Retrospective Study: Lateral Ridge Augmentation Using Autogenous Dentin: Tooth-Shell Technique vs. Bone-Shell Technique
Abstract
:1. Introduction
2. Materials and Methods
- Inclusion criteria:
- -
- age > 18 years;
- -
- alveolar crest augmentation of a lateral bony defect with autogenous dentin (TST) or autogenous bone (BST);
- -
- lateral alveolar crest defect of at least 4 mm in the region of implant placement prior to augmentation;
- -
- restauration with a fixed denture is provided;
- -
- edentulous region of maximum two missing teeth.
- Exclusion criteria:
- -
- age < 18 years;
- -
- untreated or residual periodontitis;
- -
- uncontrolled diabetes mellitus with HbA1c >7%;
- -
- malignant neoplasm;
- -
- history of bisphosphonates and/or radiotherapy in region of head and neck;
- -
- immunosuppression or immunosuppressant therapy;
- -
- lateral alveolar crest defect of less than 4 mm in the region of implant placement prior to augmentation;
- -
- restauration of the implant with a removable denture is intended.
- Group 1 (control group)
- Bone-shell technique (BST): 31 patients (16 female, 15 male) with 32 regions and 41 implants.
- Group 2
- Tooth-shell technique (TST): 28 patients (15 female, 13 male) with 34 regions and 38 implants.
- -
- demographic data: age and gender;
- -
- data on restoration and data on maintenance therapy;
- -
- complications: loss of graft, loss of implant, dehiscences, infections/inflammations, nerve injuries;
- -
- implant data: type, length/diameter and region.
- -
- clinical complications;
- -
- peri-implant bone loss;
- -
- osseointegration;
- -
- integrity of the buccal lamella.
2.1. Clinical Complications
2.2. General Surgical Procedures
2.2.1. Surgical Procedure of the BST
2.2.2. Clinical Procedure of the TST
2.2.3. Surgical Procedure of the TST
2.2.4. Implant Exposure
2.2.5. Radiographic Evaluation
2.2.6. Osseointegration
- -
- no peri-implant bone/hard tissue loss > 1 mm at the four measuring points;
- -
- ISQ-Level > 60;
- -
- implant covered by a radio-opaque structure in CBCT;
- -
- integrity of the buccal lamella preserved in CBCT (no more than 1 mm loss).
2.2.7. Prosthetic Restoration
2.3. Statistical Analyses
3. Results
3.1. Total Number of Complications
3.1.1. Severe Clinical Complications
3.1.2. Peri-Implant Tissue Probing
3.1.3. ISQ Values
3.2. Radiographic Evaluation
3.3. Osseointegration
3.4. Prosthetic Restoration
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sakkas, A.; Wilde, F.; Heufelder, M.; Winter, K.; Schramm, A. Autogenous bone grafts in oral implantology-is it still a “gold standard”? A consecutive review of 279 patients with 456 clinical procedures. Int. J. Implant. Dent. 2017, 3, 23. [Google Scholar] [CrossRef]
- Kim, Y.K.; Lee, J.; Um, I.W.; Kim, K.W.; Murata, M.; Akazawa, T.; Mitsugi, M. Tooth-derived bone graft material. J. Korean Assoc. Oral Maxillofac. Surg. 2013, 39, 103–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murata, M.; Akazawa, T.; Mitsugi, M.; Kabir, M.A.; Um, I.W.; Minamida, Y.; Kim, K.W.; Kim, Y.K.; Sun, Y.; Qin, C. Autograft of Dentin Materials for Bone Regeneration. Adv. Biomater. Sci. Biomed. Appl. 2013, 27, 391–403. [Google Scholar] [CrossRef]
- Al-Asfour, A.; Andersson, L.; Kamal, M.; Joseph, B. New bone formation around xenogenic dentin grafts to rabbit tibia marrow. Dent. Traumatol. 2013, 29, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Finkelman, R.D.; Mohan, S.; Jennings, J.C.; Taylor, A.K.; Jepsen, S.; Baylink, D.J. Quantitation of growth factors IGF-I, SGF/IGF-II, and TGF-beta in human dentin. J. Bone Miner. Res. 1990, 5, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Linde, A. Dentin matrix proteins: Composition and possible functions in calcification. Anat. Rec. 1989, 224, 154–166. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Kim, S.G.; Byeon, J.H.; Lee, H.J.; Um, I.U.; Lim, S.C.; Kim, S.Y. Development of a novel bone grafting material using autogenous teeth. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010, 109, 496–503. [Google Scholar] [CrossRef]
- Al-Asfour, A.; Farzad, P.; Al-Musawi, A.; Dahlin, C.; Andersson, L. Demineralized Xenogenic Dentin and Autogenous Bone as Onlay Grafts to Rabbit Tibia. Implant. Dent. 2017, 26, 232–237. [Google Scholar] [CrossRef]
