.; Ong, J.C.; Emerson, B.S.; O’Byrne, J.M.; Moyna, N.M. Effects of home-based resistance training and neuromuscular electrical stimulation in knee osteoarthritis: A randomized controlled trial. BMC Musculoskelet. Disord. 2012, 13, 118. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, N.A.; Bittar, S.T.; Pinto, F.R.; Ferreira, M.; Sitta, R.R. Manual for guided home exercises for osteoarthritis of the knee. Clinics 2010, 65, 775–780. [Google Scholar] [CrossRef]
- Deyle, G.D.; Allison, S.C.; Matekel, R.L.; Ryder, M.G.; Stang, J.M.; Gohdes, D.D.; Hutton, J.P.; Henderson, N.E.; Garber, M.B. Physical therapy treatment effectiveness for osteoarthritis of the knee: A randomized comparison of supervised clinical exercise and manual therapy procedures versus a home exercise program. Phys. Ther. 2005, 85, 1301–1317. [Google Scholar] [CrossRef] [PubMed]
- Swank, A.M.; Kachelman, J.B.; Bibeau, W.; Quesada, P.M.; Nyland, J.; Malkani, A.; Topp, R.V. Prehabilitation before total knee arthroplasty increases strength and function in older adults with severe osteoarthritis. J. Strength. Cond. Res. 2011, 25, 318–325. [Google Scholar] [CrossRef]
- Desmeules, F.; Hall, J.; Woodhouse, L.J. Prehabilitation improves physical function of individuals with severe disability from hip or knee osteoarthritis. Physiother. Can. 2013, 65, 116–124. [Google Scholar] [CrossRef]
- Aytekin, E.; Sukur, E.; Oz, N.; Telatar, A.; Eroglu Demir, S.; Sayiner Caglar, N.; Ozturkmen, Y.; Ozgonenel, L. The effect of a 12 week prehabilitation program on pain and function for patients undergoing total knee arthroplasty: A prospective controlled study. J. Clin. Orthop. Trauma 2019, 10, 345–349. [Google Scholar] [CrossRef]
- Kellgren, J.H.; Lawrence, J.S. Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis. 1957, 16, 494–502. [Google Scholar] [CrossRef]
- Mets, M.; Tootsi, P.; Sokk, J.; Erelin, J.; Haviko, T.; Pääsuke, M.; Gapeyeva, H. Thigh Muscle Activation After a Home Exercise Program in Knee Osteoarthritis Patients. Phys. Occup. Ther. Geriatr. 2022, 40, 337–359. [Google Scholar] [CrossRef]
- Mazières, B.; Thevenon, A.; Coudeyre, E.; Chevalier, X.; Revel, M.; Rannou, F. Adherence to, and results of, physical therapy programs in patients with hip or knee osteoarthritis. Development of French clinical practice guidelines. Jt. Bone Spine 2008, 75, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Juhl, C.; Christensen, R.; Roos, E.M.; Zhang, W.; Lund, H. Impact of exercise type and dose on pain and disability in knee osteoarthritis: A systematic review and meta-regression analysis of randomized controlled trials. Arthritis Rheumatol. 2014, 66, 622–636. [Google Scholar] [CrossRef]
- Favre, J.; Jolles, B.M. Gait analysis of patients with knee osteoarthritis highlights a pathological mechanical pathway and provides a basis for therapeutic interventions. EFORT Open Rev. 2017, 1, 368–374. [Google Scholar] [CrossRef]
