Utilization of Whey for Eco-Friendly Bio-Preservation of Mexican-Style Fresh Cheeses: Antimicrobial Activity of Lactobacillus casei 21/1 Cell-Free Supernatants (CFS)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Culture Mediums Preparation and Growth Conditions
2.2. Preparation of Cell-Free Supernatant (CFS)
2.3. Characterization of CFSs
2.3.1. pH and Titratable Acidity
2.3.2. Organic Acid Determination in CFSs
2.4. Laboratory-Scale Cheese Production
2.5. Physicochemical Analyses
2.5.1. Proximate Analysis
2.5.2. pH and Color
2.6. Cheese Inoculation and CFS Treatment
2.7. Microbiological Analysis of Laboratory-Scale and Locally Marketed Cheeses
2.8. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Lb. casei 21/1 CFS
3.2. Physicochemical Analysis and Microbial Load of Cheese
3.3. Antimicrobial Effect of CFS in Mexican-Style Fresh Cheese
3.4. Appearance of Cheese with CFSs of Lb. casei 21/1
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Centeno-Rodríguez, M.A.C.; Gutiérrez-Cárdenas, M.G.; Jaime-Patlán, M.; Meza-Plaza, E.F.; Montecillos-Ramírez, K.E.; Rojas-Salinas, W.B.; Ozuna, C. Genuine Mexican cheeses: Technological processes and manufacturing parameters. Agro Product. 2020, 13, 16–20. [Google Scholar] [CrossRef]
- Villegas de Gante, A.; Santos Moreno, A.; Cervantes Escoto, F. Los Quesos Mexicanos Tradicionales; Universidad Autónoma Chapingo: Chapingo, Mexico, 2016. [Google Scholar]
- Verraes, C.; Vlaemynck, G.; Van Weyenberg, S.; De Zutter, L.; Daube, G.; Sindic, M.; Uyttendaele, M.; Herman, L. A Review of the Microbiological Hazards of Dairy Products Made from Raw Milk. Int. Dairy J. 2015, 50, 32–44. [Google Scholar] [CrossRef]
- Sakaridis, I.; Psomas, E.; Karatzia, M.-A.; Samouris, G. Hygiene and Safety of Hard Cheese Made from Raw Cows’ Milk. Vet. Sci. 2022, 9, 569. [Google Scholar] [CrossRef]
- Godínez-Oviedo, A.; Sampedro, F.; Bowman, J.P.; Garcés-Vega, F.J.; Hernández-Iturriaga, M. Risk Ranking of Food Categories Associated with Salmonella enterica Contamination in the Central Region of Mexico. Risk Anal. 2023, 43, 308–323. [Google Scholar] [CrossRef]
- Olea-Rodríguez, M.; de los, Á.; Chombo-Morales, P.; Nuño, K.; Vázquez-Paulino, O.; Villagrán-de la Mora, Z.; Garay-Martínez, L.E.; Castro-Rosas, J.; Villarruel-López, A.; Torres-Vitela, M.R. Microbiological Characteristics and Behavior of Staphylococcus aureus, Salmonella Spp., Listeria monocytogenes and Staphylococcal Toxin during Making and Maturing Cotija Cheese. Appl. Sci. 2021, 11, 8154. [Google Scholar] [CrossRef]
- Elafify, M.; Darwish, W.S.; El-Toukhy, M.; Badawy, B.M.; Mohamed, R.E.; Shata, R.R. Prevalence of Multidrug Resistant Salmonella spp. in Dairy Products with the Evaluation of the Inhibitory Effects of Ascorbic Acid, Pomegranate Peel Extract, and D-Tryptophan against Salmonella Growth in Cheese. Int. J. Food Microbiol. 2022, 364, 109534. [Google Scholar] [CrossRef]
- Jackson, K.A.; Gould, L.H.; Hunter, J.C.; Kucerova, Z.; Jackson, B. Listeriosis Outbreaks Associated with Soft Cheeses, United States, 1998–20141. Emerg. Infect. Dis. 2018, 24, 1116–1118. [Google Scholar] [CrossRef]
- Soria-Herrera, R.J.; Dominguez-Gonzalez, K.G.; Rumbo-Pino, R.; Piña-Lazaro, A.; Alvarez-Perez, J.J.; Rivera-Gutierrez, S.; Ponce-Saavedra, J.; Ortiz-Alvarado, R.; Gonzalez-Y-Merchand, J.A.; Yahuaca-Juarez, B.; et al. Occurrence of Nontuberculous Mycobacteria, Salmonella, Listeria monocytogenes, and Staphylococcus aureus in Artisanal Unpasteurized Cheeses in the State of Michoacan, Mexico. J. Food Prot. 2021, 84, 760–766. [Google Scholar] [CrossRef] [PubMed]
