Effect of Continuous Intraoperative Dexmedetomidine on Interleukin-6 and Other Inflammatory Markers After Coronary Artery Bypass Graft Surgery: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Randomisation
2.3. Anesthesia Management
2.4. Surgery and CPB Management
2.5. Study Interventions
2.6. Outcomes
2.7. Statistical Analysis
3. Results
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malakar, A.K.; Choudhury, D.; Halder, B.; Paul, P.; Uddin, A.; Chakraborty, S. A review on coronary artery disease, its risk factors, and therapeutics. J. Cell Physiol. 2019, 234, 16812–16823. [Google Scholar] [CrossRef] [PubMed]
- Lawton, J.S.; Tamis-Holland, J.E.; Bangalore, S.; Bates, E.R.; Beckie, T.M.; Bischoff, J.M.; Bittl, J.A.; Cohen, M.G.; DiMaio, J.M.; Don, C.W.; et al. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e4–e17. [Google Scholar] [CrossRef]
- Melly, L.; Torregrossa, G.; Lee, T.; Jansens, J.L.; Puskas, J.D. Fifty years of coronary artery bypass grafting. J. Thorac. Dis. 2018, 10, 1960–1967. [Google Scholar] [CrossRef]
- Hijazi, E. Enhancing mortality prediction after coronary artery bypass graft: A machine learning approach utilizing EuroScore. Future Sci. OA 2024, 10, FSO959. [Google Scholar] [CrossRef] [PubMed]
- Chua, T.K.T.; Gao, F.; Chia, S.Y.; Sin, K.Y.K.; Naik, M.J.; Tan, T.E.; Tham, Y.C. Long-term mortality after isolated coronary artery bypass grafting and risk factors for mortality. J. Cardiothorac. Surg. 2024, 19, 429. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Pan, B.; Liu, J.; Zhang, J. Early administration of ketorolac after cardiac surgery and postoperative complications: Analysis of the MIMIC-IV database. Clin. Transl. Sci. 2024, 17, e13907. [Google Scholar] [CrossRef]
- Mladenović, N.; Zdravković, R.; Velicki, L.; Drljević-Todić, V.; Todić, M.; Maletin, S.; Mladenović, A.; Petrović, N.; Okiljević, B.; Nikolić, V.; et al. Significance of Galectin-3 and N-terminal pro b-type natriuretic peptide in the prediction of atrial fibrillation after cardiac surgery. J. Med. Biochem. 2024, 43, 397–405. [Google Scholar] [CrossRef]
- Van De Kar, M.R.D.; Van Brakel, T.J.; Van’T Veer, M.; Van Steenbergen, G.J.; Daeter, E.J.; Crijns, H.J.G.M.; Van Veghel, D.; Dekker, L.R.C.; Otterspoor, L.C. Anticoagulation for post-operative atrial fibrillation after isolated coronary artery bypass grafting: A meta-analysis. Eur. Heart J. 2024, 45, 2620–2630. [Google Scholar] [CrossRef]
- Jenke, A.; Yazdanyar, M.; Miyahara, S.; Chekhoeva, A.; Immohr, M.B.; Kistner, J.; Boeken, U.; Lichtenberg, A.; Akhyari, P. AdipoRon Attenuates Inflammation and Impairment of Cardiac Function Associated with Cardiopulmonary Bypass–Induced Systemic Inflammatory Response Syndrome. J. Am. Heart Assoc. 2021, 10, e018097. [Google Scholar] [CrossRef]
