Short-Term Touch-Screen Video Game Playing Improves the Inhibition Ability
Abstract
:1. Introduction
2. Method
Participants
3. Instruments
3.1. Positive Affect and Negative Affect Schedule
3.2. Video Game
3.3. Post-Game Questionnaire
3.4. Components of EF
3.5. Plus-Minus Task
3.6. Tone-Monitoring Task
3.7. Antisaccade Task
3.8. The Common EF
4. Procedure
5. Data Analysis
6. Results
6.1. Positive and Negative Affect as Possible Confounds
6.2. Influence of Video Gaming on Components of EF
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Number of Gamers Worldwide 2020: Demographics, Statistics, and Predictions. Available online: https://financesonline.com/number-of-gamers-worldwide/ (accessed on 9 December 2020).
- Bediou, B.; Adams, D.; Mayer, R.; Tipton, E.; Green, C.; Bavelier, D. Meta-analysis of action video game impact on perceptual, attentional, and cognitive skills. Psychol. Bull. 2018, 144, 978–979. [Google Scholar] [CrossRef]
- Wang, P.; Liu, H.; Zhu, X.; Meng, T.; Li, H.; Zuo, X. Action video game training for healthy adults: A meta-analytic study. Front. Psychol. 2016, 7, 907. [Google Scholar] [CrossRef] [Green Version]
- Kühn, S.; Gallinat, J.; Mascherek, A. Effects of computer gaming on cognition, brain structure, and function: A critical reflection on existing literature. Dialogues Clin. Neurosci. 2019, 21, 319–330. [Google Scholar] [CrossRef] [Green Version]
- Miyake, A.; Friedman, N.P. The nature and organization of individual differences in executive functions. Curr. Dir. Psychol. Sci. 2012, 21, 8–14. [Google Scholar] [CrossRef]
- Bertoni, S.; Franceschini, S.; Puccio, G.; Mancarella, M.; Gori, S.; Facoetti, A. Action Video Games Enhance Attentional Control and Phonological Decoding in Children with Developmental Dyslexia. Brain Sci. 2021, 11, 171. [Google Scholar] [CrossRef] [PubMed]
- Maillot, P.; Perrot, A.; Hartley, A. Effects of interactive physical-activity video-game training on physical and cognitive function in older adults. Psychol. Aging 2012, 27, 589–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stern, Y.; Blumen, H.M.; Rich, L.W.; Richards, A.; Herzberg, G.; Gopher, D. Space fortress game training and executive control in older adults: A pilot intervention. Aging Neuropsychol. Cogn. 2011, 18, 653–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, R.; Leung, G.; Woo, J. Randomized Controlled Trial on the Effects of a Combined Intervention of Computerized Cognitive Training Preceded by Physical Exercise for Improving Frailty Status and Cognitive Function in Older Adults. Int. J. Environ. Res. Public Health 2021, 18, 1396. [Google Scholar] [CrossRef] [PubMed]
- Sosa, G.W.; Lagana, L. The effects of video game training on the cognitive functioning of older adults: A community-based randomized controlled trial. Arch. Gerontol. Geriatr. 2019, 80, 20–30. [Google Scholar] [CrossRef]
- McCord, A.; Cocks, B.; Barreiros, A.; Bizo, L. Short video game play improves executive function in the oldest old living in residential care. Comput. Hum. Behav. 2020, 108, 106337. [Google Scholar] [CrossRef]
- Parong, J.; Wells, A.; Mayer, R.E. Replicated evidence towards a cognitive theory of game-based training. J. Educ. Psychol. 2020, 112, 922–937. [Google Scholar] [CrossRef]
- Buelow, M.T.; Okdie, B.M.; Cooper, A.B. The influence of video games on executive functions in college students. Comput. Hum. Behav. 2015, 45, 228–234. [Google Scholar] [CrossRef]
- Boot, W.R.; Kramer, A.F.; Simons, D.J.; Fabiani, M.; Gratton, G. The effects of video game playing on attention, memory, and executive control. Acta Psychol. 2008, 129, 387–398. [Google Scholar] [CrossRef]
- Li, X.; Huang, L.; Li, B.; Wang, H.; Han, C. Time for a true display of skill: Top players in League of Legends have better executive control. Acta Psychol. 2020, 204, 103007. [Google Scholar] [CrossRef]
