Building-Integrated Photovoltaics (BIPV) in Historical Buildings: Opportunities and Constraints
Abstract
:1. Introduction
2. Materials and Methods
2.1. Historical Buildings and Traditional Heritage Buildings (THB) Retrofitting
2.2. BIPV Standardization
- BAPV: Photovoltaic modules are considered to be building attached if the PV modules are mounted on a building envelope and do not fulfil the above criteria for building integration.
- BIPV: Building-Integrated Photovoltaics modules are considered to be building-integrated if the PV modules from a construction product providing a function as defined in the European Construction Product Regulation CPR 305/2011. Thus, the BIPV module is a prerequisite for the integrity of building functionality. If the integrated PV module is dismounted (in the case of structurally bonded modules, dismounting includes the adjacent construction product), the PV modules would have to be replaced by an appropriate construction product.
- The international definition of BIPV
- BIPV needs and functions analysis
- BIPV requirements overview
- Multifunctional BIPV evaluation
- Suggested topics for exchange between different standardization activities on an international level.
2.3. Three Macro Factors for Building-Integrated Photovoltaics
2.3.1. Photovoltaic Technologies
- I Generation: Silicon-based solar cells (mono- and poly-crystalline silicon) constituted the first PV sector to emerge. Currently, crystalline silicon technologies account for more than 97% of the overall cell production and more than 94% in the IEA PVPS countries [8].
- II Generation: Thin-film solar cells based on CdTe, copper indium gallium selenide (CIGS), or amorphous silicon was developed as a cheaper alternative to crystalline silicon cells.
- III generation’ solar cells (tandem, perovskite, dye-sensitized, organic, new concepts, …) account for a broad spectrum of concepts, ranging from low-cost low-efficiency systems (dye-sensitized, organic solar cells) to high-cost high-efficiency systems (III–V multifunction), with various purposes from building integration to space applications [8,59,74,75,76].
- Concentrator technologies (CPV) use an optical concentrator system, which focuses solar radiation onto a small high-efficiency cell.
- Multi-junction cells design involves superposing several cells in a stack [75].
- Novel PV concepts aim at achieving ultra-high efficiency solar cells using advanced materials and new conversion concepts and processes [8]. The flexibility and light weight make them useful for nomad applications, while the possibility to tune the color, the shape, and the transparency opens the route of the integration in modern and esthetic features [73,76].
- Glazing integrated photovoltaics based on dye-sensitized solar cells are in a relatively early stage of development. These solutions are very interesting for installations on glazed surfaces for any type of building, historical or otherwise, as they preserve the aesthetic appearance of the enclosure. The colour scale available offers designers greater choice [77].
- Increase module efficiencies
- Reduce Si consumption
- Develop specific PV materials/solutions for building integration.
- Low energy-intensive production processes
- Readily available raw materials
2.3.2. The Market
2.3.3. Innovative Solar-Integrated Technologies
2.3.4. Multifunctional PV Solutions
2.4. Energy Efficiency
2.5. Colored Cells and Glazing Modules
2.6. Glazing
2.7. Light Selective Compound for Traditional Materials (multilayering)
3. Results
4. Discussion
5. Conclusions
Funding
Conflicts of Interest
References
- European Commission. Communication From the Commision: A Roadmap for Moving to a Competitive Low Carbon Economy in 2050; COM(2011) 112 Final 34; European Commission: Brussels, Belgium, 2011; pp. 1–34. [Google Scholar] [CrossRef]
- D’Agostino, D.; Mazzarella, L. What is a Nearly zero energy building? Overview, implementation and comparison of definitions. J. Build. Eng. 2019, 21, 200–212. [Google Scholar] [CrossRef]
- Kurnitski, J.; Allard, F.; Al, E. How to Define Nearly Net Zero Energy Buildings nZEB—REHVA Proposal for Uniformed National Implementation of EPBD Recast. Available online: https://www.rehva.eu/fileadmin/hvac-dictio/03-2011/How_to_define_nearly_net_zero_energy_buildings_nZEB.pdf (accessed on 9 May 2018).
- Hermelink, A.; Schimschar, S.; Boer, T. Towards Nearly Zero-Energy Buildings Definition of Common Principles under the EPBD Final Report, Köln. 2012. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/nzeb_full_report.pdf (accessed on 11 May 2018).
- Romagnoni, P. Edifici a Basso Consumo Energetico: Tra ZEB e NZEB, Ppt. Available online: https://sistemaedificio.files.wordpress.com/2015/03/romagnoni_venezia.pdf (accessed on 8 May 2018).
- Deng, S.; Wang, R.Z.; Dai, Y.J. How to evaluate performance of net zero energy building—A literature research. Energy 2014, 71, 1–16. [Google Scholar] [CrossRef]
- Mauri, L. Feasibility Analysis of Retrofit Strategies for the Achievement of NZEB Target on a Historic Building for Tertiary Use. Energy Procedia 2016, 101, 1127–1134. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Technology Roadmap Solar Photovoltaic Energy—2014 Edition; Technology Roadmap; IEA: Paris, France, 2014. [Google Scholar] [CrossRef]
- SET-Plan—Declaration on Strategic Targets in the context of an Initiative for Global Leadership in Photovoltaics (PV); European Commission: Brussels, Belgium, 2016.
