A Tool for Evaluating the Performance of SiC-Based Bidirectional Battery Chargers for Automotive Applications
Abstract
:1. Introduction
2. Modelling the Bidirectional Battery Charger
2.1. Active Front-End Rectifier
2.2. Dual Active Bridge
2.3. High-Frequency Transformer
2.4. Matlab—Simulink Implementation
3. Simulation and Validation of the Model of Bidirectional SiC-Based Battery Chargers
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
AFE | Active Front End |
BBC | Bidirectional Battery Charger |
CCM | Continuous Conduction Mode |
DAB | Dual Active Bridge |
EV | Electric Vehicle |
FPGA | Field Programmable Gate Array |
GUI | Graphical user interface |
HRTIM | High-Resolution Timer |
PF | Power Factor |
PFC | Power Factor Correction |
PHV | Plug-in Hybrid Vehicle |
PLL | Phase Locked Loop |
SiC | Silicon Carbide |
V2G | Vehicle to Grid |
ZVS | Zero Voltage Switching |
Cac | LCL filter capacitor |
Cdc | capacitor between the AFE and the DAB |
Cf | output capacitor |
LC, LS | LCL filter inductors |
Llk | transformer leakage inductor |
iα, iβ | two-phase stationary currents |
id, iq | two-phase rotating currents |
iAC | line current drawn by the converter |
iLlk | current flowing through the transformer leakage inductor |
iout | output current |
vout | output voltage |
v1 | DC/DC input voltage |
v2 | DC/DC output voltage |
vtα, vtβ | two-phase stationary converter voltages |
vtd, vtq | two-phase rotating converter voltages |
vsα, vsβ | two-phase stationary AC main voltages |
vsd, vsq | two-phase rotating AC main voltages |
References
- Shi, J.; Gao, Y.; Wang, W.; Yu, N.; Ioannou, P.A. Operating Electric Vehicle Fleet for Ride-Hailing Services with Reinforcement Learning. IEEE Trans. Intell. Transp. Syst. 2020, 21, 4822–4834. [Google Scholar] [CrossRef]
- Neffati, A.; Marzouki, A. Local energy management in hybrid electrical vehicle via Fuzzy rules system. AIMS Energy 2020, 8, 421–437. [Google Scholar] [CrossRef]
- Dominkovic, D.F.; Bačeković, I.; Pedersen, A.S.; Krajačić, G. The future of transportation in sustainable energy systems: Opportunities and barriers in a clean energy transition. Renew. Sustain. Energy Rev. 2018, 82, 1823–1838. [Google Scholar] [CrossRef]
- Franco, F.L.; Ricco, M.; Mandrioli, R.; Grandi, G. Electric Vehicle Aggregate Power Flow Prediction and Smart Charging System for Distributed Renewable Energy Self-Consumption Optimization. Energies 2020, 13, 5003. [Google Scholar] [CrossRef]
- Vadi, S.; Bayindir, R.; Colak, A.M.; Hossain, E. Vadi A Review on Communication Standards and Charging Topologies of V2G and V2H Operation Strategies. Energies 2019, 12, 3748. [Google Scholar] [CrossRef] [Green Version]
- Salvatti, G.A.; Carati, E.G.; Cardoso, R.; Da Costa, J.P.; Stein, C.M.D.O. Electric Vehicles Energy Management with V2G/G2V Multifactor Optimization of Smart Grids. Energies 2020, 13, 1191. [Google Scholar] [CrossRef] [Green Version]
- Juul, F.; Negrete-Pincetic, M.; Macdonald, J.; Callaway, D. Real-time scheduling of electric vehicles for ancillary services. In Proceedings of the 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 1–5. [Google Scholar]
- Liu, C.; Chau, K.T.; Wu, D.; Gao, S. Opportunities and Challenges of Vehicle-to-Home, Vehicle-to-Vehicle, and Vehicle-to-Grid Technologies. Proc. IEEE 2013, 101, 2409–2427. [Google Scholar] [CrossRef] [Green Version]