- Squiccimarro, E.; Lorusso, R.; Consiglio, A.; Labriola, C.; Haumann, R.G.; Piancone, F.; Speziale, G.; Whitlock, R.P.; Paparella, D. Impact of Inflammation After Cardiac Surgery on 30-Day Mortality and Machine Learning Risk Prediction. J. Cardiothorac. Vasc. Anesth. 2025, 39, 683–691. [Google Scholar] [CrossRef]
- Lindman, B.R.; Goldstein, J.S.; Nassif, M.E.; Zajarias, A.; Novak, E.; Tibrewala, A.; Vatterott, A.M.; Lawler, C.; Damiano, R.J.; Moon, M.R.; et al. Systemic inflammatory response syndrome after transcatheter or surgical aortic valve replacement. Heart 2015, 101, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Krüger, B.D.; Hofer, G.E.; Rudiger, A.; Spahn, G.H.; Braun, J.; Bettex, D.; Schoedon, G.; Spahn, D.R. Wingless-related integration site (WNT) signaling is activated during the inflammatory response upon cardiac surgery: A translational study. Front. Cardiovasc. Med. 2022, 9, 997350. [Google Scholar] [CrossRef] [PubMed]
- Oremus, Z.S.; Bradic, N.; Gospic, I.; Preseki, I.; Sakan, S.; Sojcic, N.; Oremus, K.; Baric, D.; Sotosek, V.; Rudez, I. Effect of Dexmedetomidine on Cardiopulmonary Bypass Induced Inflammatory Response in Patients Undergoing Aortic Valve Replacement. Life 2025, 15, 524. [Google Scholar] [CrossRef]
- Plas, M.; Rutgers, A.; van der Wal-Huisman, H.; de Haan, J.J.; Absalom, A.R.; de Bock, G.H.; van Leeuwen, B.L. The association between the inflammatory response to surgery and postoperative complications in older patients with cancer; A prospective prognostic factor study. J. Geriatr. Oncol. 2020, 11, 873–879. [Google Scholar] [CrossRef]
- Zhou, Q.; Lu, X.; Qian, L.; Yu, C.; Xie, J.; Kong, D. Procalcitonin, C-reactive protein, and white blood cell count levels in end-stage cancer patients: A retrospective study on inflammatory markers and their prognostic value. Medicine 2024, 103, e40792. [Google Scholar] [CrossRef]
- Foy, B.H.; Sundt, T.M.; Carlson, J.C.T.; Aguirre, A.D.; Higgins, J.M. Human acute inflammatory recovery is defined by co-regulatory dynamics of white blood cell and platelet populations. Nat. Commun. 2022, 13, 4705. [Google Scholar] [CrossRef]
- Sui, J.; Noubouossie, D.F.; Gandotra, S.; Cao, L. Elevated Plasma Fibrinogen Is Associated with Excessive Inflammation and Disease Severity in COVID-19 Patients. Front. Cell Infect. Microbiol. 2021, 11, 734005. [Google Scholar] [CrossRef]
- Wang, K.; Wu, M.; Xu, J.; Wu, C.; Zhang, B.; Wang, G.; Ma, D. Effects of dexmedetomidine on perioperative stress, inflammation, and immune function: Systematic review and meta-analysis. Br. J. Anaesth. 2019, 123, 777–794. [Google Scholar] [CrossRef]
- Smith, W.; Whitlock, E.L. Cardiac surgery, ICU sedation, and delirium: Is dexmedetomidine the silver bullet? Cur. Opin. Anaesthesiol. 2023, 36, 50–56. [Google Scholar] [CrossRef]
