Evaluation of the Total Mercury Weight Exposure Distribution Using Tree Bark Analysis in an Artisanal and Small-Scale Gold Mining Area, North Gorontalo Regency, Gorontalo Province, Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Plots
2.2. Analytical Methods
2.3. Calculation of THg
2.4. Statistical Analysis
3. Results
3.1. Estimation of THg
4. Discussion
4.1. Mapping Distribution of THg in ASGM Area
4.2. Distribution of THg Based on Distance to Source and Elevation
4.3. Distribution of THg Based on Tree Species
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Hinton, J.J.; Veiga, M.M.; Veiga, A.T.C. Clean Artisanal Gold Mining: A Utopian Approach? J. Clean. Prod. 2003, 11, 99–115. [Google Scholar] [CrossRef]
- Veiga, M.M.; Maxson, P.A.; Hylander, L.D. Origin and Consumption of Mercury in Small-Scale Gold Mining. J. Clean. Prod. 2006, 14, 436–447. [Google Scholar] [CrossRef]
- Taylor, H.; Appleton, J.D.; Lister, R.; Smith, B.; Chitamweba, D.; Mkumbo, O.; Machiwa, J.F.; Tesha, A.L.; Beinhoff, C. Environmental Assessment of Mercury Contamination from the Rwamagasa Artisanal Gold Mining Centre, Geita District, Tanzania. Sci. Total Environ. 2005, 343, 111–133. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, W.F.; Engstrom, D.R.; Mason, R.P.; Nater, E.A. The Case for Atmospheric Mercury Contamination in Remote Areas. Environ. Sci. Technol. 1998, 32, 1–7. [Google Scholar] [CrossRef]
- Rasmussen, P.E. Temporal Variation of Mercury in Vegetation. In Mercury as a Global Pollutant; Springer: Berlin/Heidelberg, Germany, 1995; Volume 80, pp. 1039–1042. [Google Scholar] [CrossRef]
- Tomiyasu, T.; Kono, Y.; Kodamatani, H.; Hidayati, N.; Rahajoe, J.S. The Distribution of Mercury Around the Small-Scale Gold Mining Area Along the Cikaniki River, Bogor, Indonesia. Environ. Res. 2013, 125, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Vtorova, V.N. Substantiation of Methods and Objects of Observations over Chemical Composition of Plants During Monitoring of Forest Ecosystem. Inf. Bull. Probl. III Counc. Mutual Econ. Help 1987, 1, 1–2. [Google Scholar]
- Vtorova, V.N. Quantitative Evaluation of the Chemical Similarity of Needles of Picea Schrenkiana with Other Spruce Species in Natural and Artificial Growth Conditions. Biol. Bull. Acad. Sci. USSR 1991, 17, 245–253. [Google Scholar]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 1984; Volume 315. [Google Scholar]
- Geagea, M.L.; Stille, P.; Millet, M.; Perrone, T. REE Characteristics and Pb, Sr and Nd Isotopic Compositions of Steel Plant Emissions. Sci. Total Environ. 2007, 373, 404–419. [Google Scholar] [CrossRef]
- Catinon, M.; Ayrault, S.; Boudouma, O.; Asta, J.; Tissut, M.; Ravanel, P. The Inclusion of Atmospheric Particles into the Bark Suber of Ash Trees. Chemosphere 2009, 77, 1313–1320. [Google Scholar] [CrossRef] [PubMed]
- Olajire, A.A.; Ayodele, E.T. Study of Atmospheric Pollution Levels by Trace Elements Analysis of Tree Bark and Leaves. Bull. Chem. Soc. Ethiop. 2003, 17, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Markert, B. Presence and Significance of Naturally Occurring Chemical Elements of the Periodic System in the Plant Organism and Consequences for Future Investigations on Inorganic Environmental Chemistry in Ecosystems. Plant Ecol. 1992, 103, 1–30. [Google Scholar]