- Kisacikoglu, M.C.; Ozpineci, B.; Tolbert, L.M. EV/PHEV Bidirectional Charger Assessment for V2G Reactive Power Operation. IEEE Trans. Power Electron. 2013, 28, 5717–5727. [Google Scholar] [CrossRef]
- Kisacikoglu, M.C.; Kesler, M.; Tolbert, L.M. Single-Phase On-Board Bidirectional PEV Charger for V2G Reactive Power Operation. IEEE Trans. Smart Grid 2015, 6, 767–775. [Google Scholar] [CrossRef]
- Xue, L.; Shen, Z.; Boroyevich, D.; Mattavelli, P.; Diaz, D. Dual Active Bridge-Based Battery Charger for Plug-in Hybrid Electric Vehicle with Charging Current Containing Low Frequency Ripple. IEEE Trans. Power Electron. 2015, 30, 7299–7307. [Google Scholar] [CrossRef] [Green Version]
- De Caro, S.; Testa, A.; Triolo, D.; Cacciato, M.; Consoli, A. Low input current ripple converters for fuel cell power units. In Proceedings of the 2005 European Conference on Power Electronics and Applications, Dresden, Germany, 11–14 September 2005. [Google Scholar]
- De Melo, H.N.; Trovao, J.P.F.; Pereirinha, P.G.; Jorge, H.M.; Antunes, C.H. A Controllable Bidirectional Battery Charger for Electric Vehicles with Vehicle-to-Grid Capability. IEEE Trans. Veh. Technol. 2017, 67, 114–123. [Google Scholar] [CrossRef]
- Restrepo, M.; Morris, J.; Kazerani, M.; Canizares, C. Modeling and Testing of a Bidirectional Smart Charger for Distribution System EV Integration. IEEE Trans. Smart Grid 2016, 9, 152–162. [Google Scholar] [CrossRef]
- Raciti, A.; Musumeci, S.; Chimento, F.; Privitera, G. A new thermal model for power MOSFET devices accounting for the behavior in unclamped inductive switching. Microelectron. Reliab. 2016, 58, 3–11. [Google Scholar] [CrossRef]
- Mohammed, S.S.; Devaraj, D. Simulation and analysis of stand-alone photovoltaic system with boost converter using MATLAB/Simulink. In Proceedings of the 2014 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2014], Nagercoil, India, 20–21 March 2014; pp. 814–821. [Google Scholar]
- Doolla, S.; Bhat, S.S.; Bhatti, T.; Veerachary, M. A GUI based simulation of power electronic converters and reactive power compensators using MATLAB/SIMULINK. In Proceedings of the 2004 International Conference on Power System Technology, The Pan Pacific, Singapore, 21–24 November 2004. [Google Scholar]
- Aiello, G.; Cacciato, M.; Scarcella, G.; Scelba, G.; Gennaro, F.; Aiello, N. RealTime emulation of a three-phase vienna rectifier with unity power factor operations. In Proceedings of the 2018 ELEKTRO, Mikulov, Czech Republic, 21–23 May 2018. [Google Scholar]
- Aiello, G.; Scelba, G.; Scarcella, G.; Cacciato, M.; Tornello, L.; Palmieri, A.; Vanelli, E.; Pernaci, C.; Di Dio, R. Real-Time Emulation of Induction Machines for Hardware in the Loop Applications. In Proceedings of the 2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Amalfi, Italy, 20–22 June 2018. [Google Scholar]
- Aiello, G.; Tornello, L.D.; Scelba, G.; Scarcella, G.; Cacciato, M.; Palmieri, A.; Vanelli, E.; Pernaci, C.; Di Dio, R. FPGA-Based Design and Implementation of a Real Time Simulator of Switched Reluctance Motor Drives. In Proceedings of the 2019 21st European Conference on Power Electronics and Applications (EPE ’19 ECCE Europe), Genova, Italy, 2–5 September 2019. [Google Scholar]
- Scelba, G.; Scarcella, G.; Cacciato, M.; Aiello, G. Hardware in the loop for failure analysis in AC motor drives. In Proceedings of the 2016 ELEKTRO, Strbske Pleso, Slovakia, 16–18 May 2016. [Google Scholar]