- Aste, N.; Adhikari, R.S.; Del Pero, C. Photovoltaic Technology for Renewable Electricity Production: Towards Net Zero Energy Buildings. In Proceedings of the 2011 International Conference on Clean Electrical Power (ICCEP), Ischia, Italy, 14–16 June 2011; pp. 446–450. [Google Scholar] [CrossRef]
- Ferrara, C.; Wilson, H.R.; Sprenger, W. Building-integrated photovoltaics (BIPV). In The Performance of Photovoltaic (PV) Systems: Modelling, Measurement and Assessment; Elsevier Inc.: Freiburg, Germany, 2017; pp. 235–250. [Google Scholar] [CrossRef]
- SET-Plan TWP PV Implementation PlanFinal Draft. 2017. Available online: https://setis.ec.europa.eu/system/files/set_plan_pv_implmentation_plan.pdf (accessed on 15 January 2020).
- MIBACT Ministero per i Beni e le Attività Culturali, Legislative Decree n. 42 of 22 January 2004. Code of Cultural and Landscape Heritage. 2004. Available online: http://www.unesco.org/culture/natlaws/media/pdf/italy/it_cult_landscapeheritge2004_engtof.pdf (accessed on 23 March 2017).
- Rosa, F.; Carbonara, E. An analysis on technological plant retrofitting on the masonry behaviour structures of 19th century Traditional Historical Buildings (THB) in Rome. Energy Procedia 2017, 133, 121–134. [Google Scholar] [CrossRef]
- European Union (EU). Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings; EU: Brussels, Belgium, 2010. [Google Scholar] [CrossRef]
- EU. DIRECTIVE (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2010/31/EU on the Energy Performance of Buildings and Directive 2012/27/EU on Energy Efficiency (Text with EEA Relevance); EU: Brussels, Belgium, 2018. [Google Scholar]
- Decree of June 26th, 2015 Concerning New Minimum Requirements and Methodology for Calculating Energy Performance of Buildings. 2015. Available online: https://www.mise.gov.it/index.php/it/normativa/decreti-interministeriali/2032966-decreto-interministeriale-26-giugno-2015-applicazione-delle-metodologie-di-calcolo-delle-prestazioni-energetiche-e-definizione-delle-prescrizioni-e-dei-requisiti-minimi-degli-edifici (accessed on 9 January 2020).
- De Santoli, L. Guidelines on energy efficiency of cultural heritage. Energy Build. 2015, 86, 534–540. [Google Scholar] [CrossRef]
- Nastasi, B.; di Matteo, U. Solar Energy Technologies in Sustainable Energy Action Plans of Italian Big Cities. Energy Procedia 2016, 101, 1064–1071. [Google Scholar] [CrossRef]
- Feilden, B.M. Conservation of Historic Buildings; Architectural Press: New York, NY, USA, 2003; Available online: http://www.hoepli.it/libro/conservation-of-historic-buildings/9780750658638.html (accessed on 24 March 2017).
- Guidance on Heritage Impact Assessments for Cultural World Heritage Properties, 2011, ICOMOS. Available online: https://www.icomos.org/world_heritage/HIA_20110201.pdf (accessed on 10 July 2020).
- Mancini, F.; Nastasi, B. Energy retrofitting effects on the energy flexibility of dwellings. Energies 2019, 12, 2788. [Google Scholar] [CrossRef] [Green Version]
- MiBACT. Linee di Indirizzo per il Miglioramento Dell’efficienza Energetica nel Patrimonio Culturale. Architettura, Centri e Nuclei Storici ed Urbani; MiBACT: Rome, Italy, 2014. [Google Scholar]
- WP2: Standardisation and Testing | Construct PV. Available online: http://www.constructpv.eu/wp2-standardisation-and-testing/ (accessed on 15 May 2018).
- Italian Company for Standardization. UNI 8290-1:1981+A122:1983: Residential Building. Building Elements. Classification and Terminology; Italian Company for Standardization: Milan, Italy, 1983. [Google Scholar]
- Pagliaro, M.; Ciriminna, R.; Palmisano, G. BIPV: Merging the photovoltaic with the construction industry. Prog. Photovolt. Res. Appl. 2010, 18, 61–72. [Google Scholar] [CrossRef]
- Heinstein, P.; Ballif, C.; Perret-Aebi, L.-E.E. Building integrated photovoltaics (BIPV): Review, potentials, barriers and myths. Green 2013, 3, 125–156. [Google Scholar] [CrossRef]
- Delponte, E.; Marchi, F.; Frontini, F.; Polo, C.; Fath, K.; Batey, M. BIPV in eu28, from niche to mass market: An assessment of current projects and the potential for growth through product innovation. In Proceedings of the 31st European Photovoltaic Solar. Energy Conference and. Exhibition (EU PVSEC 2015), Hamburg, Germany, 14–18 September 2015; pp. 3046–3050. [Google Scholar]
- Defaix, P.R.; van Sark, W.G.J.H.M.; Worrell, E.; de Visser, E. Technical potential for photovoltaics on buildings in the EU-27. Sol. Energy 2012, 86, 2644–2653. Available online: http://linkinghub.elsevier.com/retrieve/pii/S0038092X12002186 (accessed on 14 May 2018). [CrossRef] [Green Version]
- El Gammal, A.; Mueller, D.; Buerkstuemmer, H.; Vignal, R.; Macé, P. Technical Evaluation of BIPV Power Generation Potential in EU-28. 2016, pp. 2518–2522. Available online: http://becquerelinstitute.org/wp-content/uploads/2014/08/6DO-8-final-BIPV-Technical-Potential.pdf (accessed on 14 May 2018).
