The Association of Ischemia Type and Duration with Acute Kidney Injury after Robot-Assisted Partial Nephrectomy
Abstract
:1. Background
2. Methods
2.1. Study Design
2.2. Outcome Measurements
2.3. Surgical Parameters
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ljungberg, B.; Bensalah, K.; Canfield, S.; Dabestani, S.; Hofmann, F.; Hora, M.; Kuczyk, M.A.; Lam, T.; Marconi, L.; Merseburger, A.S.; et al. EAU guidelines on renal cell carcinoma: 2014 update. Eur. Urol. 2015, 67, 913–924. [Google Scholar] [CrossRef] [PubMed]
- Mir, M.C.; Derweesh, I.; Porpiglia, F.; Zargar, H.; Mottrie, A.; Autorino, R. Partial Nephrectomy Versus Radical Nephrectomy for Clinical T1b and T2 Renal Tumors: A Systematic Review and Meta-analysis of Comparative Studies. Eur. Urol. 2017, 71, 606–617. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.H.; Boorjian, S.A.; Lohse, C.M.; Leibovich, B.C.; Kwon, E.D.; Cheville, J.C.; Blute, M.L. Radical nephrectomy for pT1a renal masses may be associated with decreased overall survival compared with partial nephrectomy. J. Urol. 2008, 179, 468–471; discussion 472–463. [Google Scholar] [CrossRef] [PubMed]
- Larcher, A.; Capitanio, U.; Terrone, C.; Volpe, A.; De Angelis, P.; Dehó, F.; Fossati, N.; Dell’Oglio, P.; Antonelli, A.; Furlan, M.; et al. Elective Nephron Sparing Surgery Decreases Other Cause Mortality Relative to Radical Nephrectomy Only in Specific Subgroups of Patients with Renal Cell Carcinoma. J. Urol. 2016, 196, 1008–1013. [Google Scholar] [CrossRef] [PubMed]
- Simhan, J.; Smaldone, M.C.; Tsai, K.J.; Li, T.; Reyes, J.M.; Canter, D.; Kutikov, A.; Chen, D.Y.; Greenberg, R.E.; Uzzo, R.G.; et al. Perioperative outcomes of robotic and open partial nephrectomy for moderately and highly complex renal lesions. J. Urol. 2012, 187, 2000–2004. [Google Scholar] [CrossRef] [PubMed]
- Hennessey, D.B.; Wei, G.; Moon, D.; Kinnear, N.; Bolton, D.M.; Lawrentschuk, N.; Chan, Y.K. Strategies for success: A multi-institutional study on robot-assisted partial nephrectomy for complex renal lesions. BJU Int. 2018, 121 (Suppl. S3), 40–47. [Google Scholar] [CrossRef]
- Shekarriz, B.; Shah, G.; Upadhyay, J. Impact of temporary hilar clamping during laparoscopic partial nephrectomy on postoperative renal function: A prospective study. J. Urol. 2004, 172, 54–57. [Google Scholar] [CrossRef]
- Lane, B.R.; Gill, I.S.; Fergany, A.F.; Larson, B.T.; Campbell, S.C. Limited warm ischemia during elective partial nephrectomy has only a marginal impact on renal functional outcomes. J. Urol. 2011, 185, 1598–1603. [Google Scholar] [CrossRef]
- Nohara, T.; Fujita, H.; Yamamoto, K.; Kitagawa, Y.; Gabata, T.; Namiki, M. Modified anatrophic partial nephrectomy with selective renal segmental artery clamping to preserve renal function: A preliminary report. Int. J. Urol. 2008, 15, 961–966. [Google Scholar] [CrossRef]
- Tanagho, Y.S.; Bhayani, S.B.; Kim, E.H.; Sandhu, G.S.; Vaughn, N.P.; Figenshau, R.S. Off-clamp robot-assisted partial nephrectomy: Initial Washington University experience. J. Endourol. 2012, 26, 1284–1289. [Google Scholar] [CrossRef]
- Chawla, L.S.; Eggers, P.W.; Star, R.A.; Kimmel, P.L. Acute kidney injury and chronic kidney disease as interconnected syndromes. N. Engl. J. Med. 2014, 371, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Martini, A.; Cumarasamy, S.; Beksac, A.T.; Abaza, R.; Eun, D.D.; Bhandari, A.; Hemal, A.K.; Porter, J.R.; Badani, K.K. A Nomogram to Predict Significant Estimated Glomerular Filtration Rate Reduction After Robotic Partial Nephrectomy. Eur. Urol. 2018, 74, 833–839. [Google Scholar] [CrossRef]
