Air-Quality Assessment of On-Site Brick-Kiln Worker Housing in Bhaktapur, Nepal: Chemical Speciation of Indoor and Outdoor PM2.5 Pollution
Abstract
:1. Introduction
2. Materials and Methods
2.1. PM2.5 Measurement
2.2. PM2.5 Carbon Analysis
2.3. PM2.5 Elemental Composition Measurement
2.4. Air Temperature and Relative Humidity
2.5. Housing Questionnaire
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Joshi, S.K.; Dahal, P.; Poudel, A.; Sherpa, H. Work related injuries and musculoskeletal disorders among child workers in the brick kilns of Nepal. Int. J. Occup. Saf. Health 2013, 3, 2–7. [Google Scholar] [CrossRef]
- Sanjel, S.; Thygerson, S.M.; Khanal, S.N.; Joshi, S.K. Environmental and Occupational Pollutants and Their Effects on Health among Brick Kiln Workers. Open J. Saf. Sci. Technol. 2016, 6, 81–98. [Google Scholar] [CrossRef] [Green Version]
- Larmar, S.; O’Leary, P.; Chui, C.; Benfer, K.; Zug, S.; Jordan, L.P. Hazardous child labor in Nepal: The case of brick kilns. Child Abus. Negl. 2017, 72, 312–325. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Hasan, S.Q.; Akhter, R.; Huque, S.; Khandaker, S.; Gorapi, Z.H.; Shahriar, M. Socioeconomic conditions and health hazards of brick field workers: A case study of Mymensingh brick industrial area of Bangladesh. J. Public Health Epidemiol. 2017, 9, 198–205. [Google Scholar]
- Kainth, G.S. Push and pull factors of migration: A case of brick kiln industry of Punjab State. Asia-Pac. J. Soc. Sci. 2009, 1, 82–116. [Google Scholar]
- Dharmalingam, A. Conditions of brick workers in south Indian village. Econ. Political Wkly. 1995, 30, 3014–3018. [Google Scholar]
- Haack, B.N.; Khatiwada, G. Rice and bricks: Environmental issues and mapping of the unusual crop rotation pattern in the Kathmandu Valley, Nepal. Environ. Manag. 2007, 39, 774–782. [Google Scholar] [CrossRef]
- ENPHO. A Study on Status of Brick Industry in the Kathmandu Valley; Environmental and Public Health Organization: Kathmandu, Nepal, 2001. [Google Scholar]
- Raut, A.K. Brick kilns in Kathmandu valley: Current status, environmental impacts and future options. Himalyan J. Sci. 2003, 1, 59–61. [Google Scholar] [CrossRef]
- Sanjel, S.; Khanal, S.N.; Thygerson, S.M.; Carter, W.S.; Johnston, J.D.; Joshi, S.K. Respiratory symptoms and illnesses related to the concentration of airborne particulate matter among brick kiln workers in Kathmandu valley, Nepal. Ann. Occup. Environ. Med. 2017, 29. [Google Scholar] [CrossRef]
- Sanjel, S.; Khanal, S.N.; Thygerson, S.M.; Carter, W.; Johnston, J.D.; Joshi, S.K. Exposure to respirable silica among clay brick workers in Kathmandu valley, Nepal. Arch. Environ. Occup. Health 2017. [Google Scholar] [CrossRef]
- Bruce, N.; Perez-Padilla, R.; Albalak, R. Indoor air pollution in developing countries: A major environmental and public health challenge. Bull. World Health Organ. 2000, 78, 1078–1092. [Google Scholar] [PubMed]
- Shakya, K.M.; Rupakheti, M.; Shahi, A.; Maskey, R.; Pradhan, B.; Panday, A.; Puppala, S.P.; Lawrence, M.; Peltier, R.E. Near-road sampling of PM2.5, BC, and fine-particle chemical components in Kathmandu Valley, Nepal. Atmos. Chem. Phys. 2017, 17, 6503–6516. [Google Scholar] [CrossRef]
- Saud, B.; Paudel, G. The Threat of Ambient Air Pollution in Kathmandu, Nepal. J. Environ. Public Health 2018, 2018, 1504591. [Google Scholar] [CrossRef] [PubMed]
- Nepal, S.; Mahapatra, P.S.; Adhikari, S.; Shrestha, S.; Sharma, P.; Shrestha, K.L.; Pradhan, B.B.; Puppala, S.P. A Comparative Study of Stack Emissions from Straight-Line and Zigzag Brick Kilns in Nepal. Atmosphere 2019, 10, 107. [Google Scholar] [CrossRef]