- Akavipat, P.; Sookplung, P.; Lekprasert, V.; Kasemsiri, C.; Lerdsirisophon, S. Dexmedetomidine for awake craniotomy: Systematic review and meta-analysis. J. Clin. Neurosci. 2024, 127, 110765. [Google Scholar] [CrossRef]
- Duan, S.; Zhou, S. Dexmedetomidine and Perioperative Arrhythmias. J. Cardiothorac. Vasc. Anesth. 2024, 38, 1221–1227. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Yan, S.; Shen, J.; Wu, H.; Yu, L.; Wang, Y.; Tian, S.; Zhou, W.; Wu, Y.; Zhang, Z. Effects of dexmedetomidine on cardiac electrophysiology in patients undergoing general anesthesia during perioperative period: A randomized controlled trial. BMC Anesthesiol. 2022, 22, 271. [Google Scholar] [CrossRef] [PubMed]
- Ueki, M.; Kawasaki, T.; Habe, K.; Hamada, K.; Kawasaki, C.; Sata, T. The effects of dexmedetomidine on inflammatory mediators after cardiopulmonary bypass. Anaesthesia 2014, 69, 693–700. [Google Scholar] [CrossRef]
- Okiljevic, B.; Zdravkovic, R.; Preveden, A.; Preveden, M.; Mladenovic, N.; Susak, S. The Effect of Silymarin on the Prevention of Atrial Fibrillation After Coronary Artery Bypass Grafting. Braz. J. Cardiovasc. Surg. 2024, e20230422. [Google Scholar] [CrossRef]
- Aslan Sirakaya, H.; Sipahioglu, H.; Cetinkaya, A.; Aydin, K. Relationship Between Inflammatory Markers (IL-6, Neutrophil–Lymphocyte Ratio, and C-Reactive Protein-Albumin Ratio) and Diabetic Ketoacidosis Severity: Correlation with Clinical Outcomes. Medicina 2025, 61, 321. [Google Scholar] [CrossRef] [PubMed]
- Ni Choileain, N. Cell Response to Surgery. Arch. Surg. 2006, 141, 1132. [Google Scholar] [CrossRef]
- Moon, J.; Chun, D.H.; Kong, H.J.; Lee, H.S.; Jeon, S.; Park, J.; Kim, N.Y.; Kim, H.I. The Intraoperative Administration of Dexme-detomidine Alleviates Postoperative Inflammatory Response in Patients Undergoing Laparoscopy-Assisted Gastrectomy: A Double-Blind Randomized Controlled Trial. Biomedicines 2023, 11, 3253. [Google Scholar] [CrossRef]
- Bauer, A.; Korten, I.; Juchem, G.; Kiesewetter, I.; Kilger, E.; Heyn, J. EuroScore and IL-6 predict the course in ICU after cardiac surgery. Eur. J. Med. Res. 2021, 26, 29. [Google Scholar] [CrossRef]
- Weymann, A.; Popov, A.F.; Sabashnikov, A.; Ali-Hasan-Al-Saegh, S.; Ryazanov, M.; Tse, G.; Mirhosseini, S.J.; Liu, T.; Lotfaliani, M.; Sedaghat, M.; et al. Baseline and postoperative levels of C-reactive protein and interleukins as inflammatory predictors of atrial fibrillation following cardiac surgery: A systematic review and meta-analysis. Kardiol. Pol. 2018, 76, 440–451. [Google Scholar] [CrossRef]