- Özçetin, M.; Gümüştaş, F.; Çağ, Y.; Gökbay, İ.Z.; Özmel, A. The relationships between video game experience and cognitive abilities in adolescents. Neuropsychiatr. Dis. Treat. 2019, 15, 1171–1180. [Google Scholar] [CrossRef] [Green Version]
- Palaus, M.; Viejo-Sobera, R.; Redolar-Ripoll, D.; Marrón, E.M. Cognitive Enhancement via Neuromodulation and Video Games: Synergistic Effects? Front. Hum. Neurosci. 2020, 14, 235. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Z.; Qiu, X.; Zhu, L. The Relation between Electronic Game Play and Executive Function among Preschoolers. J. Child Fam. Stud. 2020, 29, 2868–2878. [Google Scholar] [CrossRef]
- Al-Gabbani, M.; Morgan, G.; Eyre, J.A. Positive relationship between duration of action video game play and visuospatial executive function in children. In Proceedings of the 2014 IEEE 3rd International Conference on Serious Games and Applications for Health, Rio de Janeiro, Brazil, 14–16 May 2014. [Google Scholar] [CrossRef]
- Ong, D.; Weibin, M.Z.; Vallabhajosyula, R. Serious games as rehabilitation tools in neurological conditions: A comprehensive review. Technol. Health Care 2021, 29, 15–31. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Marquez, E.; Prieto, A.; Mayas, J.; Toril, P.; Reales, J.M.; Ballesteros, S. Effects of Nonaction Videogames on Attention and Memory in Young Adults. Games Health J. 2019, 8, 414–422. [Google Scholar] [CrossRef]
- Parong, J.; Mayer, R.E. Cognitive consequences of playing brain-training games in immersive virtual reality. Appl. Cogn. Psychol. 2020, 34, 29–38. [Google Scholar] [CrossRef]
- Hummer, T.A.; Wang, Y.; Kronenberger, W.G.; Mosier, K.M.; Kalnin, A.J.; Dunn, D.W.; Mathews, V.P. Short-term violent video game play by adolescents alters prefrontal activity during cognitive inhibition. Media Psychol. 2010, 13, 136–154. [Google Scholar] [CrossRef]
- Huang, V.; Young, M.; Fiocco, A.J. The Association Between Video Game Play and Cognitive Function: Does Gaming Platform Matter? Cyberpsychol. Behav. Soc. Netw. 2017, 20, 689–694. [Google Scholar] [CrossRef]
- Powers, K.L.; Brooks, P.J.; Aldrich, N.J.; Palladino, M.A.; Alfieri, L. Effects of video-game play on information processing: A meta-analytic investigation. Psychon. Bull. Rev. 2013, 20, 1055–1079. [Google Scholar] [CrossRef] [Green Version]
- Vedechkina, M.; Borgonovi, F. A Review of Evidence on the Role of Digital Technology in Shaping Attention and Cognitive Control in Children. Front. Psychol. 2021, 12, 611155. [Google Scholar] [CrossRef] [PubMed]
- Gates, N.J.; Rutjes, A.W.; Di Nisio, M.; Karim, S.; Chong, L.Y.; March, E.; Martínez, G.; Vernooij, R.W. Computerised cognitive training for maintaining cognitive function in cognitively healthy people in midlife. Cochrane Database Syst. Rev. 2019, 3, CD012278. [Google Scholar] [CrossRef] [PubMed]
- Eggenberger, P.; Wolf, M.; Schumann, M.; de Bruin, E.D. Exergame and balance training modulate prefrontal brain activity during walking and enhance executive function in older adults. Front. Aging Neurosci. 2016, 8, 66. [Google Scholar] [CrossRef] [Green Version]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef] [Green Version]
- Friedman, N.P.; Miyake, A.; Young, S.E.; DeFries, J.C.; Corley, R.P.; Hewitt, J.K. Individual differences in executive functions are almost entirely genetic in origin. J. Exp. Psychol. Gen. 2008, 137, 201–225. [Google Scholar] [CrossRef] [PubMed]
- Diarra, M.; Zendel, B.R.; Benady-Chorney, J.; Blanchette, C.A.; Lepore, F.; Peretz, I.; Belleville, S.; West, G.L. Playing Super Mario increases oculomotor inhibition and frontal eye field grey matter in older adults. Exp. Brain Res. 2019, 237, 723–733. [Google Scholar] [CrossRef] [PubMed]
- China Game Industry Report 2019. Available online: http://www.cgigc.com.cn/gamedata/21649.html (accessed on 9 December 2020).