- Falardeau, J.; Trmčić, A.; Wang, S. The Occurrence, Growth, and Biocontrol of Listeria monocytogenes in Fresh and Surface-ripened Soft and Semisoft Cheeses. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4019–4048. [Google Scholar] [CrossRef]
- Imre, K.; Ban-Cucerzan, A.; Herman, V.; Sallam, K.I.; Cristina, R.T.; Abd-Elghany, S.M.; Morar, D.; Popa, S.A.; Imre, M.; Morar, A. Occurrence, Pathogenic Potential and Antimicrobial Resistance of Escherichia coli Isolated from Raw Milk Cheese Commercialized in Banat Region, Romania. Antibiotics 2022, 11, 721. [Google Scholar] [CrossRef]
- Loeza-Lara, P.D.; Medina-Estrada, R.I.; Bravo-Monzón, Á.E.; Jiménez-Mejía, R. Frequency and Characteristics of ESBL-Producing Escherichia coli Isolated from Mexican Fresh Cheese. Food Sci. Technol. 2023, 43, e108222. [Google Scholar] [CrossRef]
- Cai, H.; Kou, X.; Ji, H.; Wang, X.; Wang, H.; Zhang, Y.; Lu, S.; Li, B.; Dong, J.; Wang, Q.; et al. Prevalence and Characteristics of Staphylococcus aureus Isolated from Kazak Cheese in Xinjiang, China. Food Control 2021, 123, 107759. [Google Scholar] [CrossRef]
- Rios-Muñiz, D.; Cerna-Cortes, J.F.; Lopez-Saucedo, C.; Angeles-Morales, E.; Bobadilla-Del Valle, M.; Ponce-De Leon, A.; Estrada-Garcia, T. Isolation of Staphylococcus aureus, Uropathogenic Escherichia coli, and Nontuberculous Mycobacteria Strains from Pasteurized Cheeses and Unpasteurized Cream Sold at Traditional Open Markets in Mexico City. J. Food Prot. 2022, 85, 1848–1854. [Google Scholar] [CrossRef]
- Hernández-Figueroa, R.H.; Morales-Camacho, J.I.; Mani-López, E.; López-Malo, A. Assessment of Antifungal Activity of Aqueous Extracts and Protein Fractions from Sourdough Fermented by Lactiplantibacillus plantarum. Future Foods 2024, 9, 100314. [Google Scholar] [CrossRef]
- Hernández Figueroa, R.H.; López-Malo, A.; Mani-López, E. Antimicrobial Activity and Applications of Fermentates from Lactic Acid Bacteria—A Review. Sustain. Food Technol. 2024, 2, 292–306. [Google Scholar] [CrossRef]
- Leroy, F.; De Vuyst, L. Lactic Acid Bacteria as Functional Starter Cultures for the Food Fermentation Industry. Trends Food Sci. Technol. 2004, 15, 67–78. [Google Scholar] [CrossRef]
- Hernández-Figueroa, R.H.; Mani-López, E.; Palou, E.; López-Malo, A. Sourdoughs as Natural Enhancers of Bread Quality and Shelf Life: A Review. Fermentation 2023, 10, 7. [Google Scholar] [CrossRef]
- Moradi, M.; Kousheh, S.A.; Almasi, H.; Alizadeh, A.; Guimarães, J.T.; Yılmaz, N.; Lotfi, A. Postbiotics Produced by Lactic Acid Bacteria: The next Frontier in Food Safety. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3390–3415. [Google Scholar] [CrossRef]
- Mani-López, E.; Arrioja-Bretón, D.; López-Malo, A. The Impacts of Antimicrobial and Antifungal Activity of Cell-free Supernatants from Lactic Acid Bacteria in Vitro and Foods. Compr. Rev. Food Sci. Food Saf. 2022, 21, 604–641. [Google Scholar] [CrossRef]
- Dal Bello, B.; Cocolin, L.; Zeppa, G.; Field, D.; Cotter, P.D.; Hill, C. Technological Characterization of Bacteriocin Producing Lactococcus lactis Strains Employed to Control Listeria monocytogenes in Cottage Cheese. Int. J. Food Microbiol. 2012, 153, 58–65. [Google Scholar] [CrossRef]