- Fostier, A.H.; Santos, C.; Carpi, A.; Windm, C.C.; Melendez-Perez, J.J. Soil and biomass mercury emissions during a prescribed fi re in the Amazonian rain forest. Environ. Res. 2014, 96, 415–422. [Google Scholar]
- Sera, K.; Yanagisawa, T.; Tsunoda, H.; Futatsugawa, S.; Hatakeyama, S.; Saitoh, Y.; Suzuki, S.; Orihara, H. Bio-PIXE at the Takizawa Facility (Bio-PIXE with a Baby Cyclotron). Int. J. PIXE 1992, 02, 325–330. [Google Scholar] [CrossRef]
- Prasetia, H.; Sakakibara, M.; Sueoka, Y.; Sera, K. Pteris cretica as a Potential Biomarker and Hyperaccumulator in an Abandoned Mine Site, Southwest Japan. Environments 2016, 3, 15. [Google Scholar] [CrossRef] [Green Version]
- Prasetia, H.; Sakakibara, M.; Omori, K.; Laird, J.S.; Sera, K.; Kurniawan, I.A. Mangifera indica as Bioindicator of Mercury Atmospheric Contamination in an ASGM Area in North Gorontalo Regency, Indonesia. Geosciences 2018, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Qian, J.-L.; Planas, D. Mercury Concentration in Tree Rings of Black Spruce (Picea mariana Mill. BSP) in Boreal Quebec, Canada. Water Air Soil Pollut. 1995, 81, 163–173. [Google Scholar] [CrossRef]
- Barnes, D.; Hamadah, M.A.; Ottaway, J.M. The Lead, Copper and Zinc Content of Tree Rings and Bark A Measurement of Local Metallic Pollution. Sci. Total Environ. 1976, 5, 63–77. [Google Scholar] [CrossRef]
- Millhollen, A.G.; Gustin, M.S.; Obrist, D. Foliar Mercury Accumulation and Exchange for Three Tree Species. Environ. Sci. Technol. 2006, 40, 6001–6006. [Google Scholar] [CrossRef] [PubMed]
- Frescholtz, T.E.; Gustin, M.S.; Schorran, D.E.; Fernandez, G.C.J. Assessing the Source of Mercury in Foliar Tissue of Quaking Aspen. Environ. Toxicol. Chem. 2003, 22, 2114–2119. [Google Scholar] [CrossRef] [PubMed]
- Ericksen, J.A.; Gustin, M.S.; Schorran, D.E.; Johnson, D.W.; Lindberg, S.E.; Coleman, J.S. Accumulation of Atmospheric Mercury in Forest Foliage. Atmos. Environ. 2003, 37, 1613–1622. [Google Scholar] [CrossRef]
- Browne, C.L.; Fang, S.C. Uptake of Mercury Vapor by Wheat: An Assimilation Model. Plant Physiol. 1978, 61, 430–433. [Google Scholar] [CrossRef] [Green Version]
- Lindberg, S.E.; Stratton, W.J. Atmospheric Mercury Speciation: Concentrations and Behavior of Reactive Gaseous Mercury in Ambient Air. Environ. Sci. Technol. 1998, 32, 49–57. [Google Scholar] [CrossRef]
- Zhu, W.; Lin, C.-J.; Wang, X.; Sommar, J.; Fu, X.; Feng, X. Global Observations and Modeling of Atmosphere—Surface Exchange of Elemental Mercury: A Critical Review. Atmos. Chem. Phys. 2016, 16, 4451–4480. [Google Scholar] [CrossRef] [Green Version]
- Kos, G.; Ryzhkov, A.; Dastoor, A.; Narayan, J.; Steffen, A.; Ariya, P.A.; Zhang, L. Evaluation of Discrepancy Between Measured and Modelled Oxidized Mercury Species. Atmos. Chem. Phys. 2013, 13, 4839–4863. [Google Scholar] [CrossRef] [Green Version]