- Schmid, M.; Abd-El-Barr, A.E.; Gandaglia, G.; Sood, A.; Olugbade, K.; Ruhotina, N.; Sammon, J.D.; Varda, B.; Chang, S.L.; Kibel, A.S.; et al. Predictors of 30-day acute kidney injury following radical and partial nephrectomy for renal cell carcinoma. Urol. Oncol. 2014, 32, 1259–1266. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.S.; Bae, E.H.; Ma, S.K.; Kweon, S.S.; Kim, S.W. Impact of partial nephrectomy on kidney function in patients with renal cell carcinoma. BMC Nephrol. 2014, 15, 181. [Google Scholar] [CrossRef]
- Martini, A.; Sfakianos, J.P.; Paulucci, D.J.; Abaza, R.; Eun, D.D.; Bhandari, A.; Hemal, A.K.; Badani, K.K. Predicting acute kidney injury after robot-assisted partial nephrectomy: Implications for patient selection and postoperative management. Urol. Oncol. 2019, 37, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Rajan, S.; Babazade, R.; Govindarajan, S.R.; Pal, R.; You, J.; Mascha, E.J.; Khanna, A.; Yang, M.; Marcano, F.D.; Singh, A.K.; et al. Perioperative factors associated with acute kidney injury after partial nephrectomy. Br. J. Anaesth. 2016, 116, 70–76. [Google Scholar] [CrossRef]
- Paulucci, D.J.; Rosen, D.C.; Sfakianos, J.P.; Whalen, M.J.; Abaza, R.; Eun, D.D.; Krane, L.S.; Hemal, A.K.; Badani, K.K. Selective arterial clamping does not improve outcomes in robot-assisted partial nephrectomy: A propensity-score analysis of patients without impaired renal function. BJU Int. 2017, 119, 430–435. [Google Scholar] [CrossRef]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; Initiative, S. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. Int. J. Surg. 2014, 12, 1495–1499. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Bellomo, R.; Ronco, C.; Kellum, J.A.; Mehta, R.L.; Palevsky, P.; Acute Dialysis Quality Initiative (ADQI) Workgroup. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit. Care 2004, 8, R204–R212. [Google Scholar] [CrossRef]
- National Clinical Guideline Centre (UK). Chronic Kidney Disease (Partial Update): Early Identification and Management of Chronic Kidney Disease in Adults in Primary and Secondary Care. In National Institute for Health and Care Excellence: Clinical Guidelines; National Institute for Health and Care Excellence (UK): London, UK, 2014. [Google Scholar]
- Desai, M.M.; de Castro Abreu, A.L.; Leslie, S.; Cai, J.; Huang, E.Y.; Lewandowski, P.M.; Lee, D.; Dharmaraja, A.; Berger, A.K.; Goh, A.; et al. Robotic partial nephrectomy with superselective versus main artery clamping: A retrospective comparison. Eur. Urol. 2014, 66, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Kutikov, A.; Uzzo, R.G. The R.E.N.A.L. nephrometry score: A comprehensive standardized system for quantitating renal tumor size, location and depth. J. Urol. 2009, 182, 844–853. [Google Scholar] [CrossRef] [PubMed]
- Rod, X.; Peyronnet, B.; Seisen, T.; Pradere, B.; Gomez, F.D.; Verhoest, G.; Vaessen, C.; De La Taille, A.; Bensalah, K.; Roupret, M. Impact of ischaemia time on renal function after partial nephrectomy: A systematic review. BJU Int. 2016, 118, 692–705. [Google Scholar] [CrossRef] [PubMed]