- Settanni, L.; Franciosi, E.; Cavazza, A.; Cocconcelli, P.S.; Poznanski, E. Extension of Tosèla Cheese Shelf-Life Using Non-Starter Lactic Acid Bacteria. Food Microbiol. 2011, 28, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Sieiro, P.; Montalbán-López, M.; Mu, D.; Kuipers, O.P. Bacteriocins of Lactic Acid Bacteria: Extending the Family. Appl. Microbiol. Biotechnol. 2016, 100, 2939–2951. [Google Scholar] [CrossRef] [PubMed]
- Rhoades, J.; Kargiotou, C.; Katsanidis, E.; Koutsoumanis, K.P. Use of Marination for Controlling Salmonella enterica and Listeria monocytogenes in Raw Beef. Food Microbiol. 2013, 36, 248–253. [Google Scholar] [CrossRef]
- Alvarado, C.; McKee, S. Marination to Improve Functional Properties and Safety of Poultry Meat. J. Appl. Poult. Res. 2007, 16, 113–120. [Google Scholar] [CrossRef]
- İncili, G.K.; Karatepe, P.; Akgöl, M.; Güngören, A.; Koluman, A.; İlhak, O.İ.; Kanmaz, H.; Kaya, B.; Hayaloğlu, A.A. Characterization of Lactic Acid Bacteria Postbiotics, Evaluation in-Vitro Antibacterial Effect, Microbial and Chemical Quality on Chicken Drumsticks. Food Microbiol. 2022, 104, 104001. [Google Scholar] [CrossRef] [PubMed]
- İncili, G.K.; Karatepe, P.; Akgöl, M.; Kaya, B.; Kanmaz, H.; Hayaloğlu, A.A. Characterization of Pediococcus acidilactici Postbiotic and Impact of Postbiotic-Fortified Chitosan Coating on the Microbial and Chemical Quality of Chicken Breast Fillets. Int. J. Biol. Macromol. 2021, 184, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, X.; Shi, G.; Chang, J.; Liu, Z.; Zeng, M. Cooperation of Lactic Acid Bacteria Regulated by the AI-2/LuxS System Involve in the Biopreservation of Refrigerated Shrimp. Food Res. Int. 2019, 120, 679–687. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.J.; Park, H.W.; Choi, E.J.; Chun, H.H. Effects of CFSs Produced by Lactic Acid Bacteria in Combination with Grape Seed Extract on the Microbial Quality of Ready-to-Eat Baby Leaf Vegetables. Cogent Food Agric. 2016, 2, 1268742. [Google Scholar] [CrossRef]
- Zandona, E.; Blažić, M.; Režek Jambrak, A. Whey Utilization: Sustainable Uses and Environmental Approach. Food Technol. Biotechnol. 2021, 59, 147–161. [Google Scholar] [CrossRef]
- Papademas, P.; Kotsaki, P. Technological Utilization of Whey towards Sustainable Exploitation. J. Adv. Dairy Res. 2019, 7, 231. [Google Scholar]
- Yousefi, H.; Moosavi-Nasab, M.; Soleimanian-Zad, S.; Golmakani, M.-T.; Majdinasab, M. Antibacterial Metabolites Production by Lactobacillus plantarum PTCC 1896 in Fermented Whey and Optimization of Fermentation Conditions for Maximum Production Using RSM. Int. Dairy J. 2024, 152, 105882. [Google Scholar] [CrossRef]
- Izzo, L.; Luz, C.; Ritieni, A.; Quiles Beses, J.; Mañes, J.; Meca, G. Inhibitory Effect of Sweet Whey Fermented by Lactobacillus plantarum Strains against Fungal Growth: A Potential Application as an Antifungal Agent. J. Food Sci. 2020, 85, 3920–3926. [Google Scholar] [CrossRef] [PubMed]
- Burns, P.; Vinderola, G.; Molinari, F.; Reinheimer, J. Suitability of Whey and Buttermilk for the Growth and Frozen Storage of Probiotic Lactobacilli. Int. J. Dairy Technol. 2008, 61, 156–164. [Google Scholar] [CrossRef]
- Kareb, O.; Aïder, M. Whey and Its Derivatives for Probiotics, Prebiotics, Synbiotics, and Functional Foods: A Critical Review. Probiotics Antimicrob. Proteins 2019, 11, 348–369. [Google Scholar] [CrossRef] [PubMed]