- Laacouri, A.; Nater, E.A.; Kolka, R.K. Distribution and Uptake Dynamics of Mercury in Leaves of Common Deciduous Tree Species in Minnesota, USA. Environ. Sci. Technol. 2013, 47, 10462–10470. [Google Scholar] [CrossRef] [Green Version]
- Richardson, J.B.; Friedland, A.J. Mercury in Coniferous and Deciduous Upland Forests in Northern New England, USA: Implications of Climate Change. Biogeosciences 2015, 12, 6737–6749. [Google Scholar] [CrossRef] [Green Version]
- Obrist, D.; Johnson, D.W.; Lindberg, S.E.; Luo, Y.; Hararuk, O.; Bracho, R.; Battles, J.J.; Dail, D.B.; Edmonds, R.L.; Monson, R.K.; et al. Mercury Distribution Across 14 US Forests. Part I: Spatial Patterns of Concentrations in Biomass, Litter, and Soils. Environ. Sci. Technol. 2011, 45, 3974–3981. [Google Scholar] [CrossRef] [PubMed]
- Blackwell, B.D.; Driscoll, C.T. Deposition of Mercury in Forests Along a Montane Elevation Gradient. Environ. Sci. Technol. 2015, 49, 5363–5370. [Google Scholar] [CrossRef]
- Lindqvist, O.; Rodhe, H. Atmospheric Mercury, a Review. Tellus B 1985, 37, 136–156. [Google Scholar] [CrossRef] [Green Version]
- Friedli, H.R.; Radke, L.F.; Payne, N.J.; McRae, D.J.; Lynham, T.J.; Blake, T.W. Mercury in Vegetation and Organic Soil at an Upland Boreal Forest Site in Prince Albert National Park, Saskatchewan, Canada. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Vandal, G.M.; Mason, R.P.; Fitzgerald, W.F. Cycling of Volatile Mercury in Temperate Lakes. Water Air Soil Pollut. 1991, 56, 791–803. [Google Scholar] [CrossRef]
- Zillioux, E.J.; Porcella, D.B.; Benoit, J.M. Mercury Cycling and Effects in Freshwater Wetland Ecosystems. Environ. Toxicol. Chem. 1993, 12, 2245–2264. [Google Scholar] [CrossRef]
No | Sample | T(Hg) (µg—DW) ± SD | Diameter (cm) |
---|---|---|---|
1 | M. indica 30 | 49.8 ± 27.7 | 42.7 |
2 | M. indica 117 | 15.9 ± 15.3 | 40.1 |
3 | M. indica 118 | 64.5 ± 20.1 | 46.8 |
4 | M. indica 156 | 13.0 ± 14.3 | 25.5 |
5 | M. indica 126 | 63.5 ± 49.1 | 30.3 |
6 | M. indica 160 | ND | 19.1 |
7 | M. indica 134 | 22.2 ± 31.4 | 27.4 |
8 | M. indica 53 | 8.70 ± 16.4 | 20.7 |
9 | M. indica 66 | 47.9 ± 31.1 | 69.7 |
10 | M. indica 96 | ND | 23.9 |
11 | M. indica 31 | 35.5 ± 34.6 | 72.6 |
12 | M. indica 89 | ND | 36.3 |
13 | M. indica 97 | 24.3 ± 12.3 | 89.2 |
14 | M. indica 104 | 54.1 ± 27.3 | 47.8 |
15 | M. indica 34 | 4.10 ± 7.10 | 41.4 |
16 | M. indica 67 | 6.60 ± 13.7 | 11.8 |
17 | M. indica 54 | ND | 29.9 |
18 | M. indica 91 | 30.9 ± 15.0 | 24.2 |
19 | M. indica 110 | 74.6 ± 27.6 | 43.9 |
20 | M. indica 60 | 32.9 ± 23.4 | 58.3 |
21 | M. indica 50 | ND | 41.1 |
Mean | 26.1 ± 17.4 | 40.1 |
No | Sample | T(Hg) (µg—DW) ± SD | Diameter (cm) |
---|---|---|---|
1 | S. aromaticum 23 | 20.9 ± 28.9 | 11.1 |
2 | S. aromaticum 79 | 9.10 ± 18.2 | 39.8 |
3 | S. aromaticum 140 | 51.0 ± 33.7 | 19.1 |
4 | S. aromaticum 68 | 24.2 ± 28.5 | 16.2 |
5 | S. aromaticum 76 | 16.0 ± 20.6 | 33.4 |
6 | S. aromaticum 69 | 31.2 ± 48.5 | 10.8 |
7 | S. aromaticum 82 | 138 ± 68.7 | 18.5 |
8 | S. aromaticum 112 | 156.8 ± 79.6 | 18.5 |
9 | S. aromaticum 85 | 23.0 ± 17.7 | 13.7 |
10 | S. aromaticum 20 | 58.8 ± 33.3 | 23.9 |
11 | S. aromaticum 98 | 54.3 ± 26.5 | 25.5 |