- Funahashi, Y.; Hattori, R.; Yamamoto, T.; Kamihira, O.; Kato, K.; Gotoh, M. Ischemic renal damage after nephron-sparing surgery in patients with normal contralateral kidney. Eur. Urol. 2009, 55, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Lane, B.R.; Babineau, D.C.; Poggio, E.D.; Weight, C.J.; Larson, B.T.; Gill, I.S.; Novick, A.C. Factors predicting renal functional outcome after partial nephrectomy. J. Urol. 2008, 18, 2363–2368; discussion 2368–2369. [Google Scholar] [CrossRef]
- Rosen, D.C.; Kannappan, M.; Paulucci, D.J.; Beksac, A.T.; Attalla, K.; Abaza, R.; Eun, D.D.; Bhandari, A.; Hemal, A.K.; Porter, J.; et al. Reevaluating Warm Ischemia Time as a Predictor of Renal Function Outcomes After Robotic Partial Nephrectomy. Urology 2018, 120, 156–161. [Google Scholar] [CrossRef]
- Rosen, D.C.; Paulucci, D.J.; Abaza, R.; Eun, D.D.; Bhandari, A.; Hemal, A.K.; Badani, K.K. Is Off Clamp Always Beneficial During Robotic Partial Nephrectomy? A Propensity Score-Matched Comparison of Clamp Technique in Patients with Two Kidneys. J. Endourol. 2017, 31, 1176–1182. [Google Scholar] [CrossRef] [PubMed]
- Anderson, B.G.; Potretzke, A.M.; Du, K.; Vetter, J.M.; Bergeron, K.; Paradis, A.G.; Figenshau, R.S. Comparing Off-clamp and On-clamp Robot-assisted Partial Nephrectomy: A Prospective Randomized Trial. Urology 2019, 126, 102–109. [Google Scholar] [CrossRef]
- Kaczmarek, B.F.; Tanagho, Y.S.; Hillyer, S.P.; Mullins, J.K.; Diaz, M.; Trinh, Q.D.; Bhayani, S.B.; Allaf, M.E.; Stifelman, M.D.; Kaouk, J.H.; et al. Off-clamp robot-assisted partial nephrectomy preserves renal function: A multi-institutional propensity score analysis. Eur. Urol. 2013, 64, 988–993. [Google Scholar] [CrossRef]
- Ratliff, B.B.; Rabadi, M.M.; Vasko, R.; Yasuda, K.; Goligorsky, M.S. Messengers without borders: Mediators of systemic inflammatory response in AKI. J. Am. Soc. Nephrol. 2013, 24, 529–536. [Google Scholar] [CrossRef]
- Deng, W.; Liu, X.; Hu, J.; Chen, L.; Fu, B. Off-clamp partial nephrectomy has a positive impact on short- and long-term renal function: A systematic review and meta-analysis. BMC Nephrol. 2018, 19, 188. [Google Scholar] [CrossRef] [PubMed]
- Trehan, A. Comparison of off-clamp partial nephrectomy and on-clamp partial nephrectomy: A systematic review and meta-analysis. Urol. Int. 2014, 93, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Greco, F.; Autorino, R.; Altieri, V.; Campbell, S.; Ficarra, V.; Gill, I.; Kutikov, A.; Mottrie, A.; Mirone, V.; van Poppel, H. Ischemia Techniques in Nephron-sparing Surgery: A Systematic Review and Meta-Analysis of Surgical, Oncological, and Functional Outcomes. Eur. Urol. 2019, 75, 477–491. [Google Scholar] [CrossRef] [PubMed]
- Badani, K.K.; Kothari, P.D.; Okhawere, K.E.; Eun, D.; Hemal, A.; Abaza, R.; Porter, J.; Lovallo, G.; Ahmed, M.; Munver, R.; et al. Selective clamping during robot-assisted partial nephrectomy in patients with a solitary kidney: Is it safe and does it help? BJU Int. 2020, 125, 893–897. [Google Scholar] [CrossRef] [PubMed]
- Guillonneau, B.; Bermúdez, H.; Gholami, S.; El Fettouh, H.; Gupta, R.; Adorno Rosa, J.; Baumert, H.; Cathelineau, X.; Fromont, G.; Vallancien, G. Laparoscopic partial nephrectomy for renal tumor: Single center experience comparing clamping and no clamping techniques of the renal vasculature. J. Urol. 2003, 169, 483–486. [Google Scholar] [CrossRef]