- Kethireddy, R.; Gandhi, D.; Kichloo, A.; Patel, L. Challenges in hyperglycemia management in critically ill patients with COVID-19. World J. Crit. Care Med. 2022, 11, 219–227. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, B.; Ning, B. Evaluating IL-6 and IL-10 as rapid diagnostic tools for Gram-negative bacteria and as disease severity predictors in pediatric sepsis patients in the intensive care unit. Front. Immunol. 2022, 13, 1043968. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.Q.; Zhuang, L.P.; Wu, P.Y.; Zhong, L.Y.; Zhong, X.H.; Chen, B.; Liu, Z.K.; Luo, H.R.; Yang, L.P. Effect of Dexmedetomidine on Postoperative Renal Function in Patients Undergoing Cardiac Valve Surgery Under Cardiopulmonary Bypass: A Randomized Clinical Trial. J. Cardiothorac. Vasc. Anesth. 2023, 37, 1424–1432. [Google Scholar] [CrossRef]
- Ham, S.Y.; Shim, J.K.; Lee, S.; Ko, S.H.; Soh, S.; Kwak, Y.L. Effects of dexmedetomidine on renal function after cardiac surgery for infective endocarditis: An interim analysis of a randomized controlled trial. Asian J. of Surg. 2024, 47, 4322–4329. [Google Scholar] [CrossRef]
- Lee, J.; Hwang, H.W.; Jeong, J.Y.; Kim, Y.M.; Park, C.; Kim, J.Y. The Effect of Low-Dose Dexmedetomidine on Pain and Inflammation in Patients Undergoing Laparoscopic Hysterectomy. JCM 2022, 11, 2802. [Google Scholar] [CrossRef]
- Ye, C.; Shen, J.; Zhang, C.; Hu, C. Impact of intraoperative dexmedetomidine on postoperative delirium and pro-inflammatory cytokine levels in elderly patients undergoing thoracolumbar compression fracture surgery: A prospective, randomized, placebo-controlled clinical trial. Medicine 2024, 103, e37931. [Google Scholar] [CrossRef]
- Bulow, N.M.H.; Colpo, E.; Pereira, R.P.; Correa, E.F.M.; Waczuk, E.P.; Duarte, M.F.; Rocha, J.B.T. Dexmedetomidine decreases the inflammatory response to myocardial surgery under mini-cardiopulmonary bypass. Braz. J. Med. Biol. Res. 2016, 49, e4646. [Google Scholar] [CrossRef] [PubMed]
- Ohta, Y.; Miyamoto, K.; Kawazoe, Y.; Yamamura, H.; Morimoto, T. Effect of dexmedetomidine on inflammation in patients with sepsis requiring mechanical ventilation: A sub-analysis of a multicenter randomized clinical trial. Crit. Care 2020, 24, 493. [Google Scholar] [CrossRef]
- Il’yasova, D.; Ivanova, A.; Morrow, J.D.; Cesari, M.; Pahor, M. Correlation between two markers of inflammation, serum C-reactive protein and interleukin 6, and indices of oxidative stress in patients with high risk of cardiovascular disease. Biomarkers 2008, 13, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Qin, L.; Sun, J.; Li, K.; Zang, C.; Wang, Q.; Qiao, W.; Liu, B.; Zhao, Y.; Zhang, Y. Dynamic Changes of Cytokine Profiles and Their Correlation with Tumor Recurrence Following Thermal Ablation in Hepatocellular Carcinoma. Technol. Cancer Res. Treat. 2023, 15330338231190644. [Google Scholar] [CrossRef]
- Cronjé, H.T.; Nienaber-Rousseau, C.; Zandberg, L.; de Lange, Z.; Green, F.R.; Pieters, M. Fibrinogen and clot-related phenotypes determined by fibrinogen polymorphisms: Independent and IL-6-interactive associations. PLoS ONE 2017, 12, e0187712. [Google Scholar] [CrossRef]