- Osseweijer, F.J.W.; van den Hurk, L.B.P.; Teunissen, E.J.H.M.; van Sark, W.G.J.H.M. A Review of the Dutch Ecosystem for Building Integrated Photovoltaics. Energy Procedia 2017, 111, 974–981. [Google Scholar] [CrossRef]
- Mancini, F.; Nastasi, B. Solar energy data analytics: PV deployment and land use. Energies 2020, 13, 417. [Google Scholar] [CrossRef] [Green Version]
- Godwin, P.J. Building Conservation and Sustainability in the United Kingdom. Procedia Eng. 2011, 20, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Selj, J.H.; Mongstad, T.T.; Søndenå, R.; Marstein, E.S. Reduction of optical losses in colored solar cells with multilayer antireflection coatings. Sol. Energy Mater. Sol. Cells 2011, 95, 2576–2582. [Google Scholar] [CrossRef]
- Invisible Solar | Dyaqua. Available online: http://www.dyaqua.it/invisiblesolar/_it/index.php (accessed on 19 May 2018).
- Escarre, J.; Li, H.-Y.Y.; Sansonnens, L.; Galliano, F.; Cattaneo, G.; Heinstein, P.; Nicolay, S.; Bailat, J.; Eberhard, S.; Ballif, C.; et al. When PV modules are becoming real building elements: White solar module, a revolution for BIPV. In Proceedings of the 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA, 14–19 June 2015; pp. 1–2. [Google Scholar] [CrossRef]
- Swissinso–Kromatix. Available online: http://www.swissinso.com/company/technology.html (accessed on 17 March 2017).
- Kuo, H.J.; Hsieh, S.H.; Guo, R.C.; Chan, C.C. A verification study for energy analysis of BIPV buildings with BIM. Energy Build. 2016, 130, 676–691. [Google Scholar] [CrossRef]
- Jakica, N. State-of-the-art review of solar design tools and methods for assessing daylighting and solar potential for building-integrated photovoltaics. Renew. Sustain. Energy Rev. 2018, 81, 1296–1328. [Google Scholar] [CrossRef] [Green Version]
- Piselli, C.; Romanelli, J.; di Grazia, M.; Gavagni, A.; Moretti, E.; Nicolini, A.; Cotana, F.; Strangis, F.; Witte, H.J.L.; Pisello, A.L. An integrated HBIM simulation approach for energy retrofit of historical buildings implemented in a case study of a medieval fortress in Italy. Energies 2020, 13, 2601. [Google Scholar] [CrossRef]
- Magrini, A.; Franco, G.; Guerrini, M. The Impact of the Energy Performance Improvement of Historic Buildings on the Environmental Sustainability. Energy Procedia 2015, 75, 1399–1405. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Wittkopf, S.; Roeske, C. Quantitative Evaluation of BIPV Visual Impact in Building Retrofits Using Saliency Models. Energies 2017, 10, 668. [Google Scholar] [CrossRef] [Green Version]
- van Berkel, B.; Minderhoud, T.; Piber, A.; Gijzen, G. Design innovation from PV_module to building envelope (EU PVSEC 2014). In Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition, Amsterdam, The Netherlands, 22–26 September 2014; pp. 3606–3612. [Google Scholar]
- MacLeod, H.A. Thin Film Optical Filters. 2001. Available online: https://kashanu.ac.ir/Files/thin%20film%20optical%20filter(macklod).pdf (accessed on 22 May 2020).
- Stauffer, N.W.M. Solar photovoltaic technologies: Silicon and beyond. Energy Future 2015, 8–12. Available online: http://energy.mit.edu/news/transparent-solar-cells/ (accessed on 20 December 2019).
- Lim, J.W.; Kim, G.; Shin, M.; Yun, S.J. Colored a-Si:H transparent solar cells employing ultrathin transparent multi-layered electrodes. Sol. Energy Mater. Sol. Cells 2017, 163, 164–169. [Google Scholar] [CrossRef]
- Decree, I. Decreto Interministeriale n.1444. Available online: https://www.gazzettaufficiale.it/eli/id/1968/04/16/1288Q004/sg (accessed on 3 February 2020).
- Clarke, J.A.; Hand, J.W.; Johnstone, C.M.; Kelly, N.; Strachan, P.A. Photovoltaic-integrated building facades. Renew. Energy 1996, 8, 475–479. [Google Scholar] [CrossRef]
- Yang, T.; Athienitis, A.K. A review of research and developments of building-integrated photovoltaic/thermal (BIPV/T) systems. Renew. Sustain. Energy Rev. 2016, 66, 886–912. [Google Scholar] [CrossRef]
- Recchia, A.P. Problematiche e Opportunità Nell’uso Delle Fonti Energetiche Rinnovabili nel Patrimonio Storico Monumentale, MIBACT Ministero per i Beni e le Attività Culturali, Milan. 2011. Available online: http://www.iborghisrl.it/new/wp-content/uploads/2011/10/Convegno-Milano-5-ottobre-2011.pdf (accessed on 21 February 2017).