- Davis, R.B.; Ounpuu, S.; Tyburski, D.; Gage, J. A gait analysis data collection and reduction technique. Hum. Mov. Sci. 1991, 10, 575–587. [Google Scholar] [CrossRef]
- Rossi, M.D.; Hasson, S.; Kohia, M.; Pineda, E.; Bryan, W. Relationship of closed and open chain measures of strength with perceived physical function and mobility following unilateral total knee replacement. J. Geriatr. Phys. Ther. 2007, 30, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Raudsepp, L.; Pääsuke, M. Gender differences in fundamental movement patterns, motor performance, and strength measurements of prepubertal children. Pediatr. Exerc. Sci. 1995, 7, 294–304. [Google Scholar] [CrossRef]
- Hancock, G.E.; Hepworth, T.; Wembridge, K. Accuracy and reliability of knee goniometry methods. J. Exp. Orthop. 2018, 5, 46. [Google Scholar] [CrossRef]
- Herman, T.; Giladi, N.; Hausdorff, J.M. Properties of the ‘timed up and go’ test: More than meets the eye. Gerontology 2011, 57, 203–210. [Google Scholar] [CrossRef]
- Sarac, D.C.; Unver, B.; Karatosun, V. Validity and reliability of performance tests as balance measures in patients with total knee arthroplasty. Knee Surg. Relat. Res. 2022, 34, 11. [Google Scholar] [CrossRef]
- Ackerman, I. Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). Aust. J. Physiother. 2009, 55, 213. [Google Scholar] [CrossRef]
- Holtz, N.; Hamilton, D.F.; Giesinger, J.M.; Jost, B.; Giesinger, K. Minimal important differences for the WOMAC osteoarthritis index and the Forgotten Joint Score-12 in total knee arthroplasty patients. BMC Musculoskelet. Disord. 2020, 21, 401. [Google Scholar] [CrossRef] [PubMed]
- Alghadir, A.H.; Anwer, S.; Iqbal, A.; Iqbal, Z.A. Test-retest reliability, validity, and minimum detectable change of visual analog, numerical rating, and verbal rating scales for measurement of osteoarthritic knee pain. J. Pain Res. 2018, 11, 851–856. [Google Scholar] [CrossRef] [PubMed]
- Rätsepsoo, M.; Gapeyeva, H.; Sokk, J.; Ereline, J.; Haviko, T.; Pääsuke, M. Leg extensor muscle strength, postural stability, and fear of falling after a 2-month home exercise program in women with severe knee joint osteoarthritis. Medicina 2013, 49, 347–353. [Google Scholar] [CrossRef]
- Armijo-Olivo, S.; Warren, S.; Fuentes, J.; Magee, D.J. Clinical relevance vs. statistical significance: Using neck outcomes in patients with temporomandibular disorders as an example. Man. Ther. 2011, 16, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Key, J. Back Pain—A Movement Problem. A Clinical Approach Incorporating Relevant Research and Practice, 1st ed.; Churchill Livingstone/Elsevier: Edinburgh, NY, USA, 2010; ISBN 9780702030796. [Google Scholar]
- Krishnan, C.; Johnson, A.K.; Palmieri-Smith, R.M. Mechanical Factors Contributing to Altered Knee Extension Moment during Gait after ACL Reconstruction: A Longitudinal Analysis. Med. Sci. Sports Exerc. 2022, 54, 2208–2215. [Google Scholar] [CrossRef]