Variables | Control Group (n = 50) | Experimental Group (n = 50) | p |
---|---|---|---|
Age, years | 65.26 ± 9.04 | 66.28 ± 8.18 | 0.555 |
Gender | |||
Male, n (%) | 40 (80) | 37 (74) | 0.635 |
Female, n (%) | 10 (20) | 13 (26) | |
Height, cm | 171.73 ± 9.00 | 169.41 ± 9.47 | 0.214 |
Weight, kg | 80.0 (75.0–90.5) | 76.8 (66.6–91.2) | 0.090 |
BMI, kg/m2 | 28.24 ± 4.38 | 27.22 ± 5.13 | 0.294 |
LVEF, % | 55.06 ± 7.06 | 54.18 ± 7.14 | 0.537 |
ASA classification | |||
III, n (%) | 36 (72) | 32 (64) | 0.521 |
IV, n (%) | 14 (28) | 18 (36) | |
EuroScore II | 0.9 (0.8–1.4) | 1.0 (0.7–1.5) | 0.903 |
Variables | Control Group (n = 50) | Experimental Group (n = 50) | p |
---|---|---|---|
Hypertension, n (%) | 49 (98) | 49 (98) | 1.000 |
History of MI, n (%) | 21 (42) | 22 (44) | 1.000 |
Atrial fibrillation, n (%) | 3 (6) | 5 (10) | 0.715 |
Diabetes mellitus, n (%) | 17 (34) | 18 (36) | 1.000 |
History of stroke, n (%) | 3 (6) | 1 (2) | 0.617 |
COPD, n (%) | 7 (14) | 6 (12) | 1.000 |
Anemia, n (%) | 1 (2) | 3 (6) | 0.617 |
Dyslipidemia, n (%) | 43 (86) | 45 (90) | 0.760 |
Smoking, n (%) | 21 (42) | 19 (38) | 0.838 |
Variables | Control Group (n = 50) | Experimental Group (n = 50) | p |
---|---|---|---|
Beta blockers, n (%) | 42 (84) | 43 (86) | 1.000 |
ACEi/ARBs, n (%) | 35 (70) | 34 (68) | 1.000 |
CCBs, n (%) | 15 (30) | 22 (44) | 0.214 |
Diuretics, n (%) | 23 (46) | 25 (50) | 0.841 |
Antiplatelets, n (%) | 38 (76) | 33 (66) | 0.378 |
Anticoagulants, n (%) | 1 (2) | 2 (4) | 1.000 |
Variables | Control Group (n = 50) | Experimental Group (n = 50) | p |
---|---|---|---|
Duration of surgery, min | 167.24 ± 31.71 | 169.80 ± 30.70 | 0.685 |
Cross-clamp time, min | 51.54 ± 21.35 | 48.90 ± 17.72 | 0.503 |
CPB time, min | 58.08 ± 21.66 | 56.58 ± 18.69 | 0.712 |
Number of bypass grafts, n | 2.0 (2.0–3.0) | 2.0 (2.0–3.0) | 0.898 |
Sufentanil, µg | 185.0 (152.5–232.5) | 107.5 (90.8–132.5) | <0.001 |
Sevoflurane, mL | 20.81 ± 4.40 | 15.13 ± 6.79 | <0.001 |
Vasopressors, n (%) | 16 (32) | 22 (44) | 0.303 |
Inotropes, n (%) | 30 (60) | 20 (40) | 0.029 |
Crystalloids, mL | 1454.08 ± 233.59 | 1408.0 ± 333.71 | 0.427 |
Red blood cells, n (%) | 4 (8) | 5 (10) | 1.000 |
Duration of MLV, hours | 7.0 (5.0–8.2) | 7.0 (5.0–8.2) | 0.702 |
ICU stay, days | 1.0 (1.0–1.0) | 1.0 (1.0–1.0) | 0.651 |
Hospital LOS, days | 6.0 (5.0–7.0) | 6.0 (5.0–7.2) | 0.761 |
In-hospital mortality, n (%) | 0 (0) | 1 (2) | 1.000 |
Variables | Before Surgery | POD1 | ∆ | p |
---|---|---|---|---|
IL-6, pg/mL | 2.0 (2.0–3.3) | 76.2 (54.9–121.1) | 73.7 (50.8–113.2) | <0.001 |
CRP, mg/dL | 2.5 (1.2–5.2) | 45.5 (24.5–72.0) | 38.8 (24.0–66.7) | <0.001 |
WBC, (×109/L) | 6.7 (5.6–7.5) | 13.6 (11.3–15.6) | 7.0 (4.5–9.6) | <0.001 |
Fibrinogen, g/L | 3.19 ± 0.78 | 3.37 ± 0.52 | 0.18 ± 0.69 | 0.024 |
Variables | Control Group (n = 50) | Experimental Group (n = 50) | p |