- Frontini, F.; Scognamiglio, A.; Graditi, G.; Lopez, C.P.; Pellegrino, M. From BIPV to Building Component. Available online: http://www.constructpv.eu/wp-content/uploads/2015/06/PVSEC_FF_1.pdf (accessed on 15 May 2018).
- Pacheco-torgal, F.; Granqvist, C.G.; Jelle, B.P.; Vanoli, G.P. Cost-Effective Energy Efficient Building Retrofitting: Materials, Technologies, Optimization and Case Studies; Woodhead Publishing: Duxford, UK.
- López, C.S.P.; Frontini, F. Energy Efficiency and Renewable Solar Energy Integration in Heritage Historic Buildings. Energy Procedia 2014, 48, 1493–1502. [Google Scholar] [CrossRef] [Green Version]
- Pellegrino, M.; López, C.P.; Graditi, G.; Scognamiglio, A.; Frontini, F. From BIPV to Building Component. In Proceedings of the 28th European Photovoltaic Solar Energy Conference and Exhibition, Paris, France, 30 September–4 October 2013; pp. 3757–3761. [Google Scholar] [CrossRef]
- Materials and Devices | Photovoltaic Research | NREL. Available online: https://www.nrel.gov/pv/materials-devices.html (accessed on 24 May 2018).
- IEA PVPS Trend 2017 in Photovoltaics Applications. 2017. Available online: http://iea-pvps.org/fileadmin/dam/public/report/statistics/IEA-PVPS_Trends_2017_in_Photovoltaic_Applications.pdf (accessed on 22 February 2020).
- Green, M.A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E.D. Solar cell efficiency tables (version 45). Prog. Photovolt. Res. Appl. 2015, 23, 1–9. [Google Scholar] [CrossRef]
- Cerón, I.; Caamaño-Martín, E.; Neila, F.J. ‘State-of-the-art’ of building integrated photovoltaic products. Renew. Energy 2013, 58, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Green, M.A.; Hishikawa, Y.; Dunlop, E.D.; Levi, D.H.; Hohl-Ebinger, J.; Ho-Baillie, A.W.Y. Solar cell efficiency tables (version 51). Prog. Photovolt. Res. Appl. 2017, 26, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Nastasi, B.; Basso, G.L. Hydrogen to link heat and electricity in the transition towards future Smart Energy Systems. Energy 2016, 110, 5–22. [Google Scholar] [CrossRef]
- de Santoli, L.; Basso, G.L.; Nastasi, B. The Potential of Hydrogen Enriched Natural Gas deriving from Power-to-Gas option in Building Energy Retrofitting. Energy Build. 2017, 149, 424–436. [Google Scholar] [CrossRef]
- Carbonara, G. Energy efficiency as a protection tool. Energy Build. 2015, 95, 9–12. [Google Scholar] [CrossRef]
- Albo, A.; Rosa, F.; Tiberi, M.; Vivio, B. High-efficiency and low-environmental impact systems on a historical building in Rome: An InWall solution. WIT Trans. Built Environ. 2014, 142, 529–540. [Google Scholar] [CrossRef] [Green Version]
- Rosa, F.; Cumo, F.; Calcagnini, L.; Vivio, B. Redevelopment of Historic Buildings through the Implementation of Green Roofs: A Study of a Design Methodology. Available online: http://www.academia.edu/2421781/Redevelopment_of_historic_buildings_through_the_implementation_of_green_roofs_a_study_of_a_design_methodology (accessed on 9 September 2013).
- Jordan-Palomar, I.; Tzortzopoulos, P.; García-Valldecabres, J.; Pellicer, E. Protocol to Manage Heritage-Building Interventions Using Heritage Building Information Modelling (HBIM). Sustainability 2018, 10, 908. [Google Scholar] [CrossRef] [Green Version]
- Mazzola, E.; Mora, T.D.; Peron, F.; Romagnoni, P. An Integrated Energy and Environmental Audit Process for Historic Buildings. Energies 2019, 12, 3940. [Google Scholar] [CrossRef] [Green Version]
- Bruno, S.; De Fino, M.; Fatiguso, F. Historic Building Information Modelling: Performance assessment for diagnosis-aided information modelling and management. Autom. Constr. 2018, 86, 256–276. Available online: https://www.sciencedirect.com/science/article/pii/S0926580517301164?via%3Dihub (accessed on 27 March 2018). [CrossRef]
- Osello, A.; Rapetti, N.; Semeraro, F. BIM Methodology Approach to Infrastructure Design: Case Study of Paniga Tunnel. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 62052. [Google Scholar] [CrossRef]
- Standardization Needs for BIPV. 2016. Available online: http://www.pvsites.eu/downloads/download/report-standardization-needs-for-bipv (accessed on 28 January 2020).