- Gautam, D.; Rodrigues, H.; Bhetwal, K.K.; Neupane, P.; Sanada, Y. Common structural and construction deficiencies of Nepalese buildings. Innov. Infrastruct. Solut. 2016, 1, 1. [Google Scholar] [CrossRef]
- Angster, S.; Fielding, E.J.; Wesnousky, S.; Pierce, I.; Chamlagain, D.; Gautam, D.; Upreti, B.N.; Kumahara, Y.; Nakata, T. Field Reconnaissance after the 25 April 2015 M 7.8 Gorkha Earthquake. Seismol. Res. Lett. 2015, 86, 1506–1513. [Google Scholar] [CrossRef]
- Wallace, L.A.; Mitchell, H.; O’Connor, G.T.; Neas, L.; Lippmann, M.; Kattan, M.; Koenig, J.; Stout, J.W.; Vaughn, B.J.; Wallace, D.; et al. Particle concentrations in inner-city homes of children with asthma: The effect of smoking, cooking, and outdoor pollution. Environ. Health Perspect. 2003, 111, 1265–1272. [Google Scholar] [CrossRef]
- Dockery, D.W.; Spengler, J.D. Indoor-outdoor relationships of respirable sulfates and particles. Atmos. Environ. (1967) 1981, 15, 335–343. [Google Scholar] [CrossRef]
- Kingham, S.; Briggs, D.; Elliott, P.; Fischer, P.; Lebret, E. Spatial variations in the concentrations of traffic-related pollutants in indoor and outdoor air in Huddersfield, England. Atmos. Environ. 2000, 34, 905–916. [Google Scholar] [CrossRef]
- Pope, C.A., III; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Woodruff, T.J.; Parker, J.D.; Schoendorf, K.C. Fine particulate matter (PM2. 5) air pollution and selected causes of postneonatal infant mortality in California. Environ. Health Perspect. 2006, 114, 786–790. [Google Scholar] [CrossRef] [PubMed]
- Loomis, D.; Castillejos, M.; Gold, D.R.; McDonnell, W.; Borja-Aburto, V.H. Air pollution and infant mortality in Mexico City. Epidemiology 1999, 10, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Karr, C.; Lumley, T.; Schreuder, A.; Davis, R.; Larson, T.; Ritz, B.; Kaufman, J. Effects of subchronic and chronic exposure to ambient air pollutants on infant bronchiolitis. Am. J. Epidemiol. 2006, 165, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Ostro, B.; Broadwin, R.; Green, S.; Feng, W.-Y.; Lipsett, M. Fine particulate air pollution and mortality in nine California counties: Results from CALFINE. Environ. Health Perspect. 2005, 114, 29–33. [Google Scholar] [CrossRef]
- Laden, F.; Schwartz, J.; Speizer, F.E.; Dockery, D.W. Reduction in fine particulate air pollution and mortality: Extended follow-up of the Harvard Six Cities study. Am. J. Respir. Crit. Care Med. 2006, 173, 667–672. [Google Scholar] [CrossRef]
- WHO. WHO Indoor Air Quality Guidelines: Household Fuel Combustion; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- Rehfuess, E.; Corvalan, C.; Neira, M. Indoor air pollution: 4000 deaths a day must no longer be ignored. Bull. World Health Organ. 2006, 84, 508. [Google Scholar] [CrossRef]
- Bell, M.L.; Belanger, K.; Ebisu, K.; Gent, J.F.; Lee, H.J.; Koutrakis, P.; Leaderer, B.P. Prenatal exposure to fine particulate matter and birth weight: Variations by particulate constituents and sources. Epidemiol. (Camb. Mass.) 2010, 21, 884. [Google Scholar] [CrossRef]
- Ebisu, K.; Bell, M.L. Airborne PM2. 5 chemical components and low birth weight in the northeastern and mid-Atlantic regions of the United States. Environ. Health Perspect. 2012, 120, 1746–1752. [Google Scholar] [CrossRef]
- Ostro, B.; Roth, L.; Malig, B.; Marty, M. The effects of fine particle components on respiratory hospital admissions in children. Environ. Health Perspect. 2008, 117, 475–480. [Google Scholar] [CrossRef]
- Code of Federal Regulations Title 45, Part 46. Protection of Human Subjects; pp. 131–132. Available online: http://www.hhs.gov/ohrp/humansubjects/guidance/45cfr46.htm#46.104 (accessed on 31 July 2019).