- Ohmine, T.; Demizu, S.; Murakami, T.; Yoshioka, T.; Aisu, J.; Katsuda, H.; Shimada, N. Improvement in Gait Speed Affects Short-term Improvement in Activities of Daily Living in Patients with Moderate and Severe Knee Osteoarthritis. Prog. Rehabil. Med. 2024, 9, 20240002. [Google Scholar] [CrossRef]
- O’Reilly, S.C.; Muir, K.R.; Doherty, M. Effectiveness of home exercise on pain and disability from osteoarthritis of the knee: A randomised controlled trial. Ann. Rheum. Dis. 1999, 58, 15–19. [Google Scholar] [CrossRef]
- Losina, E.; Paltiel, A.D.; Weinstein, A.M.; Yelin, E.; Hunter, D.J.; Chen, S.P.; Klara, K.; Suter, L.G.; Solomon, D.H.; Burbine, S.A.; et al. Lifetime medical costs of knee osteoarthritis management in the United States: Impact of extending indications for total knee arthroplasty. Arthritis Care Res. 2015, 67, 203–215. [Google Scholar] [CrossRef]
- Kirtley, C. Clinical Gait Analysis: Theory and Practice, 1st ed.; Churchill Livingstone/Elsevier: Edinburgh, NY, USA, 2006; ISBN 978-0443100093. [Google Scholar]
- Kim, M.J.; Kang, B.H.; Park, S.H.; Kim, B.; Lee, G.Y.; Seo, Y.M.; Park, K.S.; Yoo, J.I. Association of the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) with Muscle Strength in Community-Dwelling Elderly with Knee Osteoarthritis. Int. J. Environ. Res. Public Health 2020, 17, 2260. [Google Scholar] [CrossRef]
- McCarthy, I.; Hodgins, D.; Mor, A.; Elbaz, A.; Segal, G. Analysis of knee flexion characteristics and how they alter with the onset of knee osteoarthritis: A case control study. BMC Musculoskelet. Disord. 2013, 14, 169. [Google Scholar] [CrossRef]
- Slemenda, C.; Heilman, D.K.; Brandt, K.D.; Katz, B.P.; Mazzuca, S.A.; Braunstein, E.M.; Byrd, D. Reduced quadriceps strength relative to body weight: A risk factor for knee osteoarthritis in women? Arthritis Rheum. 1998, 41, 1951–1959. [Google Scholar] [CrossRef] [PubMed]
- Raud, B.; Gay, C.; Guiguet-Auclair, C.; Bonnin, A.; Gerbaud, L.; Pereira, B.; Duclos, M.; Boirie, Y.; Coudeyre, E. Level of obesity is directly associated with the clinical and functional consequences of knee osteoarthritis. Sci. Rep. 2020, 10, 3601. [Google Scholar] [CrossRef] [PubMed]
Parameters | KOA | CON | |
---|---|---|---|
Pre-HEP | Post-HEP | ||
N | 18 | 18 | 10 |
Age (years) | 61.8 ± 1.6 | 62.0 ± 1.6 | 62.1 ± 1.8 |
Weight (kg) | 88.8 ± 3.8 ** | 88.5 ± 3.7 ** | 70.6 ± 4.1 |
Height (m) | 161.8 ± 1.2 | 161.8 ± 1.2 | 161.1 ± 1.8 |
BMI (kg/m2) | 33.9 ± 1.4 ** | 33.9 ± 1.4 ** | 27.2 ± 1.3 |
Characteristic | KOA | CON | |
---|---|---|---|
Pre-HEP | Post-HEP | ||
Stance time (%) | 58.99 ± 0.55 * | 58.95 ± 0.43 * | 57.33 ± 0.36 |
Cadence (steps/min) | 107.36 ± 2.01 *** | 111.41 ± 2.62 ** | 124.41 ± 2.86 |
Mean velocity (m/s) | 1.12 ± 0.04 *** | 1.12 ± 0.06 *** | 1.46 ± 0.04 |
Stride length (m) | 1.22 ± 0.03 *** | 1.23 ± 0.04 ** | 1.41 ± 0.03 |
Step length (m) | 0.62 ± 0.02 *** | 0.61 ± 0.02 *** | 0.72 ± 0.02 |
Step width (m) | 0.08 ± 0.01 | 0.10 ± 0.01 | 0.10 ± 0.01 |
Characteristic | KOA | CON | ||
---|---|---|---|---|
Pre-HEP | Post-HEP | |||
WOMAC | Pain | 11.33 ± 1.18 ### | 13.56 ± 0.97 **,### | 19.50 ± 0.22 |