- BIPV Standards. Available online: http://www.bipv.ch/index.php/en/technology-top-en/quality/standards (accessed on 22 May 2018).
- Pellegrino, M.; Flaminio, G.; Graditi, G. Testing and Standards for new BIPV products. In Proceedings of the IECON 2013—39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; pp. 8127–8132. [Google Scholar] [CrossRef]
- GSE—Building-Integrated PV (BIPV) Plants with Innovative Features. Available online: http://www.gse.it/en/feedintariff/Photovoltaic/Fourthfeed-intariff/PVintegratedwithinnovativecharacteristics/Pages/default.aspx (accessed on 17 February 2017).
- PVPS Annual Report 2017: Photovoltaic Power Systems Technology Collaboration Programme; IEA: Fribourg, Switzerland, 2017.
- Almosni, S.; Delamarre, A.; Jehl, Z.; Suchet, D.; Cojocaru, L.; Giteau, M.; Behaghel, B.; Julian, A.; Ibrahim, C.; Tatry, L.; et al. Material challenges for solar cells in the twenty-first century: Directions in emerging technologies. Sci. Technol. Adv. Mater. 2018, 19, 336–369. [Google Scholar] [CrossRef] [PubMed]
- Building Integrated Photovoltaics (BIPV) | WBDG Whole Building Design Guide. Available online: https://www.wbdg.org/resources/building-integrated-photovoltaics-bipv (accessed on 21 May 2018).
- Vikram, K. Fourth Generation Photovoltaics Research in India. 2016, p. 101. Available online: http://www.mineco.gob.es/stfls/MICINN/Investigacion/FICHEROS/Presentacion_participantes_Sevilla/06_Organic_Photovoltaics_RD_India_V_Kumar.pdf (accessed on 23 November 2019).
- Kukreti, K.; Rathod, A.P.S.; Kumar, B. Recent Advancements and Overview of Organic Solar Cell; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017; pp. 1539–1544. [Google Scholar] [CrossRef]
- Berny, S.; Blouin, N.; Distler, A.; Egelhaaf, H.-J.; Krompiec, M.; Lohr, A.; Lozman, O.R.; Morse, G.E.; Nanson, L.; Pron, A.; et al. Solar Trees: First Large-Scale Demonstration of Fully Solution Coated, Semitransparent, Flexible Organic Photovoltaic Modules. Adv. Sci. 2015, 3, 1500342. [Google Scholar] [CrossRef]
- Anderson, A.-L.; Chen, S.; Romero, L.; Top, I.; Binions, R. Thin Films for Advanced Glazing Applications. Buildings 2016, 6, 37. [Google Scholar] [CrossRef]
- Ferrari, S.; Romeo, C. Retrofitting under protection constraints according to the nearly Zero Energy Building (nZEB) target: The case of an Italian cultural heritage’s school building. Energy Procedia 2017, 140, 495–505. [Google Scholar] [CrossRef]
- Ascione, F.; de Masi, R.F.; de Rossi, F.; Ruggiero, S.; Vanoli, G.P. NZEB target for existing buildings: Case study of historical educational building in Mediterranean climate. Energy Procedia 2017, 140, 194–206. [Google Scholar] [CrossRef]
- Poggi, F.; Firmino, A.M.V.; Amado, M.P.; Pinho, F.F.S. Natural stone walls in vernacular architecture: What contribution towards rural nZEB concept? Bulletin de La Société Géographique de Liège 2015, 65, 51–66. [Google Scholar]
- Sala, M.; López, C.S.P.; Frontini, F.; Tagliabue, L.C.; de Angelis, E. The Energy Performance Evaluation of Buildings in an Evolving Built Environment: An Operative Methodology. Energy Procedia 2016, 91, 1005–1011. [Google Scholar] [CrossRef] [Green Version]
- Sartori, I.; Napolitano, A.; Voss, K. Net zero energy buildings: A consistent definition framework. Energy Build. 2012, 48, 220–232. Available online: https://ac.els-cdn.com/S0378778812000497/1-s2.0-S0378778812000497-main.pdf?_tid=4411dcf4-d5f7-46a8-b232-310af439279b&acdnat=1524817651_ae3ea6d3b3e462f45c299317e1ece6f0 (accessed on 27 April 2018). [CrossRef] [Green Version]
- Klein, K.; Kalz, D.; Herkel, S. Grid impact of a net zero energy building with BiPV using different energy management strategies. In Proceedings of the International Conference CISBAT 2015 Future Buildings and Districts Sustainability from Nano to Urban Scale, Lausanne, Switzerland, 9–11 September 2015; pp. 579–584. [Google Scholar] [CrossRef]
- Mancini, F.; Cecconi, M.; de Sanctis, F.; Beltotto, A. Energy Retrofit of a Historic Building Using Simplified Dynamic Energy Modeling. Energy Procedia 2016, 101, 1119–1126. [Google Scholar] [CrossRef]
- Garcia, D.A.; Cumo, F.; Tiberi, M.; Sforzini, V.; Piras, G. Cost-Benefit Analysis for Energy Management in Public Buildings: Four Italian Case Studies. Energies 2016, 9, 522. [Google Scholar] [CrossRef]
- Ritzen, M.; Reijenga, T.; El Gammal, A.; Warneryd, M.; Sprenger, W.; Rose-Wilson, H.; Payet, J.; Morreau, V.; Boddaert, S. IEA-PVPS Task 15. In Proceedings of the 48th IEA PVPS Executive Commitee Meeting, Vienna, Austria, 15–16 November 2016. [Google Scholar]
- Transparency Market Research, BIPV Market Report. Available online: http://www.dem4bipv.eu/bipv/bipv-market/ (accessed on 20 February 2017).