- Amiri, S.; Rezazadeh-Bari, M.; Alizadeh-Khaledabad, M.; Rezaei-Mokarram, R.; Sowti-Khiabani, M. Fermentation Optimization for Co-Production of Postbiotics by Bifidobacterium lactis BB12 in Cheese Whey. Waste Biomass Valorization 2021, 12, 5869–5884. [Google Scholar] [CrossRef]
- Arrioja-Bretón, D.; Mani-López, E.; Palou, E.; López-Malo, A. Antimicrobial Activity and Storage Stability of Cell-Free Supernatants from Lactic Acid Bacteria and Their Applications with Fresh Beef. Food Control 2020, 115, 107286. [Google Scholar] [CrossRef]
- Horwitz, W.; Latimer, G.W. Official Methods of Analysis of AOAC International, 21st ed.; Latimer, G.W., AOAC International, Eds.; AOAC International: Gaithersburg, MD, USA, 2019; Volume 3. [Google Scholar]
- Hernández-Figueroa, R.H.; Mani-López, E.; López-Malo, A. Antifungal Capacity of Poolish-Type Sourdough Supplemented with Lactiplantibacillus plantarum and Its Aqueous Extracts In Vitro and Bread. Antibiotics 2022, 11, 1813. [Google Scholar] [CrossRef] [PubMed]
- Parra-Ocampo, K.A.; Martín-del-Campo, S.T.; Montejano-Gaitán, J.G.; Zárraga-Alcántar, R.; Cardador-Martínez, A. Evaluation of Biological, Textural, and Physicochemical Parameters of Panela Cheese Added with Probiotics. Foods 2020, 9, 1507. [Google Scholar] [CrossRef]
- Official Methods of Analysis of AOAC International|Wageningen University and Research Library Catalog. Available online: https://library.wur.nl/WebQuery/titel/585790 (accessed on 23 February 2024).
- Norma Mexicana NMX-F-317-S-1978; Determinación de pH en Alimentos. Diario Oficial de la Federación. Available online: https://scholar.google.com/scholar_lookup?title=Determinaci%C3%B3n+de+pH+en+alimentos&author=NMX-F-317-S-1978&publication_year=1978 (accessed on 16 April 2024).
- Norma Oficial Mexicana NOM-092-SSA1-1994; Bienes y Servicios. Método Para La Cuenta de Bacterias Aerobias En Placa. Diario Oficial de la Federación. Secretaría de Salud: Mexico City, Mexico, 1994; Volume 12, pp. 1–20.
- Norma Oficial Mexicana NOM-111-SSA1-1994; Bienes y Servicios. Método Para La Cuenta de Mohos y Levaduras En Alimentos. Secretaría de Salud: Mexico City, Mexico, 1994; Volume 6, pp. 1–10.
- Norma Oficial Mexicana NOM-115-SSA1–1994; Bienes y Servicios. Método Para La Determinacioń de Staphylococcus Aureus En Alimentos. Secretaría de Salud: Mexico City, Mexico, 1995; Volume 5, pp. 1–14.
- Mani-López, E.; García, H.S.; López-Malo, A. Organic 12- 1-16Acids as Antimicrobials to Control Salmonella in Meat and Poultry Products. Food Res. Int. 2012, 45, 713–721. [Google Scholar] [CrossRef]
- Punia Bangar, S.; Suri, S.; Trif, M.; Ozogul, F. Organic Acids Production from Lactic Acid Bacteria: A Preservation Approach. Food Biosci. 2022, 46, 101615. [Google Scholar] [CrossRef]
- Brandelli, A.; Daroit, D.J.; Corrêa, A.P.F. Whey as a Source of Peptides with Remarkable Biological Activities. Food Res. Int. 2015, 73, 149–161. [Google Scholar] [CrossRef]
- Caro, I.; Soto, S.; Fuentes, L.; Gutiérrez-Méndez, N.; García-Islas, B.; Monroy-Gayosso, K.E.; Mateo, J. Compositional, Functional and Sensory Characteristics of Selected Mexican Cheeses. Food Nutr. Sci. 2014, 05, 366–375. [Google Scholar] [CrossRef]
- Norma Oficial Mexicana NOM-243-SSA1-2010; Productos y Servicios. Leche Fórmula Láctea Prod. Lácteo Comb. Deriv. Lácteos Disposiciones Especificaciones Sanit. Métod. Prueba México DF. Secretaría de Salud: Mexico City, Mexico, 2010; Volume 27, pp. 1–15.