- Lawless, P.A.; Rodes, C.E.; Ensor, D.S. Multiwavelength absorbance of filter deposits for determination of environmental tobacco smoke and black carbon. Atmos. Environ. 2004, 38, 3373–3383. [Google Scholar] [CrossRef]
- Sloan, C.D.; Weber, F.X.; Bradshaw, R.K.; Philipp, T.J.; Barber, W.B.; Palmer, V.L.; Graul, R.J.; Tuttle, S.C.; Chartier, R.T.; Johnston, J.D. Elemental analysis of infant airborne particulate exposures. J. Expo. Sci. Environ. Epidemiol. 2017, 27, 526. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency. Compendium Method IO-3.3: Determination of Metals in Ambient Particulate Matter Using X-ray Fluorescence (XRF) Sprectroscopy; United States Environmental Protection Agency: Washington, DC, USA, 1999.
- Beard, J.D.; Erdely, A.; Dahm, M.M.; de Perio, M.A.; Birch, M.E.; Evans, D.E.; Fernback, J.E.; Eye, T.; Kodali, V.; Mercer, R.R.; et al. Carbon nanotube and nanofiber exposure and sputum and blood biomarkers of early effect among US workers. Environ. Int. 2018, 116, 214–228. [Google Scholar] [CrossRef] [PubMed]
- Lubin, J.H.; Colt, J.S.; Camann, D.; Davis, S.; Cerhan, J.R.; Severson, R.K.; Bernstein, L.; Hartge, P. Epidemiologic evaluation of measurement data in the presence of detection limits. Environ. Health Perspect. 2004, 112, 1691–1696. [Google Scholar] [CrossRef] [PubMed]
- Maithel, S.; Kumar, S.; Lalchandani, D. Factsheets about Brick Kilns in South and South-East Asia; Greentech Knowledge Solutions: New Dehli, India, 2014. [Google Scholar]
- World Health Organization. Air Quality Guidelines: Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide, and Sulfur Dioxide; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- GMAO. MERRA-2 Modern-Era Retrospective Analysis. Available online: https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/ (accessed on 12 September 2019).
- Li, C.; Kang, S.; Chen, P.; Zhang, Q.; Guo, J.; Mi, J.; Basang, P.; Luosang, Q.; Smith, K.R. Personal PM2.5 and indoor CO in nomadic tents using open and chimney biomass stoves on the Tibetan Plateau. Atmos. Environ. 2012, 59, 207–213. [Google Scholar] [CrossRef]
- Ostro, B.; Feng, W.-Y.; Broadwin, R.; Green, S.; Lipsett, M. The effects of components of fine particulate air pollution on mortality in California: Results from CALFINE. Environ. Health Perspect. 2006, 115, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.-J.; Shen, Z.-X.; Chow, J.C.; Watson, J.G.; Lee, S.-C.; Tie, X.-X.; Ho, K.F.; Wang, G.H.; Han, Y.M. Winter and summer PM2. 5 chemical compositions in fourteen Chinese cities. J. Air Waste Manag. Assoc. 2012, 62, 1214–1226. [Google Scholar] [CrossRef]