- General Motors Research. Building Integrated Photovoltaics: An Emerging Market. Available online: https://www.solarserver.com/solar-magazine/solar-report/solar-report/building-integrated-photovoltaics-an-emerging-market.html (accessed on 17 May 2018).
- Horizon Prize for Integrated Photovoltaic System in European Protected Historic Urban Districts. Available online: https://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/lce-prize-photovoltaicshistory-01-2016.html (accessed on 19 May 2018).
- Adamson, K.-A. Philip Drachman Industry Analyst Executive Summary: Building Integrated Photovoltaics Section 1. 2012. Available online: http://webcache.googleusercontent.com/search?q=cache:ZVsjTWMFpxIJ:www.sustainworldwide.com/uploads/5/0/6/1/5061561/bipv-10-executive-summary.pdf+&cd=1&hl=zh-TW&ct=clnk (accessed on 10 July 2020).
- Ritzen, M.; Reijenga, T.; El Gammal, A.; Warneryd, M.; Sprenger, W.; Rose-Wilson, H.; Payet, J. Enabling Framework for BIPV Acceleration. Available online: https://webcache.googleusercontent.com/search?q=cache:96NKZsUZDxgJ:https://www.photovoltaic-conference.com/images/2016/2_Programme/parallel_events/AccelerationBIPV/Michiel_RITZEN.pdf+&cd=1&hl=zh-TW&ct=clnk&gl=us (accessed on 10 July 2020).
- James, T.; Goodrich, A.; Woodhouse, M.; Margolis, R.; Ong, S. Building-Integrated Photovoltaics (BIPV) in the Residential Sector: An Analysis of Installed Rooftop System Prices; U.S. Department of Energy: Washington, DC, USA, 2011; p. 50. [Google Scholar]
- IRENA. The Power to Change: Solar and Wind Cost Reduction Potential; IRENA: Abu Dhabi, UAE, 2016. [Google Scholar]
- Fthenakis, V. PV Energy ROI. Track Efficiency Gains. Solar Today. 2012; p. 3. Available online: https://www.bnl.gov/pv/files/pdf/240_SolarTodayJune12_c.pdf (accessed on 20 December 2019).
- Raugei, M.; Sgouridis, S.; Murphy, D.; Fthenakis, V.; Frischknecht, R.; Breyer, C.; Bardi, U.; Barnhart, C.; Buckley, A.; Carbajales-Dale, M.; et al. Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: A comprehensive response. Energy Policy 2017, 102, 377–384. [Google Scholar] [CrossRef]
- Deriche, M.A.; Hafaifab, A.; Mohammedia, K. EPBT and CO2 emission from solar PV monocrystaline silicon. In Proceedings of the 2018 International Conference on Applied Smart Systems (ICASS), Medea, Algeria, 24–25 November 2018. [Google Scholar] [CrossRef]
- Bhandari, K.P.; Collier, J.M.; Ellingson, R.J.; Apul, D.S. Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis. Renew. Sustain. Energy Rev. 2015, 47, 133–141. [Google Scholar] [CrossRef]
- Photovoltaics Report, Freiburg, Germany. 2018. Available online: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf (accessed on 15 March 2020).
- Norton, B.; Eames, P.C.; Mallick, T.K.; Huang, M.J.; McCormack, S.J.; Mondol, J.D.; Yohanis, Y.G. Enhancing the performance of building integrated photovoltaics. Sol. Energy 2011, 85, 1629–1664. [Google Scholar] [CrossRef] [Green Version]
- Bonomo, P.; Frontini, F.; Chatzipanagi, A. Overview and analysis of current BIPV products: New criteria for supporting the technological transfer in the building sector. Vitr. Int. J. Arch. Technol. Sustain. 2015, 1, 67–85. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Cemesova, A.; Hopfe, C.J.; Rezgui, Y.; Sweet, T. A conceptual framework to support solar PV simulation using an open-BIM data exchange standard. Autom. Constr. 2014, 37, 166–181. [Google Scholar] [CrossRef]
- Kiviniemi, A. The Effects of Integrated BIM in Processes and Business Models. In Distributed Intelligence in Design; Wiley-Blackwell: Oxford, UK, 2011. [Google Scholar] [CrossRef]
- Arayici, Y.; Coates, P.; Koskela, L.; Kagioglou, M.; Usher, C.; O’Reilly, K. Technology adoption in the BIM implementation for lean architectural practice. Autom. Constr. 2011, 20, 189–195. [Google Scholar] [CrossRef]
- Saygi, G.; Remondino, F. Management of Architectural Heritage Information in BIM and GIS: State-of-the-Art and Future Perspectives. Int. J. Herit. Digit. Era 2013, 2, 695–713. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wang, X.; Wright, G.; Cheng, J.; Li, X.; Liu, R. A State-of-the-Art Review on the Integration of Building Information Modeling (BIM) and Geographic Information System (GIS). ISPRS Int. J. Geo-Inf. 2017, 6, 53. [Google Scholar] [CrossRef] [Green Version]
- Ning, G.; Kan, H.; Qiu, Z.; Weihua, G.; Geert, D. e-BIM: A BIM-centric design and analysis software for Building Integrated Photovoltaics. Autom. Constr. 2018, 87, 127–137. [Google Scholar] [CrossRef]
- IEA. Publication: Technology Roadmap: Solar Photovoltaic Energy–Foldout—Chinese Version. Available online: http://www.iea.org/publications/freepublications/publication/name,34345,en.html (accessed on 18 December 2013).