- Qiu, B.; Zhen, S.; Zhou, C.; Hu, J.; Zhang, W. Short-Term Prosocial Video Game Exposure Influences Attentional Bias Toward Prosocial Stimuli. Cyberpsychol. Behav. Soc. Netw. 2020, 23, 702–707. [Google Scholar] [CrossRef] [PubMed]
- Watson, D.; Clark, L.A.; Tellegen, A. Development and validation of brief measures of positive and negative affect: The PANAS scales. J. Personal. Soc. Psychol. 1988, 54, 1063–1070. [Google Scholar] [CrossRef]
- Friedman, N.P.; Miyake, A. Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex 2017, 86, 186–204. [Google Scholar] [CrossRef] [Green Version]
- Soveri, A.; Antfolk, J.; Karlsson, L.; Salo, B.; Laine, M. Working memory training revisited: A multi-level meta-analysis of n-back training studies. Psychon. Bull. Rev. 2017, 24, 1077–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferguson, C.J.; Nielsen, R.K.; Maguire, R. Do older adults hate video games until they play them? A proof-of-concept study. Curr. Psychol. 2017, 36, 919–926. [Google Scholar] [CrossRef]
- Bove, R.M.; Rush, G.; Zhao, C.; Rowles, W.; Garcha, P.; Morrissey, J.; Schembri, A.; Alailima, T.; Langdon, D.; Possin, K.; et al. A Videogame-based digital therapeutic to improve processing speed in people with multiple sclerosis: A feasibility Study. Neurol. Ther. 2019, 8, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Aliah, F.; Ahmad, I.; Roszali, F.; Sarudin, N. A review on mobile game learning applications trends. Int. J. Eng. Trends Technol. 2020, 1–7. [Google Scholar] [CrossRef]
- Song, H.; Yi, D.; Park, H. Validation of a mobile game-based assessment of cognitive control among children and adolescents. PLoS ONE 2020, 15, e0230498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crepaldi, M.; Colombo, V.; Mottura, S.; Baldassini, D.; Sacco, M.; Cancer, A.; Antonietti, A. The use of a serious game to assess inhibition mechanisms in children. Front. Comput. Sci. 2020, 2, 34. [Google Scholar] [CrossRef]
- Homer, B.D.; Ober, T.M.; Rose, M.C.; MacNamara, A.; Mayer, R.E.; Plass, J.L. Speed versus accuracy: Implications of adolescents’ neurocognitive developments in a digital game to train executive functions. Mind Brain Educ. 2019, 13, 41–52. [Google Scholar] [CrossRef]
- Talaei-Khoei, A.; Daniel, J. How younger elderly realize usefulness of cognitive training video games to maintain their independent living. Int. J. Inf. Manag. 2018, 42, 1–12. [Google Scholar] [CrossRef] [Green Version]
Shifting | Updating | Inhibition | |
---|---|---|---|
Shifting | 1 | ||
Updating | 0.372 *** | 1 | |
Inhibition | 0.369 *** | 0.439 *** | 1 |
Scores | Video-Game Group (N = 60) | Control Group (N = 60) | ||
---|---|---|---|---|
M | SD | M | SD | |
Shifting | −15.34 | 13.05 | −18.88 | 13.74 |
Updating | 18.92 | 4.09 | 18.20 | 4.13 |
Inhibition | 0.96 | 0.04 | 0.94 | 0.04 |
Common EF | 0.29 | 1.40 | −0.29 | 1.47 |
Scores | Video-Game Group (N = 60) | Control Group (N = 60) | ||
---|---|---|---|---|
M | SD | M | SD | |
Z (Shifting) | 0.131 | 0.968 | −0.131 | 1.022 |
Z (Updating) | 0.087 | 0.996 | −0.087 | 1.005 |
Z (Inhibition) | 0.236 | 0.891 | −0.236 | 1.054 |
Dependent | Type | Covariates | Degrees of Freedom | F | p | η2 | ||
---|---|---|---|---|---|---|---|---|
Group | Residuals | |||||||
Shifting | ANCOVA | Updating | Inhibition | 1 | 116 | 0.125 | 0.725 | <0.001 |
Updating | ANCOVA | Shifting | Inhibition | 1 | 116 | 0.009 | 0.925 | <0.001 |
Inhibition | ANCOVA | Shifting | Updating | 1 | 116 | 4.684 | 0.032 | 0.033 |
Common EF | ANCOVA | Inhibition | 1 | 117 | 0.051 | 0.822 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, B.; Chen, Y.; He, X.; Liu, T.; Wang, S.; Zhang, W. Short-Term Touch-Screen Video Game Playing Improves the Inhibition Ability. Int. J. Environ. Res. Public Health 2021, 18, 6884. https://doi.org/10.3390/ijerph18136884
Qiu B, Chen Y, He X, Liu T, Wang S, Zhang W. Short-Term Touch-Screen Video Game Playing Improves the Inhibition Ability. International Journal of Environmental Research and Public Health. 2021; 18(13):6884. https://doi.org/10.3390/ijerph18136884
Chicago/Turabian StyleQiu, Boyu, Yanrong Chen, Xu He, Ting Liu, Sixian Wang, and Wei Zhang. 2021. "Short-Term Touch-Screen Video Game Playing Improves the Inhibition Ability" International Journal of Environmental Research and Public Health 18, no. 13: 6884. https://doi.org/10.3390/ijerph18136884
APA StyleQiu, B., Chen, Y., He, X., Liu, T., Wang, S., & Zhang, W. (2021). Short-Term Touch-Screen Video Game Playing Improves the Inhibition Ability. International Journal of Environmental Research and Public Health, 18(13), 6884. https://doi.org/10.3390/ijerph18136884