12 | S. aromaticum 10 | ND | 28.4 |
13 | S. aromaticum 02 | 22.6 ± 10.2 | 29.8 |
14 | S. aromaticum 83 | 39.5 ± 27.4 | 26.1 |
15 | S. aromaticum 58 | 47.8 ± 19.6 | 10.5 |
16 | S. aromaticum 78 | ND | 16.9 |
17 | S. aromaticum 74 | 42.6 ± 16.3 | 17.2 |
18 | S. aromaticum 37 | 41.3 ± 23.5 | 11.1 |
19 | S. aromaticum 80 | 40.6 ± 24.4 | 30.6 |
20 | S. aromaticum 131 | 29.6 ± 15.3 | 11.5 |
Mean | 42.4 ± 27.0 | 20.3 |
No | Sample | T(Hg) (µg—DW) ± SD | Diameter (cm) |
---|---|---|---|
1 | T. catappa 71 | 8.70 ± 22.0 | 17.5 |
2 | T. catappa 120 | 35.9 ± 17.9 | 20.7 |
3 | T. catappa 136 | 68.4 ± 26.3 | 55.1 |
4 | T. catappa 144 | ND | 17.8 |
5 | T. catappa 163 | 150 ± 42.4 | 43.6 |
6 | T. catappa 73 | 35.4 ± 38.7 | 32.8 |
7 | T. catappa 164 | 113 ± 69.7 | 50.3 |
8 | T. catappa 59 | 180 ± 105 | 44.9 |
9 | T. catappa 72 | 26.4 ± 43.5 | 41.7 |
10 | T. catappa 70 | 92.7 ± 43.6 | 36.6 |
11 | T. catappa 159 | 72.5 ± 56.4 | 58.9 |
12 | T. catappa 119 | 40.1 ± 69.4 | 53.8 |
13 | T. catappa 154 | ND | 89.5 |
14 | T. catappa 161 | 16.8 ± 19.2 | 53.8 |
15 | T. catappa 111 | 152 ± 63.3 | 31.5 |
Mean | 66.2 ± 41.2 | 43.2 |
No | Sample | T(Hg) (µg—DW) ± SD | Diameter (cm) |
---|---|---|---|
1 | L. domesticum 26 | 25.0 ± 18.8 | 38.5 |
2 | L. domesticum 57 | ND | 34.1 |
3 | L. domesticum 64 | 10.7 ± 14.7 | 37.6 |
4 | L. domesticum 38 | 2.50 ± 15.5 | 37.9 |
5 | L. domesticum 45 | 14.1 ± 25.1 | 38.5 |
6 | L. domesticum 15 | ND | 30.7 |
7 | L. domesticum 47 | 63.4 ± 26.8 | 27.4 |
8 | L. domesticum 21 | 13.0 ± 13.6 | 10.4 |
9 | L. domesticum 46 | 9.50 ± 25.0 | 10.5 |
Mean | 15.4 ± 15.5 | 29.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prasetia, H.; Sakakibara, M.; Sera, K.; Laird, J.S. Evaluation of the Total Mercury Weight Exposure Distribution Using Tree Bark Analysis in an Artisanal and Small-Scale Gold Mining Area, North Gorontalo Regency, Gorontalo Province, Indonesia. Int. J. Environ. Res. Public Health 2022, 19, 33. https://doi.org/10.3390/ijerph19010033
Prasetia H, Sakakibara M, Sera K, Laird JS. Evaluation of the Total Mercury Weight Exposure Distribution Using Tree Bark Analysis in an Artisanal and Small-Scale Gold Mining Area, North Gorontalo Regency, Gorontalo Province, Indonesia. International Journal of Environmental Research and Public Health. 2022; 19(1):33. https://doi.org/10.3390/ijerph19010033
Chicago/Turabian StylePrasetia, Hendra, Masayuki Sakakibara, Koichiro Sera, and Jamie Stuart Laird. 2022. "Evaluation of the Total Mercury Weight Exposure Distribution Using Tree Bark Analysis in an Artisanal and Small-Scale Gold Mining Area, North Gorontalo Regency, Gorontalo Province, Indonesia" International Journal of Environmental Research and Public Health 19, no. 1: 33. https://doi.org/10.3390/ijerph19010033
APA StylePrasetia, H., Sakakibara, M., Sera, K., & Laird, J. S. (2022). Evaluation of the Total Mercury Weight Exposure Distribution Using Tree Bark Analysis in an Artisanal and Small-Scale Gold Mining Area, North Gorontalo Regency, Gorontalo Province, Indonesia. International Journal of Environmental Research and Public Health, 19(1), 33. https://doi.org/10.3390/ijerph19010033