- Fantechi, S.; Weir, I.; Fillon, B. Photovoltaics and Nanotechnology: From Innovation to Industry. In Nanotechnology for Sustainable Manufacturing; CRC Press: Boca Raton, FL, USA, 2014; pp. 37–58. [Google Scholar] [CrossRef]
- Kramer, I.J.; Minor, J.C.; Moreno-Bautista, G.; Rollny, L.; Kanjanaboos, P.; Kopilovic, D.; Thon, S.M.; Carey, G.H.; Chou, K.W.E.; Zhitomirsky, D.; et al. Efficient spray-coated colloidal quantum dot solar cells. Adv. Mater. 2014, 27, 116–121. [Google Scholar] [CrossRef] [Green Version]
- Energy GlassTM. Available online: http://www.energyglass.com/egl/about-us.php (accessed on 28 February 2017).
- Lunt, R.R.; Bulovic, V. Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications. Appl. Phys. Lett. 2011, 98, 113305. [Google Scholar] [CrossRef]
- Onyxsolar. Walkable Photovoltaic Floor (For BIPV)—Onyx Solar—PV Floor. Available online: http://www.onyxsolar.com/walkable-photovoltaic-roof.html (accessed on 20 February 2017).
- Greppi, M.; Fabbri, G. Experimental characterization of a hybrid industrial solar tile. Energy Procedia 2017, 126, 621–627. [Google Scholar] [CrossRef]
- Intersolar Munich 2015—Technology Highlights. Available online: http://sinovoltaics.com/events/intersolar-munich-2015-technology-highlights/ (accessed on 20 May 2018).
- Farkas, K. Designing Photovoltaic Systems for Architectural Integration. Criteria and Guidelines for Product and System Developers. 2013. Available online: http://task41.iea-shc.org/data/sites/1/publications/task41A3-2-Designing-Photovoltaic-Systems-for-Architectural-Integration.pdf (accessed on 27 April 2020).
- Perret-Aebi, L.-E.; Ballif, C.; Leterrier, Y.; Roecker, C.; Schüler, A.; Scartezzini, J.-L.; Leibundgut, H.; Carmeliet, J. ARCHINSOLAR Innovative PV Products for Better Aesthetical Integration of Green Energies in the Built Environment, Bern. 2014. Available online: https://webcache.googleusercontent.com/search?q=cache:2GL59LKAbkwJ:https://isfh.de/wp-content/uploads/2017/09/Giovannetti_EuroSun_2016.pdf+&cd=9&hl=zh-TW&ct=clnk&gl=us (accessed on 10 July 2020).
- Kaminski, P.M.; Lisco, F.; Walls, J.M. Multilayer Broadband Antireflective Coatings for More Efficient Thin Film CdTe Solar Cells. IEEE J. Photovolt. 2013, 4, 452–456. [Google Scholar] [CrossRef]
- Nubile, P. Analytical design of antireflection coatings for silicon photovoltaic devices. Thin Solid Films 1999, 342, 257–261. [Google Scholar] [CrossRef]
- Li, X.; Tan, Q.; Jin, G. Surface profile optimization of antireflection gratings for solar cells. Optik 2011, 122, 2078–2082. Available online: http://linkinghub.elsevier.com/retrieve/pii/S0030402611000441 (accessed on 27 June 2018). [CrossRef]
- Luo, Q.; Deng, X.; Zhang, C.; Yu, M.; Zhou, X.; Wang, Z.; Chen, X.; Huang, S. Enhancing photovoltaic performance of perovskite solar cells with silica nanosphere antireflection coatings. Sol. Energy 2018, 169, 128–135. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Gupta, A.; Virdi, A. Effect of single and double layer antireflection coating to enhance photovoltaic efficiency of silicon solar. J. Nano-Electron. Phys. 2017, 9, 02001-1–02001-4. [Google Scholar] [CrossRef]
- Munshi, A.H.; Kephart, J.M.; Abbas, A.; Shimpi, T.M.; Barth, K.L.; Walls, J.M.; Sampath, W.S. Polycrystalline CdTe photovoltaics with efficiency over 18% through improved absorber passivation and current collection. Sol. Energy Mater. Sol. Cells 2018, 176, 9–18. [Google Scholar] [CrossRef] [Green Version]
PV Module Standards | Building Standards |
---|---|
IEC International Electrotechnical Commission | ISO International Organization for Standardization |
CENELEC European Commission for Electrotechnical Standardization | CEN European Committee for Standardization |
CES Comité Electrotechnique Suisse | SIA Schweizerische Ingenieur- und Architekten-Verein |
Level 1 | General requirements for all BIPV resulting from requirements of the Low Voltage Directives and the Construction Products Directive of the European Union |