- Andersson, L. Dentin xenografts to experimental bone defects in rabbit tibia are ankylosed and undergo osseous replacement. Dent. Traumatol. 2010, 26, 398–402. [Google Scholar] [CrossRef]
- Bono, N.; Tarsini, P.; Candiani, G. Demineralized dentin and enamel matrices as suitable substrates for bone regeneration. J. Appl. Biomater. Funct. Mater. 2017, 15, e236–e243. [Google Scholar] [CrossRef] [Green Version]
- Bormann, K.H.; Suarez-Cunqueiro, M.M.; Sinikovic, B.; Kampmann, A.; von See, C.; Tavassol, F.; Binger, T.; Winkler, M.; Gellrich, N.C.; Rucker, M. Dentin as a suitable bone substitute comparable to ss-TCP-an experimental study in mice. Microvasc. Res. 2012, 84, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Jun, S.H.; Ahn, J.S.; Lee, J.I.; Ahn, K.J.; Yun, P.Y.; Kim, Y.K. A prospective study on the effectiveness of newly developed autogenous tooth bone graft material for sinus bone graft procedure. J. Adv. Prosthodont. 2014, 6, 528–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.Y.; Kim, Y.K.; Park, Y.H.; Park, J.C.; Ku, J.K.; Um, I.W.; Kim, J.Y. Evaluation of the Healing Potential of Demineralized Dentin Matrix Fixed with Recombinant Human Bone Morphogenetic Protein-2 in Bone Grafts. Materials 2017, 10, 1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.K.; Yun, P.Y.; In-Woong Um, I.W.; Lee, H.J.; Yi, Y.J.; Bae, J.H.; Lee, J. Alveolar ridge preservation of an extraction socket using autogenous tooth bone graft material for implant site development: Prospective case series. J. Adv. Prosthodont. 2014, 6, 521–527. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, F.; Golubovic, V.; Becker, K.; Mihatovic, I. Extracted tooth roots used for lateral alveolar ridge augmentation: A proof-of-concept study. J. Clin. Periodontol. 2016, 43, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, F.; Golubovic, V.; Mihatovic, I.; Becker, J. Periodontally diseased tooth roots used for lateral alveolar ridge augmentation. A proof-of-concept study. J. Clin. Periodontol. 2016, 43, 797–803. [Google Scholar] [CrossRef]
- Schwarz, F.; Hazar, D.; Becker, K.; Sader, R.; Becker, J. Efficacy of autogenous tooth roots for lateral alveolar ridge augmentation and staged implant placement. A prospective controlled clinical study. J. Clin. Periodontol. 2018, 45, 996–1004. [Google Scholar] [CrossRef]
- Ramanauskaite, A.; Sahin, D.; Sader, R.; Becker, J.; Schwarz, F. Efficacy of autogenous teeth for the reconstruction of alveolar ridge deficiencies: A systematic review. Clin. Oral Investig. 2019, 23, 4263–4287. [Google Scholar] [CrossRef]
- Becker, K.; Drescher, D.; Honscheid, R.; Golubovic, V.; Mihatovic, I.; Schwarz, F. Biomechanical, micro-computed tomographic and immunohistochemical analysis of early osseous integration at titanium implants placed following lateral ridge augmentation using extracted tooth roots. Clin. Oral Implants Res. 2017, 28, 334–340. [Google Scholar] [CrossRef]
- Parvini, P.; Sader, R.; Sahin, D.; Becker, J.; Schwarz, F. Radiographic outcomes following lateral alveolar ridge augmentation using autogenous tooth roots. Int. J. Implant. Dent. 2018, 4, 31. [Google Scholar] [CrossRef]
- Schwarz, F.; Mihatovic, I.; Golubovic, V.; Becker, J. Dentointegration of a titanium implant: A case report. Oral Maxillofac. Surg. 2013, 17, 235–241. [Google Scholar] [CrossRef]
- Cardaropoli, D.; Nevins, M.; Schupbach, P. New Bone Formation Using an Extracted Tooth as a Biomaterial: A Case Report with Histologic Evidence. Int. J. Periodontics Restor. Dent. 2019, 39, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, F.; Sahin, D.; Becker, K.; Sader, R.; Becker, J. Autogenous tooth roots for lateral extraction socket augmentation and staged implant placement. A prospective observational study. Clin. Oral Implants Res. 2019, 30, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Korsch, M. Tooth shell technique: A proof of concept with the use of autogenous dentin block grafts. Aust. Dent. J. 2020. [Google Scholar] [CrossRef]
- Khoury, F.; Hanser, T. Three-Dimensional Vertical Alveolar Ridge Augmentation in the Posterior Maxilla: A 10-year Clinical Study. Int. J. Oral Maxillofac. Implants 2019, 34, 471–480. [Google Scholar] [CrossRef]