---|---|---|---|
IL-6, pg/mL | |||
Before surgery | 2.0 (2.0–2.5) | 2.0 (2.0–4.2) | 0.446 |
POD1 | 77.0 (47.3–103.8) | 75.0 (55.8–125.1) | 0.408 |
Δ IL-6 | 72.4 (41.9–101.8) | 73.0 (51.0–116.9) | 0.427 |
CRP, mg/dL | |||
Before surgery | 2.5 (1.2–4.1) | 2.4 (1.1–8.9) | 0.690 |
POD1 | 45.5 (24.1–68.7) | 46.3 (24.6–75.6) | 0.979 |
Δ CRP | 41.2 (24.8–67.5) | 38.0 (23.2–69.6) | 0.725 |
WBC, ×109/L | |||
Before surgery | 6.8 (5.6–7.4) | 6.5 (5.4–7.8) | 0.772 |
POD1 | 14.1 (12.2–16.3) | 13.3 (11.0–15.38) | 0.198 |
Δ WBC | 7.45 ± 3.55 | 6.81 ± 4.05 | 0.407 |
Fibrinogen, g/L | |||
Before surgery | 3.26 ± 0.74 | 3.20 ± 0.83 | 0.714 |
POD1 | 3.53 ± 0.58 | 3.38 ± 0.57 | 0.230 |
Δ Fibrinogen | 0.16 ± 0.53 | 0.20 ± 0.80 | 0.771 |
IL-6 Before Surgery [ρ (p)] | IL-6 POD1 [ρ (p)] | |
---|---|---|
CRP before surgery | 0.535 (<0.001) | |
CRP POD1 | 0.240 (<0.05) | |
WBC before surgery | 0.201 (<0.05) | |
WBC POD1 | 0.021 (0.845) | |
Fibrinogen before surgery | 0.018 (0.869) | |
Fibrinogen POD1 | 0.122 (0.287) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zdravković, R.; Vicković, S.; Preveden, M.; Drobnjak, V.; Lukić-Šarkanović, M.; Miljević, I.B.; Tatić, M.; Tubić, T.; Videnović, N.; Mladenović, N.; et al. Effect of Continuous Intraoperative Dexmedetomidine on Interleukin-6 and Other Inflammatory Markers After Coronary Artery Bypass Graft Surgery: A Randomized Controlled Trial. Medicina 2025, 61, 787. https://doi.org/10.3390/medicina61050787
Zdravković R, Vicković S, Preveden M, Drobnjak V, Lukić-Šarkanović M, Miljević IB, Tatić M, Tubić T, Videnović N, Mladenović N, et al. Effect of Continuous Intraoperative Dexmedetomidine on Interleukin-6 and Other Inflammatory Markers After Coronary Artery Bypass Graft Surgery: A Randomized Controlled Trial. Medicina. 2025; 61(5):787. https://doi.org/10.3390/medicina61050787
Chicago/Turabian StyleZdravković, Ranko, Sanja Vicković, Mihaela Preveden, Vanja Drobnjak, Mirka Lukić-Šarkanović, Iva Bosić Miljević, Milanka Tatić, Teodora Tubić, Nebojša Videnović, Nikola Mladenović, and et al. 2025. "Effect of Continuous Intraoperative Dexmedetomidine on Interleukin-6 and Other Inflammatory Markers After Coronary Artery Bypass Graft Surgery: A Randomized Controlled Trial" Medicina 61, no. 5: 787. https://doi.org/10.3390/medicina61050787
APA StyleZdravković, R., Vicković, S., Preveden, M., Drobnjak, V., Lukić-Šarkanović, M., Miljević, I. B., Tatić, M., Tubić, T., Videnović, N., Mladenović, N., Komazec, N., Dračina, N., Jerković, M., Djoković, A., Jakovljević, A., Kostić, A., Mehmedi, E., & Redžek, A. (2025). Effect of Continuous Intraoperative Dexmedetomidine on Interleukin-6 and Other Inflammatory Markers After Coronary Artery Bypass Graft Surgery: A Randomized Controlled Trial. Medicina, 61(5), 787. https://doi.org/10.3390/medicina61050787