Level 2 | Requirements resulting from panel material (e.g., glass) |
Level 3 | Requirements resulting from panel mounting location within the building (5 mounting categories are differentiated) |
PV Technologies | Market | Innovative Solar-Integrated Technologies |
---|---|---|
PV efficiency | LCOE | Multi-functionality |
Load/generation management | Grid Parity | Energy Efficiency |
Smart Buildings synergies | ROI/EROI | Colored and Glazed cells |
Smart Grid focused | Energy Pay Back Time EPBT | Light selective compound for traditional materials (multi-layering) |
Low visual impact |
Targets | 2008 | 2020 | 2030 | 2050 |
---|---|---|---|---|
Typical flat-plate module efficiencies | <16% | <23% | <25% | <40% |
Pay-back time in 1500 kWh/kWp regime | 2 years | 1 year | 0.75 year | 0.5 year |
Durability | 25 years | 30 years | 35 years | 40 years |
Insolation (kWh/m2/yr) | Italy Average 1700 | Centre Italy 1436 | South Italy 2032 |
---|---|---|---|
Mono-Si | |||
Mean EPBT (years) | 4.11 | 5.22 | 2.90 |
Mean EROI | 8.73 | 11.2 | 4.9 |
Poly-Si | |||
Mean EPBT (years) | 3.06 | 3.89 | 2.16 |
Mean EROI | 11.62 | 15.0 | 6.5 |
a:Si | |||
Mean EPBT (years) | 2.28 | 2.90 | 1.61 |
Mean EROI | 14.45 | 18.6 | 8.0 |
CdTe | |||
Mean EPBT (years) | 1.02 | 1.29 | 0.72 |
Mean EROI | 34.18 | 44.0 | 19.0 |
CIGS | |||
Mean EPBT (years) | 1.73 | 2.20 | 1.23 |
Mean EROI | 19.94 | 25.7 | 11.1 |
Crystalline Silicon Technologies | 2010–2015 | 2015–2020 | 2020–2030/2050 |
---|---|---|---|
Efficiency targets in % |
|
|
|
Manufacturing aspects |
|
|
|
Research &Development areas |
|
|
|
Criteria Approach | BIPV-THB Building Management Process | ||||
---|---|---|---|---|---|
Project Management | BIPV Design | Construction | Visual Impact | Codes and Regulation | |
BAPV Building Attached (Applied/Added) PV | * | * | * | *** | *** |
BIPV Building Integrated PV | ** | ** | *** | ** | *** |
BIPPV Building Integrated Project PV | *** | *** | * | * | ** |
hBESST Building Heritage Energy Solar Solutions Technology | *** | *** | * | * | ? |
Dual Objectivies | Interactions | Factors | Opportunities | Constraints |
---|---|---|---|---|
1. BIPV and Heritage buildings | Integration on the building envelope |
|
|
|
2. Heritage buildings and nZEB | Energy retrofit |
|
|
|
3. nZEB and BIPV solutions | Energy sustainability |
|
|
|
4. BIPV, Heritage buildings and nZEB | hBESST |
|
|
|
BIPV | hBESST | PV Technology | Efficiency | Producibility kW/sqm/yr | BIPV Modules Solutions | Visual Impact | Turnkey Solution | |
---|---|---|---|---|---|---|---|---|
Roofs | Mono-Poly Si | 22% | 317 | Color Layer | * | * | ||
Terraces | Mono-Poly Si Amorphous | 22% | 274 | Floor Pavement Sun decks | * | * | ||
Cornices | Mono-Poly Si Amorphous | 22% | 274 | Perimetric Cornices buildings surfaces | * | * | ||
Walls | Mono-Poly Si Amorphous ThinFilm (CdTe) | 22% 12% 16% | 204 0 149 | Vertical walls with good exposition. PV surfaces with Opaque finishing | ** | ** | ||
Glazing WIPV | DSSC OPV | 3.4 | 3.60 kWh/kWp·day | Windows Glazing surfaces | * | * |
Opportunities | Constraints | |
---|---|---|
BIPV |
|
|
hBESST |
|
|
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosa, F. Building-Integrated Photovoltaics (BIPV) in Historical Buildings: Opportunities and Constraints. Energies 2020, 13, 3628. https://doi.org/10.3390/en13143628
Rosa F. Building-Integrated Photovoltaics (BIPV) in Historical Buildings: Opportunities and Constraints. Energies. 2020; 13(14):3628. https://doi.org/10.3390/en13143628
Chicago/Turabian StyleRosa, Flavio. 2020. "Building-Integrated Photovoltaics (BIPV) in Historical Buildings: Opportunities and Constraints" Energies 13, no. 14: 3628. https://doi.org/10.3390/en13143628
APA StyleRosa, F. (2020). Building-Integrated Photovoltaics (BIPV) in Historical Buildings: Opportunities and Constraints. Energies, 13(14), 3628. https://doi.org/10.3390/en13143628