- Chen, X.-C.; Jahn, H.J.; Engling, G.; Ward, T.J.; Kraemer, A.; Ho, K.-F.; Yim, S.H.L.; Chan, C.Y. Chemical characterization and sources of personal exposure to fine particulate matter (PM2. 5) in the megacity of Guangzhou, China. Environ. Pollut. 2017, 231, 871–881. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Z.; Engling, G.; Zhang, R.; Tao, J.; Lin, M.; Sang, X.; Chan, C.; Li, S.; Li, Y. Characterization of fine particulate black carbon in Guangzhou, a megacity of South China. Atmos. Pollut. Res. 2014, 5, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Qiao, L.; Zhu, S.; Li, L.; Lou, S.; Wang, H.; Wang, Q.; Tao, S.; Huang, C.; Chen, C. Chemical characteristics of fine particles and their impact on visibility impairment in Shanghai based on a 1-year period observation. J. Environ. Sci. 2016, 48, 151–160. [Google Scholar] [CrossRef]
Characteristic | Homes, n (%) | Missing, n | Mean | SD | Min | Q1 | Median | Q3 | Max |
---|---|---|---|---|---|---|---|---|---|
Total | 16 (100) | ||||||||
Kiln number | |||||||||
1 | 4 (25) | ||||||||
2 | 4 (25) | ||||||||
3 | 4 (25) | ||||||||
4 | 4 (25) | ||||||||
Fire master home | 8 (50) | ||||||||
Size of house, feet2 | 2 | 82.16 | 37.09 | 20.00 | 52.00 | 84.00 | 112.00 | 150.00 | |
Size of house, m2 | 2 | 7.64 | 3.42 | 1.90 | 4.80 | 7.80 | 10.40 | 13.90 | |
How long lived in house, months | 2 | 8.82 | 8.04 | 4.00 | 5.00 | 5.50 | 7.00 | 30.00 | |
How many people live in house | 4 | 4.71 | 2.24 | 2.00 | 3.00 | 4.00 | 6.00 | 9.00 | |
Occupant density, residents/100 m2 | 4 | 74.66 | 48.91 | 19.23 | 43.81 | 65.15 | 89.28 | 210.53 | |
How many children 0–18 years-old live in house | 2 | ||||||||
0 | 9 (64) | ||||||||
1–3 | 5 (36) | ||||||||
How many children under 6 years-old live in house | 3 | ||||||||
0 | 9 (69) | ||||||||
1–3 | 4 (31) | ||||||||
Any serious water damage to the home | 0 (0) | 1 | |||||||
Cook inside the home | 15 (100) | 1 | |||||||
Primary fuel used for cooking | 1 | ||||||||
Gas only | 3 (20) | ||||||||
Wood only | 9 (60) | ||||||||
Other A | 3 (20) | ||||||||
Stove or other cooking source vented to the outdoors with a chimney | 0 (0) | 2 | |||||||
Heating source in the home | 14 (93) | 1 | |||||||
Type of heating source in the home | 4 | ||||||||
Electricity | 8 (67) | ||||||||
Other B or none | 4 (33) | ||||||||
Non-electric light source in the home | 14 (93) | 1 | |||||||
Type of non-electric light source in the home | 2 | ||||||||
Candle only | 7 (50) | ||||||||
Generator | 4 (29) | ||||||||
Other C or none | 3 (21) | ||||||||
Any smokers living in the home | 10 (67) | 1 | |||||||