- Silva-Paz, L.E.; Medina-Basulto, G.E.; López-Valencia, G.; Montaño-Gómez, M.F.; Villa-Angulo, R.; Herrera Ramírez, J.C.; González-Silva, A.L.; Monge-Navarro, F.; Cueto-González, S.A.; Felipe-García, G. Caracterización de La Leche y Queso Artesanal de La Región de Ojos Negros Baja California, México. Rev. Mex. Cienc. Pecu. 2020, 11, 553–564. [Google Scholar] [CrossRef]
- Chávez-Martínez, A.; Paredes-Montoya, P.; Rentería-Monterrubio, A.-L.; Corral-Luna, A.; Lechuga-Valles, R.; Dominguez-Viveros, J.; Sánchez-Vega, R.; Santellano-Estrada, E. Microbial Quality and Prevalence of Foodborne Pathogens of Cheeses Commercialized at Different Retail Points in Mexico. Food Sci. Technol. 2019, 39 (Suppl. S2), 703–710. [Google Scholar] [CrossRef]
- Kousta, M.; Mataragas, M.; Skandamis, P.; Drosinos, E.H. Prevalence and Sources of Cheese Contamination with Pathogens at Farm and Processing Levels. Food Control 2010, 21, 805–815. [Google Scholar] [CrossRef]
- Rolim, F.R.L.; dos Santos, K.M.O.; de Barcelos, S.C.; do Egito, A.S.; Ribeiro, T.S.; da Conceição, M.L.; Magnani, M.; de Oliveira, M.E.G.; Queiroga, R.d.C.R.d.E. Survival of Lactobacillus rhamnosus EM1107 in Simulated Gastrointestinal Conditions and Its Inhibitory Effect against Pathogenic Bacteria in Semi-Hard Goat Cheese. LWT—Food Sci. Technol. 2015, 63, 807–813. [Google Scholar] [CrossRef]
- Hernández-Figueroa, R.H.; Mani-López, E.; López-Malo, A. Antifungal Activity of Wheat-Flour Sourdough (Type II) from Two Different Lactobacillus in Vitro and Bread. Appl. Food Res. 2023, 3, 100319. [Google Scholar] [CrossRef]
- Carlson, B.A.; Ruby, J.; Smith, G.C.; Sofos, J.N.; Bellinger, G.R.; Warren-Serna, W.; Centrella, B.; Bowling, R.A.; Belk, K.E. Comparison of Antimicrobial Efficacy of Multiple Beef Hide Decontamination Strategies To Reduce Levels of Escherichia coli O157:H7 and Salmonella. J. Food Prot. 2008, 71, 2223–2227. [Google Scholar] [CrossRef] [PubMed]
- Ibarra-Sánchez, L.A.; Van Tassell, M.L.; Miller, M.J. Invited Review: Hispanic-Style Cheeses and Their Association with Listeria monocytogenes. J. Dairy Sci. 2017, 100, 2421–2432. [Google Scholar] [CrossRef]
- Shafipour Yordshahi, A.; Moradi, M.; Tajik, H.; Molaei, R. Design and Preparation of Antimicrobial Meat Wrapping Nanopaper with Bacterial Cellulose and Postbiotics of Lactic Acid Bacteria. Int. J. Food Microbiol. 2020, 321, 108561. [Google Scholar] [CrossRef]
- Francis, F.J.; Clydesdale, F.M. Food Colorimetry: Theory and Applications; Avi Pub. Co.: Westport, CT, USA, 1975. [Google Scholar]
- Beristain-Bauza, S.C.; Mani-López, E.; Palou, E.; López-Malo, A. Antimicrobial Activity and Physical Properties of Protein Films Added with Cell-Free Supernatant of Lactobacillus rhamnosus. Food Control 2016, 62, 44–51. [Google Scholar] [CrossRef]
MRS | WB | |
---|---|---|
pH | 3.87 ± 0.03 a | 3.47 ± 0.06 b |
TA% | 11.44 ± 0.50 a | 6.14 ± 0.29 b |
Lactic acid (mM) | 1608.21 ± 11.62 a | 866.42 ± 15.12 b |