- Tuderti, G.; Brassetti, A.; Mastroianni, R.; Misuraca, L.; Bove, A.; Anceschi, U.; Ferriero, M.; Guaglianone, S.; Gallucci, M.; Simone, G. Expanding the limits of nephron-sparing surgery: Surgical technique and mid-term outcomes of purely off-clamp robotic partial nephrectomy for totally endophytic renal tumors. Int. J. Urol. 2022, 29, 282–288. [Google Scholar] [CrossRef]
- Brassetti, A.; Cacciamani, G.E.; Mari, A.; Garisto, J.D.; Bertolo, R.; Sundaram, C.P.; Derweesh, I.; Bindayi, A.; Dasgupta, P.; Porter, J.; et al. On-Clamp vs. Off-Clamp Robot-Assisted Partial Nephrectomy for cT2 Renal Tumors: Retrospective Propensity-Score-Matched Multicenter Outcome Analysis. Cancers 2022, 14, 4431. [Google Scholar] [CrossRef]
- Brassetti, A.; Anceschi, U.; Bove, A.M.; Prata, F.; Costantini, M.; Ferriero, M.; Mastroianni, R.; Misuraca, L.; Tuderti, G.; Torregiani, G.; et al. Purely Off-Clamp Laparoscopic Partial Nephrectomy Stands the Test of Time: 15 Years Functional and Oncologic Outcomes from a Single Center Experience. Curr. Oncol. 2023, 30, 1196–1205. [Google Scholar] [CrossRef]
- Rangaswamy, D.; Sud, K. Acute kidney injury and disease: Long-term consequences and management. Nephrology 2018, 23, 969–980. [Google Scholar] [CrossRef]
- Waikar, S.S.; Curhan, G.C.; Wald, R.; McCarthy, E.P.; Chertow, G.M. Declining mortality in patients with acute renal failure, 1988 to 2002. J. Am. Soc. Nephrol. 2006, 17, 1143–1150. [Google Scholar] [CrossRef]
- Goldstein, S.L.; Jaber, B.L.; Faubel, S.; Chawla, L.S.; Acute Kidney Injury Advisory Group of the American Society of Nephrology. AKI transition of care: A potential opportunity to detect and prevent CKD. Clin. J. Am. Soc. Nephrol. 2013, 8, 476–483. [Google Scholar] [CrossRef] [PubMed]
Acute Kidney Injury | |||||||
---|---|---|---|---|---|---|---|
Absent n = 121 | Present n = 33 | Total n = 154 | p-Value | ||||
No. | % | No. | % | No | % | ||
Age [median|IQR] | 65 | 57-74 | 65 | 60-75 | 65 | 57–75 | 0.6 |
Sex | 0.041 | ||||||
Male | 64 | 52.9 | 24 | 72.7 | 88 | 57.1 | |
Female | 57 | 47.1 | 9 | 27.3 | 66 | 42.9 | |
BMI 1 [median|IQR] | 25 | 22.3–28.8 | 27 | 25–29.9 | 26 | 23.3–29.1 | 0.04 |
Arterial hypertension | 0.3 | ||||||
Absent | 79 | 65.3 | 18 | 54.5 | 97 | 63.0 | |
Present | 42 | 34.7 | 15 | 45.5 | 57 | 37.0 | |
Diabetes | 0.1 | ||||||
Absent | 110 | 90.9 | 27 | 81.8 | 137 | 89.0 | |
Present | 11 | 9.1 | 6 | 18.2 | 17 | 11.0 | |
Accessory artery | 0.7 | ||||||
Absent | 85 | 70.2 | 22 | 66.7 | 107 | 69.5 | |
Present | 36 | 29.8 | 11 | 33.3 | 47 | 39.5 | |
Charlson Comorbidity Index | 0.5 | ||||||
0–2 | 79 | 65.3 | 19 | 57.6 | 98 | 63.6 | |
3 | 20 | 16.5 | 5 | 15.2 | 25 | 16.2 | |
>4 | 22 | 18.2 | 9 | 27.3 | 31 | 20.1 | |
Baseline eGFR 2 [median|IQR] | 81 | 68.5–94.1 | 80 | 66.3–99.3 | 81 | 67.0–94.4 | 0.8 |
R.E.N.A.L. score [median|IQR] | 7 | 6–8 | 8 | 7–9 | 7 | 6–8 | 0.007 |
Ischemia type | <0.001 | ||||||
Warm ischemia > 17 min | 26 | 21.5 | 19 | 57.6 | 45 | 29.2 | |
Warm ischemia ≤ 17 min | 42 | 34.7 | 3 | 9.1 | 45 | 29.2 | |
Selective artery clamping > 29 min | 4 | 3.3 | 7 | 21.2 | 11 | 7.1 | |
Selective artery clamping ≤ 29 min | 29 | 24.0 | 3 | 9.1 | 32 | 20.8 | |
Zero ischemia | 20 | 16.5 | 1 | 3.0 | 21 | 13.6 | |
Total | 121 | 78.6 | 33 | 21.4 | 154 | 100 |
Univariable | Multivariable Model | |||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Age | 1.01 (0.98–1.05) | 0.6 | ||
Sex | ||||
Male | Ref. | Ref. | ||