How many smokers living in the home | 4 | ||||||||
0 | 5 (42) | ||||||||
1–2 | 4 (33) | ||||||||
3–4 | 3 (25) | ||||||||
How many smokers living in the home regularly smoke inside the home | 1 | ||||||||
0–1 | 6 (67) | ||||||||
2–4 | 3 (33) | ||||||||
Dogs currently living in home | 0 (0) | 1 | |||||||
Cats currently living in home | 0 (0) | 1 | |||||||
Rodent pets | 0 (0) | 1 |
Air Pollutant or Weather Variable A | Total Samples | ||||||
---|---|---|---|---|---|---|---|
Missing, n | Below DL B, n (%) | Above DL B | |||||
n (%) | GM C | 95% CI C | Min D | Max D | |||
PM2.5, μg/m3 | 0 (0) E | 32 (100) E | 184.65 | 134.70, 253.12 | 53.30 | 2438.10 | |
PM2.5 aluminum, μg/m3 | 0 (0) | 32 (100) | 3.53 | 2.24, 5.55 | 0.33 | 143.23 | |
PM2.5 black carbon, μg/m3 | 0 (0) | 32 (100) | 15.19 | 10.58, 21.80 | 5.21 | 289.30 | |
PM2.5 barium, μg/m3 | 8 (25) | 24 (75) | 0.21 F | 0.14, 0.32 F | 0.13 | 7.59 | |
PM2.5 brown carbon, μg/m3 | 12 (38) | 20 (63) | 0.76 F | 0.24, 2.40 F | 0.27 | 531.50 | |
PM2.5 bromine, μg/m3 | 28 (88) E | 4 (13) E | 0.0052 F | 0.0012, 0.024 F | 0.027 | 0.11 | |
PM2.5 caesium, μg/m3 | 15 (47) | 17 (53) | 0.10 F | 0.067, 0.16 F | 0.10 | 2.29 | |
PM2.5 calcium, μg/m3 | 0 (0) | 32 (100) | 1.03 | 0.71, 1.51 | 0.14 | 23.92 | |
PM2.5 chlorine, μg/m3 | 4 (13) | 28 (88) | 0.22 F | 0.14, 0.35 F | 0.074 | 8.62 | |
PM2.5 chromium, μg/m3 | 22 (69) E | 10 (31) E | 0.070 F | 0.050, 0.098 F | 0.088 | 0.34 | |
PM2.5 cobalt, μg/m3 | 16 (50) | 16 (50) | 0.012 F | 0.0064, 0.021 F | 0.014 | 0.58 | |
PM2.5 iron, μg/m3 | 0 (0) E | 32 (100) E | 3.10 | 1.98, 4.87 | 0.29 | 118.29 | |
PM2.5 lead, μg/m3 | 21 (66) | 11 (34) | 0.015 F | 0.0081, 0.028 F | 0.026 | 0.15 | |
PM2.5 magnesium, μg/m3 | 22 (69) E | 10 (31) E | 0.097 F | 0.071, 0.13 F | 0.14 | 0.25 | |
PM2.5 manganese, μg/m3 | 9 (28) | 23 (72) | 0.035 F | 0.022, 0.054 F | 0.021 | 1.05 | |
PM2.5 nickel, μg/m3 | 23 (72) | 9 (28) | 0.0042 F | 0.0017, 0.011 F | 0.013 | 0.28 | |
PM2.5 potassium, μg/m3 | 0 (0) | 32 (100) | 1.90 | 1.28, 2.81 | 0.26 | 35.64 | |
PM2.5 rubidium, μg/m3 | 21 (66) | 11 (34) | 0.010 F | 0.0048, 0.021 F | 0.020 | 0.41 | |
PM2.5 silicon, μg/m3 | 0 (0) | 32 (100) | 8.00 | 5.29, 12.08 | 0.85 | 222.48 | |
PM2.5 sodium, μg/m3 | 27 (84) | 5 (16) | 0.18 F | 0.12, 0.28 F | 0.29 | 0.45 | |
PM2.5 strontium, μg/m3 | 24 (75) | 8 (25) | 0.0041 F | 0.00076, 0.023 F | 0.028 | 1.36 | |
PM2.5 sulfur, μg/m3 | 0 (0) E | 32 (100) E | 2.20 | 1.79, 2.70 | 0.86 | 12.27 | |
PM2.5 titanium, μg/m3 | 3 (9) | 29 (91) | 0.35 F | 0.21, 0.57 F | 0.055 | 20.30 | |
PM2.5 vanadium, μg/m3 | 27 (84) | 5 (16) | 0.0045 F | 0.00062, 0.033 F | 0.035 | 0.68 | |