CI 95% | 10.79–11.88 | 13.11–14.00 | 19.36–19.64 | |
Stiffness | 4.17 ± 0.55 ### | 4.44 ± 0.55 ### | 8.00 ± 0.00 | |
CI 95% | 3.91–4.42 | 4.19–4.70 | 8.00–8.00 | |
Function | 37.83 ± 3.71 ### | 44.33 ± 3.07 ### | 67.40 ± 0.34 | |
CI 95% | 36.12–39.55 | 42.91–45.75 | 98.51–99.19 | |
total index | 55.55 ± 5.28 ### | 65.74 ± 4.66 *,### | 98.85 ± 0.55 | |
CI 95% | 53.11–57.99 | 63.59–67.89 | 98.51–99.19 | |
VAS (points) | 5.14 ± 0.42 ### | 4.47 ± 0.45 ### | 0.2 ± 0.15 | |
CI 95% | 4.95–5.34 | 4.26–4.67 | 0.11–0.29 | |
AROM flex (◦) | involved | 90.9 ± 4.6 ###,&&& | 99.8 ± 3.8 **,###,&& | 122.8 ± 2.0 |
uninvolved | 108.9 ± 2.3 | 113.8 ± 1.9 | N/A | |
AROM ext (◦) | involved | −7.5 ± 2.0 ##,&& | −6.9 ± 1.7 ##,&& | −0.1 ± 0.1 |
uninvolved | −0.5 ± 0.4 | 0.0 ± 0.0 | N/A | |
TUG (s) | 9.05 ± 0.99 # | 9.00 ± 1.20 | 5.94 ± 0.27 |
Pre-HEP | Post-HEP | ||||
---|---|---|---|---|---|
RPTD | AROM Flex | VAS | AROM | VAS | |
KEM | 0.47 * | −0.27 | 0.15 | −0.15 | 0.26 |
Step length | 0.21 | 0.33 | −0.46 | 0.65 ** | −0.13 |
Stride length | 0.20 | 0.15 | −0.34 | 0.71 *** | −0.22 |
Step width | −0.61 ** | −0.14 | 0.36 | −0.52 * | 0.30 |
Mean gait velocity | 0.15 | 0.07 | −0.40 | 0.57 * | −0.19 |
WOMAC pain | 0.55 * | 0.39 | −0.51 * | 0.26 | −0.81 *** |
WOMAC stiffness | 0.44 | 0.51 * | −0.56 * | 0.63 ** | −0.68 ** |
WOMAC function | 0.61 ** | 0.59 ** | −0.69 *** | 0.27 | −0.81 *** |
WOMAC total index | 0.62 ** | 0.58 ** | −0.68 ** | 0.31 | −0.79 *** |
AROM flex | 0.24 | N/A | −0.61 ** | N/A | −0.41 |
TUG | −0.13 | −0.57 * | 0.07 | −0.76 *** | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mets, M.; Sokk, J.; Ereline, J.; Pääsuke, M.; Haviko, T.; Gapeyeva, H. The Influence of an Eight-Week Home Exercise Program on Spatiotemporal and Kinetic Characteristics of Gait and Knee Function in Women with Severe Knee Osteoarthritis Scheduled for Arthroplasty. Medicina 2025, 61, 774. https://doi.org/10.3390/medicina61050774
Mets M, Sokk J, Ereline J, Pääsuke M, Haviko T, Gapeyeva H. The Influence of an Eight-Week Home Exercise Program on Spatiotemporal and Kinetic Characteristics of Gait and Knee Function in Women with Severe Knee Osteoarthritis Scheduled for Arthroplasty. Medicina. 2025; 61(5):774. https://doi.org/10.3390/medicina61050774
Chicago/Turabian StyleMets, Monika, Jelena Sokk, Jaan Ereline, Mati Pääsuke, Tiit Haviko, and Helena Gapeyeva. 2025. "The Influence of an Eight-Week Home Exercise Program on Spatiotemporal and Kinetic Characteristics of Gait and Knee Function in Women with Severe Knee Osteoarthritis Scheduled for Arthroplasty" Medicina 61, no. 5: 774. https://doi.org/10.3390/medicina61050774
APA StyleMets, M., Sokk, J., Ereline, J., Pääsuke, M., Haviko, T., & Gapeyeva, H. (2025). The Influence of an Eight-Week Home Exercise Program on Spatiotemporal and Kinetic Characteristics of Gait and Knee Function in Women with Severe Knee Osteoarthritis Scheduled for Arthroplasty. Medicina, 61(5), 774. https://doi.org/10.3390/medicina61050774