Female | 0.42 (0.18–0.98) | 0.045 | 0.34 (0.13–0.92) | 0.033 |
BMI 1 | 1.08 (0.99–1.17) | 0.1 | ||
Arterial hypertension | 1.57 (0.72–3.42) | 0.3 | ||
Diabetes | 2.22 (0.75–6.54) | 0.1 | ||
Accessory artery | 1.18 (0.52–2.69) | 0.7 | ||
Charlson Comorbidity Index | ||||
0–2 | Ref. | |||
3 | 1.04 (0.35–3.12) | 0.9 | ||
>4 | 1.70 (0.68–4.28) | 0.3 | ||
Baseline eGFR 2 | 1.00 (0.98–1.02) | 0.8 | ||
R.E.N.A.L. score | 1.43 (1.09–1.86) | 0.009 | 1.33 (0.97–1.83) | 0.08 |
Ischemia type | ||||
Warm ischemia > 17 min | Ref. | Ref. | ||
Warm ischemia ≤ 17 min | 0.15 (0.03–0.36) | <0.001 | 0.10 (0.03–0.37) | <0.001 |
Selective artery clamping > 29 min | 2.03 (0.61–9.36) | 0.2 | 1.92 (0.46–8.02) | 0.4 |
Selective artery clamping ≤ 29 min | 0.19 (0.38–0.53) | 0.004 | 0.12 (0.30–0.47) | 0.002 |
Zero ischemia | 0.09 (0.01–0.56) | 0.012 | 0.10 (0.01–0.84) | 0.035 |
Receiver operating characteristic–area under the curve (ROC-AUC) | 0.84 |
Univariable | Multivariable Model 1 | Multivariable Model 2 | ||||
---|---|---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Age | 1.03 (0.99–1.09) | 0.1 | ||||
Sex | ||||||
Male | Ref. | |||||
Female | 0.73 (0.34–1.58) | 0.4 | ||||
BMI 1 | 1.07 (0.99–1.15) | 0.1 | ||||
Arterial hypertension | 1.07 (0.50–2.29) | 0.9 | ||||
Diabetes | 1.50 (0.57–3.97) | 0.4 | ||||
Accessory arteries | 1.07 (0.47–2.43) | 0.9 | ||||
Charlson Comorbidity Index | ||||||
0–2 | Ref. | |||||
3 | 1.85 (0.78–4.39) | 0.2 | ||||
>4 | 0.77 (0.28–2.16) | 0.6 | ||||
Baseline eGFR 2 | 0.99 (0.97–1.00) | 0.1 | ||||
R.E.N.A.L. score | 1.27 (0.99–1.63) | 0.06 | 1.08 (0.83–1.40) | 0.6 | ||
Ischemia type | ||||||
Warm ischemia > 17 min | Ref. | Ref. | ||||
Warm ischemia ≤ 17 min | 0.52 (0.19–1.37) | 0.2 | 1.55 (0.45–5.27) | 0.5 | ||
Selective artery clamping > 29 min | 2.00 (0.74–5.37) | 0.2 | 1.42 (0.52–3.87) | 0.5 | ||
Selective artery clamping ≤ 29 min | 0.22 (0.05–1.00) | 0.05 | 0.43 (0.09–2.01) | 0.3 | ||
Zero ischemia | 0.15 (0.02–1.13) | 0.065 | 0.41 (0.05–3.45) | 0.4 | ||
Acute kidney injury | 7.46 (3.42–16.24) | <0.001 | 7.05 (2.49–19.98) | <0.001 | 6.99 (3.10–15.73) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obrecht, F.; Padevit, C.; Froelicher, G.; Rauch, S.; Randazzo, M.; Shariat, S.F.; John, H.; Foerster, B. The Association of Ischemia Type and Duration with Acute Kidney Injury after Robot-Assisted Partial Nephrectomy. Curr. Oncol. 2023, 30, 9634-9646. https://doi.org/10.3390/curroncol30110698
Obrecht F, Padevit C, Froelicher G, Rauch S, Randazzo M, Shariat SF, John H, Foerster B. The Association of Ischemia Type and Duration with Acute Kidney Injury after Robot-Assisted Partial Nephrectomy. Current Oncology. 2023; 30(11):9634-9646. https://doi.org/10.3390/curroncol30110698
Chicago/Turabian StyleObrecht, Fabian, Christian Padevit, Gabriel Froelicher, Simon Rauch, Marco Randazzo, Shahrokh F. Shariat, Hubert John, and Beat Foerster. 2023. "The Association of Ischemia Type and Duration with Acute Kidney Injury after Robot-Assisted Partial Nephrectomy" Current Oncology 30, no. 11: 9634-9646. https://doi.org/10.3390/curroncol30110698
APA StyleObrecht, F., Padevit, C., Froelicher, G., Rauch, S., Randazzo, M., Shariat, S. F., John, H., & Foerster, B. (2023). The Association of Ischemia Type and Duration with Acute Kidney Injury after Robot-Assisted Partial Nephrectomy. Current Oncology, 30(11), 9634-9646. https://doi.org/10.3390/curroncol30110698