PM2.5 zinc, μg/m3 | 5 (16) | 27 (84) | 0.046 F | 0.031, 0.068 F | 0.016 | 0.67 | |
Relative humidity, % | 1 | NA | 31 (100) | 40.51 | 34.40, 47.70 | 14.87 | 69.22 |
Temperature, °C | 1 | NA | 31 (100) | 26.56 | 25.13, 28.08 | 20.35 | 38.53 |
Air Pollutant or Weather Variable A | Kiln Number by Location of Sample | p for Interaction C | |||||||
---|---|---|---|---|---|---|---|---|---|
Kiln 1, Indoor | Kiln 1, Outdoor | Kiln 2, Indoor | Kiln 2, Outdoor | Kiln 3, Indoor | Kiln 3, Outdoor | Kiln 4, Indoor | Kiln 4, Outdoor | ||
GM (95% CI) B | GM (95% CI) B | GM (95% CI) B | GM (95% CI) B | GM (95% CI) B | GM (95% CI) B | GM (95% CI) B | GM (95% CI) B | ||
PM2.5, μg/m3 | 152.58 (71.87, 323.94) | 178.90 (84.27, 379.83) | 331.46 (156.12, 703.72) | 135.51 (63.83, 287.70) | 241.99 (113.98, 513.76) | 549.38 (258.76, 1166.37) | 91.25 (42.98, 193.72) | 90.87 (42.80, 192.93) | 0.16 |
PM2.5 aluminum, μg/m3 | 5.42 (1.78, 16.51) | 7.58 (2.49, 23.08) | 4.61 (1.51, 14.04) | 2.54 (0.83, 7.72) | 7.01 (2.30, 21.34) | 7.19 (2.36, 21.89) | 1.25 (0.41, 3.81) | 0.79 (0.26, 2.40) | 0.81 |
PM2.5 black carbon, μg/m3 | 6.84 (2.73, 17.16) | 9.14 (3.64, 22.92) | 34.02 (13.56, 85.36) | 14.34 (5.72, 35.99) | 34.09 (13.59, 85.53) | 28.99 (11.55, 72.73) | 9.82 (3.92, 24.65) | 9.55 (3.81, 23.97) | 0.62 |
PM2.5 barium, μg/m3 | 0.25 (0.096, 0.65) D | 0.38 (0.15, 0.95) D | 0.29 (0.11, 0.73) D | 0.20 (0.079, 0.50) D | 0.45 (0.18, 1.15) D | 0.34 (0.13, 0.87) D | 0.046 (0.013, 0.16) D | 0.061 (0.018, 0.20) D | 0.81 E |
PM2.5 brown carbon, μg/m3 | 4.53 (0.31, 67.26) D | 2.32 (0.14, 37.57) D | 0.17 (0.0079, 3.54) D | 1.54 (0.095, 25.13) D | 1.12 (0.061, 20.88) D | 0.36 (0.015, 8.99) D | 0.61 (0.036, 10.10) D | 0.17 (0.0082, 3.65) D | 0.61 E |
PM2.5 bromine, μg/m3 | 1.00 (Reference) | F | 6.89 (0.80, ∞) G,H | F | 1.00 (0.05, ∞) G,H | F | F | F | I |
PM2.5 caesium, μg/m3 | 0.13 (0.049, 0.33) D | 0.18 (0.074, 0.44) D | 0.13 (0.055, 0.33) D | 0.050 (0.016, 0.16) D | 0.15 (0.060, 0.35) D | 0.21 (0.086, 0.50) D | 0.046 (0.014, 0.15) D | 0.051 (0.016, 0.16) D | 0.50 E |
PM2.5 calcium, μg/m3 | 1.66 (0.65, 4.21) | 2.03 (0.80, 5.14) | 1.57 (0.62, 3.97) | 0.82 (0.32, 2.07) | 1.63 (0.64, 4.13) | 1.46 (0.58, 3.71) | 0.47 (0.19, 1.20) | 0.27 (0.11, 0.68) | 0.76 |
PM2.5 chlorine, μg/m3 | 0.17 (0.055, 0.54) D | 0.12 (0.034, 0.41) D | 0.79 (0.25, 2.49) D | 0.14 (0.044, 0.43) D | 0.62 (0.20, 1.95) D | 0.17 (0.053, 0.56) D | 0.17 (0.053, 0.52) D | 0.14 (0.043, 0.46) D | 0.50 E |
PM2.5 chromium, μg/m3 | 0.064 (0.034, 0.12) D | 0.10 (0.062, 0.16) D | 0.0044 D,J | 0.067 (0.037, 0.12) D | 0.088 (0.055, 0.14) D | 0.13 (0.085, 0.21) D | 0.0045 D,J | 0.069 (0.038, 0.12) D | >0.99 E |