Acetic acid (mM) | 750.86 ± 17.80 a | 146.83 ± 2.79 b |
Cheese | E. coli | L. monocytogenes | S. aureus | Aerobic Mesophilic Bacteria | Total Coliforms |
---|---|---|---|---|---|
Local market 1 | 2.05 ± 0.16 a | 1.11 ± 0.10 a | 1.64 ± 0.03 b | 7.85 ± 0.05 a | 2.23 ± 0.46 a |
Local market 2 | 2.13 ± 0.10 a | 1.27 ± 0.10 a | 1.80 ± 0.01 a | 4.70 ± 0.01 b | 2.18 ± 0.04 b |
Manufactured in laboratory | <10 c | <10 c | <10 c | 2.54 ± 0.09 c | <10 c |
Time | Control (without CFS) | |||
---|---|---|---|---|
L* | a* | b* | ΔE | |
0 | 89.98 ± 0.8 Ba | 2.65 ± 0.01 Ab | 13.53 ± 0.23 Bb | |
4 | 90.30 ± 0.23 Ba | 2.85 ± 0.03 Aa | 14.18 ± 0.04 Ca | 0.26 ± 0.05 |
7 | 90.16 ± 0.03 Aa | 2.79 ± 0.09 Aa | 13.45 ± 0.08 Cb | 0.77 ± 0.10 |
MRS cell-free supernatant | ||||
0 | 82.78 ± 0.08 Ca | −0.05 ± 0.13 Cb | 20.93 ± 0.05 Aa | 10.67 ± 0.03 |
4 | 77.51 ± 0.09 Cb | 2.11 ± 0.03 Ba | 18.12 ± 0.13 Bb | 13.29 ± 0.04 |
7 | 70.74 ± 0.3 Bc | 2.14 ± 0.04 Ba | 19.29 ± 0.04 Ac | 20.09 ± 0.27 |
Whey-based cell-free supernatant | ||||
0 | 93.75 ± 0.14 Aa | 1.6 ± 0.27 Ba | 9.1 ± 0.22 Cc | 5.92 ± 0.19 |
4 | 91.91 ± 0.31 Ab | −2.94 ± 0.04 Cb | 19.71 ± 0.67 Aa | 5.36 ± 0.04 |
7 | 90.46 ± 0.21 Ac | −1.20 ± 0.05 Cc | 17.23 ± 0.1 Bb | 8.57 ± 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vera-Santander, V.E.; Hernández-Figueroa, R.H.; Arrioja-Bretón, D.; Jiménez-Munguía, M.T.; Mani-López, E.; López-Malo, A. Utilization of Whey for Eco-Friendly Bio-Preservation of Mexican-Style Fresh Cheeses: Antimicrobial Activity of Lactobacillus casei 21/1 Cell-Free Supernatants (CFS). Int. J. Environ. Res. Public Health 2024, 21, 560. https://doi.org/10.3390/ijerph21050560
Vera-Santander VE, Hernández-Figueroa RH, Arrioja-Bretón D, Jiménez-Munguía MT, Mani-López E, López-Malo A. Utilization of Whey for Eco-Friendly Bio-Preservation of Mexican-Style Fresh Cheeses: Antimicrobial Activity of Lactobacillus casei 21/1 Cell-Free Supernatants (CFS). International Journal of Environmental Research and Public Health. 2024; 21(5):560. https://doi.org/10.3390/ijerph21050560
Chicago/Turabian StyleVera-Santander, Victor E., Ricardo H. Hernández-Figueroa, Daniela Arrioja-Bretón, María T. Jiménez-Munguía, Emma Mani-López, and Aurelio López-Malo. 2024. "Utilization of Whey for Eco-Friendly Bio-Preservation of Mexican-Style Fresh Cheeses: Antimicrobial Activity of Lactobacillus casei 21/1 Cell-Free Supernatants (CFS)" International Journal of Environmental Research and Public Health 21, no. 5: 560. https://doi.org/10.3390/ijerph21050560
APA StyleVera-Santander, V. E., Hernández-Figueroa, R. H., Arrioja-Bretón, D., Jiménez-Munguía, M. T., Mani-López, E., & López-Malo, A. (2024). Utilization of Whey for Eco-Friendly Bio-Preservation of Mexican-Style Fresh Cheeses: Antimicrobial Activity of Lactobacillus casei 21/1 Cell-Free Supernatants (CFS). International Journal of Environmental Research and Public Health, 21(5), 560. https://doi.org/10.3390/ijerph21050560