- Korsch, M.; Kasprzyk, S.; Walther, W.; Bartols, A. Lateral alveolar ridge augmentation with autogenous block grafts fixed at a distance vs resorbable poly-D-L-lactide foil fixed at a distance: 5-year results of a single-blind, randomised controlled trial. Int. J. Oral Implantol. (New Malden) 2019, 12, 299–312. [Google Scholar]
- Sagheb, K.; Schiegnitz, E.; Moergel, M.; Walter, C.; Al-Nawas, B.; Wagner, W. Clinical outcome of alveolar ridge augmentation with individualized CAD-CAM-produced titanium mesh. Int. J. Implant. Dent. 2017, 3, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koga, T.; Minamizato, T.; Kawai, Y.; Miura, K.I.I.T.; Nakatani, Y.; Sumita, Y.; Asahina, I. Bone Regeneration Using Dentin Matrix Depends on the Degree of Demineralization and Particle Size. PLoS ONE 2016, 11, e0147235. [Google Scholar] [CrossRef] [Green Version]
- Pohl, V.; Pohl, S.; Sulzbacher, I.; Fuerhauser, R.; Mailath-Pokorny, G.; Haas, R. Alveolar Ridge Augmentation Using Dystopic Autogenous Tooth: 2-Year Results of an Open Prospective Study. Int. J. Oral Maxillofac. Implants 2017, 32, 870–879. [Google Scholar] [CrossRef] [Green Version]
- Bartols, A.; Kasprzyk, S.; Walther, W.; Korsch, M. Lateral alveolar ridge augmentation with autogenous block grafts fixed at a distance versus resorbable Poly-D-L-Lactide foil fixed at a distance: A single-blind, randomized, controlled trial. Clin. Oral Implants Res. 2018, 29, 843–854. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Jandik, K.; Stauber, M.; Mihatovic, I.; Drescher, D.; Schwarz, F. Microstructural volumetric analysis of lateral ridge augmentation using differently conditioned tooth roots. Clin. Oral Investig. 2019, 23, 3063–3071. [Google Scholar] [CrossRef] [PubMed]
Study Group | Sign. | |||
---|---|---|---|---|
Baseline Data of Participants | Total | BST | TST | p-Value |
Age (years) | ||||
Mean (SD) | 61.2 (12.7) | 60.4 (13.9) | 62.0 (11.4) | n.s. |
Range | 28–82 | 30–82 | 28–80 | |
Gender (male) | ||||
n (%) | 28 of 59 (47) | 15 of 31 (48) | 13 of 28 (46) | n.s. |
Study Group | Fisher’s Exact Test (2-Sided) | |||
---|---|---|---|---|
Clinical Complication | Total | BST | TST | p-Value |
Total severe complications | ||||
n (%) on PL | 0 of 59 (0) | 0 of 31 (0) | 0 of 28 (0) | n.s. |
n (%) on RL | 0 of 66 (0) | 0 of 32 (0) | 0 of 34 (0) | n.s. |
n (%) on IL | 0 of 79 (0) | 0 of 41 (0) | 0 of 38 (0) | n.s. |
Wound dehiscence | ||||
n (%) on PL | 3 of 59 (5.1) | 2 of 31 (6.5) | 1 of 28 (3.6) | 0.615 |
n (%) on RL | 3 of 66 (4.5) | 2 of 32 (6.3) | 1 of 34 (2.9) | 0.519 |
n (%) on IL | 3 of 79 (3.8) | 2 of 41 (4.9) | 1 of 38 (2.6) | 0.602 |
Inflammation (pus) | ||||
n (%) on PL | 3 of 59 (5.1) | 3 of 31 (9.7) | 0 of 28 (0) | 0.091 |
n (%) on RL | 3 of 66 (4.5) | 3 of 32 (9.4) | 0 of 34 (0) | 0.068 |
n (%) on IL | 4 of 79 (5.1) | 4 of 41 (9.7) | 0 of 38 (0) | 0.048 |
Total complications at all | ||||
n (%) on PL | 6 of 59 (10.2) | 5 of 31 (16.1) | 1 of 28 (3.6) | 0.111 |
n (%) on RL | 6 of 66 (9.1) | 5 of 32 (15.6) | 1 of 34 (2.9) | 0.073 |
n (%) on IL | 7 of 79 (8.9) | 6 of 41 (14.6) | 1 of 38 (2.6) | 0.061 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korsch, M.; Peichl, M. Retrospective Study: Lateral Ridge Augmentation Using Autogenous Dentin: Tooth-Shell Technique vs. Bone-Shell Technique. Int. J. Environ. Res. Public Health 2021, 18, 3174. https://doi.org/10.3390/ijerph18063174
Korsch M, Peichl M. Retrospective Study: Lateral Ridge Augmentation Using Autogenous Dentin: Tooth-Shell Technique vs. Bone-Shell Technique. International Journal of Environmental Research and Public Health. 2021; 18(6):3174. https://doi.org/10.3390/ijerph18063174
Chicago/Turabian StyleKorsch, Michael, and Marco Peichl. 2021. "Retrospective Study: Lateral Ridge Augmentation Using Autogenous Dentin: Tooth-Shell Technique vs. Bone-Shell Technique" International Journal of Environmental Research and Public Health 18, no. 6: 3174. https://doi.org/10.3390/ijerph18063174
APA StyleKorsch, M., & Peichl, M. (2021). Retrospective Study: Lateral Ridge Augmentation Using Autogenous Dentin: Tooth-Shell Technique vs. Bone-Shell Technique. International Journal of Environmental Research and Public Health, 18(6), 3174. https://doi.org/10.3390/ijerph18063174