PM2.5 cobalt, μg/m3 | 0.016 (0.0040, 0.064) D | 0.013 (0.0032, 0.053) D | 0.020 (0.0057, 0.069) D | 0.015 (0.0040, 0.054) D | 0.022 (0.0059, 0.078) D | 0.015 (0.0035, 0.067) D | 0.0000023 D,J | 0.0053 (0.0010, 0.028) D | > 0.99 E |
PM2.5 iron, μg/m3 | 3.95 (1.31, 11.88) | 5.87 (1.95, 17.64) | 4.71 (1.57, 14.15) | 2.46 (0.82, 7.39) | 6.52 (2.17, 19.60) | 6.69 (2.22, 20.11) | 1.15 (0.38, 3.46) | 0.64 (0.21, 1.92) | 0.72 |
PM2.5 lead, μg/m3 | 0.00030 D,J | 0.016 (0.0069, 0.038) D | 0.035 (0.018, 0.068) D | 0.013 (0.0056, 0.032) D | 0.022 (0.011, 0.044) D | 0.075 (0.040, 0.14) D | 0.00031 D,J | 0.014 (0.0059, 0.033) D | 0.03 E |
PM2.5 magnesium, μg/m3 | 0.16 (0.10, 0.24) D | 0.12 (0.072, 0.20) D | 0.12 (0.080, 0.19) D | 0.12 (0.074, 0.18) D | 0.0073 D,J | 0.0074 D,J | 0.13 (0.081, 0.20) D | 0.090 (0.052, 0.16) D | 0.95 E |
PM2.5 manganese, μg/m3 | 0.044 (0.017, 0.12) D | 0.070 (0.027, 0.18) D | 0.058 (0.023, 0.15) D | 0.016 (0.0055, 0.046) D | 0.076 (0.030, 0.20) D | 0.069 (0.027, 0.18) D | 0.010 (0.0029, 0.034) D | 0.010 (0.0031, 0.035) D | 0.35 E |
PM2.5 nickel, μg/m3 | 1.00 (Reference) | 1.00 (0.03, 30.58) G | 0.33 (0.00, 3.22) G,H | 0.38 (< 0.01, 12.69) G | 1.00 (0.03, 30.58) G | 0.38 (< 0.01, 12.69) G | 0.33 (0.00, 3.22) G,H | 0.38 (< 0.01, 12.69) G | 1.00 K |
PM2.5 potassium, μg/m3 | 1.75 (0.73, 4.18) | 2.50 (1.04, 5.98) | 3.37 (1.41, 8.06) | 1.55 (0.65, 3.70) | 4.39 (1.83, 10.49) | 4.93 (2.06, 11.79) | 0.73 (0.31, 1.75) | 0.47 (0.20, 1.12) | 0.53 |
PM2.5 rubidium, μg/m3 | 0.0087 (0.0021, 0.036) D | 0.017 (0.0054, 0.057) D | 0.023 (0.0079, 0.068) D | 0.000011 D,J | 0.026 (0.0089, 0.077) D | 0.028 (0.0090, 0.086) D | 0.000011 D,J | 0.000011 D,J | 0.96 E |
PM2.5 silicon, μg/m3 | 9.87 (3.61, 27.00) | 15.13 (5.53, 41.39) | 11.34 (4.15, 31.04) | 6.75 (2.47, 18.47) | 14.97 (5.47, 40.96) | 16.01 (5.85, 43.82) | 3.43 (1.25, 9.39) | 1.78 (0.65, 4.87) | 0.66 |
PM2.5 sodium, μg/m3 | 1.00 (Reference) | F | 6.89 (0.80, ∞) G,H | 1.00 (0.05, ∞) G,H | F | 1.00 (0.05, ∞) G,H | F | F | 0.31 K |
PM2.5 strontium, μg/m3 | 1.00 (Reference) | 0.38 (< 0.01, 12.69) G | 0.38 (< 0.01, 12.69)G | 0.33 (0.00, 3.22) G,H | 2.60 (0.08, 235.00) G | 0.38 (< 0.01, 12.69) G | 0.33 (0.00, 3.22) G,H | 0.33 (0.00, 3.22) G,H | 1.00 K |
PM2.5 sulfur, μg/m3 | 1.53 (1.02, 2.31) | 1.57 (1.05, 2.37) | 2.66 (1.77, 4.01) | 2.20 (1.46, 3.31) | 3.70 (2.46, 5.56) | 4.99 (3.32, 7.50) | 1.41 (0.93, 2.11) | 1.48 (0.98, 2.22) | 0.68 |
PM2.5 titanium, μg/m3 | 0.48 (0.16, 1.44) D | 0.65 (0.22, 1.95) D | 0.53 (0.18, 1.59) D | 0.26 (0.088, 0.78) D | 0.82 (0.27, 2.43) D | 0.90 (0.30, 2.67) D | 0.088 (0.028, 0.27) D | 0.072 (0.022, 0.24) D | 0.82 E |
PM2.5 vanadium, μg/m3 | 1.00 (Reference) | 0.33 (0.00, 3.22) G,H | 0.33 (0.00, 3.22) G,H | 0.33 (0.00, 3.22) G,H | 1.00 (0.03, 30.58) G | 0.38 (< 0.01, 12.69) G | 0.33 (0.00, 3.22) G,H | 0.33 (0.00, 3.22) G,H | 1.00 K |
PM2.5 zinc, μg/m3 | 0.040 (0.019, 0.085) D | 0.049 (0.023, 0.10) D | 0.11 (0.052, 0.23) D | 0.041 (0.020, 0.087) D | 0.10 (0.049, 0.22) D | 0.12 (0.058, 0.26) D | 0.011 (0.0047, 0.026) D | 0.015 (0.0060, 0.036) D | 0.31 E |
Relative humidity, % | 27.04 (23.56, 31.05) | 18.82 (16.39, 21.60) | 37.20 (32.41, 42.71) | 33.61 (29.28, 38.58) | 52.05 (45.34, 59.75) | 55.96 (47.71, 65.62) | 65.20 (56.79, 74.85) | 65.06 (56.67, 74.68) | 0.02 |
Temperature, °C | 29.08 (27.11, 31.19) | 34.15 (31.84, 36.63) | 25.76 (24.02, 27.63) | 27.27 (25.43, 29.25) | 27.92 (26.03, 29.94) | 25.89 (23.88, 28.07) | 22.71 (21.18, 24.36) | 21.51 (20.06, 23.07) | 0.01 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thygerson, S.M.; Beard, J.D.; House, M.J.; Smith, R.L.; Burbidge, H.C.; Andrus, K.N.; Weber, F.X.; Chartier, R.; Johnston, J.D. Air-Quality Assessment of On-Site Brick-Kiln Worker Housing in Bhaktapur, Nepal: Chemical Speciation of Indoor and Outdoor PM2.5 Pollution. Int. J. Environ. Res. Public Health 2019, 16, 4114. https://doi.org/10.3390/ijerph16214114
Thygerson SM, Beard JD, House MJ, Smith RL, Burbidge HC, Andrus KN, Weber FX, Chartier R, Johnston JD. Air-Quality Assessment of On-Site Brick-Kiln Worker Housing in Bhaktapur, Nepal: Chemical Speciation of Indoor and Outdoor PM2.5 Pollution. International Journal of Environmental Research and Public Health. 2019; 16(21):4114. https://doi.org/10.3390/ijerph16214114
Chicago/Turabian StyleThygerson, Steven M., John D. Beard, Marion J. House, Rilee L. Smith, Hunter C. Burbidge, Kathryn N. Andrus, Frank X. Weber, Ryan Chartier, and James D. Johnston. 2019. "Air-Quality Assessment of On-Site Brick-Kiln Worker Housing in Bhaktapur, Nepal: Chemical Speciation of Indoor and Outdoor PM2.5 Pollution" International Journal of Environmental Research and Public Health 16, no. 21: 4114. https://doi.org/10.3390/ijerph16214114
APA StyleThygerson, S. M., Beard, J. D., House, M. J., Smith, R. L., Burbidge, H. C., Andrus, K. N., Weber, F. X., Chartier, R., & Johnston, J. D. (2019). Air-Quality Assessment of On-Site Brick-Kiln Worker Housing in Bhaktapur, Nepal: Chemical Speciation of Indoor and Outdoor PM2.5 Pollution. International Journal of Environmental Research and Public Health, 16(21), 4114. https://doi.org/10.3390/ijerph16214114