- Acquaviva, A.; Thiringer, T. Energy efficiency of a SiC MOSFET propulsion inverter accounting for the MOSFET’s reverse conduction and the blanking time. In Proceedings of the 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe), Warsaw, Poland, 11–14 September 2017. [Google Scholar]
- Gritti, G.; Adragna, C.; Industrial & Power Conversion Division Application Laboratory—STMicroelectronics s.r.l.—via C. Olivetti 2—20864 Agrate Brianza (MB)—Italy. Analysis, design and performance evaluation of an LED driver with unity power factor and constant-current primary sensing regulation. AIMS Energy 2019, 7, 579–599. [Google Scholar] [CrossRef]
- Chimento, F.; Raciti, A.; Cannone, A.; Musumeci, S.; Gaito, A. Parallel connection of super-junction MOSFETs in a PFC application. In Proceedings of the 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, 20–24 September 2009; pp. 3776–3783. [Google Scholar]
- Yazdani, A.; Iravani, R. Voltage-Sourced Converters in Power Systems: Modeling, Control, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Cacciato, M.; Scarcella, G.; Scelba, G.; Finocchiaro, L. Multi-reference frame based PLL for single phase systems in voltage distorted grids. In Proceedings of the 2014 16th European Conference on Power Electronics and Applications, EPE-ECCE Europe 2014, Lappeenranta, Finland, 26–28 August 2014. [Google Scholar]
- Jafari, M.; Malekjamshidi, Z.; Zhu, J.G. Analysis of operation modes and limitations of dual active bridge phase shift converter. In Proceedings of the 2015 IEEE 11th International Conference on Power Electronics and Drive Systems, Sydney, Australia, 9–12 June 2015. [Google Scholar]
- Cacciato, M.; Consoli, A. New regenerative active snubber circuit for ZVS phase shift Full Bridge converter. In Proceedings of the 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Fort Worth, TX, USA, 6–11 March 2011. [Google Scholar]
- Alves Ferreira Júnior, A.; Justino-Ribeiro, J.; Ney do Amaral Pereira, W. Evaluating Impedance Transformers with a VNA. Microwaves Rf 2009, 48, 64–71. Available online: https://www.researchgate.net/publication/243055235_Evaluating_Impedance_Transformers_With_a_VNA/references (accessed on 10 October 2020).
- Barrios, E.L.; Ursua, A.; Marroyo, L.; Sanchis, P. Analytical Design Methodology for Litz-Wired High-Frequency Power Transformers. IEEE Trans. Ind. Electron. 2015, 62, 2103–2113. [Google Scholar] [CrossRef]
- Hoang, K.D.; Wang, J. Design optimization of high frequency transformer for dual active bridge DC-DC converter. In Proceedings of the 2012 XXth International Conference on Electrical Machines, Marseille, France, 2–5 September 2012. [Google Scholar]
Parameter | Value |
---|---|
RMS voltage grid | 230 V |
Grid frequency fe | 50 Hz |
Ls | 1.5 μH |
Filter parameter Cac | 10 μF |
Filter parameter Lc | 325 μH |
Cdc | 400 μF |
Switching frequency fs | 100 kHz |
Parameter | Value |
---|---|
Nominal input Voltage Vdc | 400 V |
Nominal output voltage Vo | 400 V |
Minimal output voltage Vo,min | 150 V |
Output Power | 5 kW |
Duty Cycle | 0.5 |
Switching frequency | 100 kHz |
Parameter | Value |
---|---|
Nominal Input Voltage | 400 V |
Maximum Input Voltage | 480 V |
Minimum Input Voltage | 360 V |
Input current | 22 A |
Nominal output voltage | 400 V |
Output Current | 17.5 A |
Regulation α | 0.15% |
Max operating flux density Bm | 0.16 T |
Maximum temperature rise Tr | 70 °C |
Symbol | Parameter | Value |
---|---|---|
VDS | Maximum drain-source voltage | 1200 V |
Id | Drain current (continuous) at TC = 25 °C | 65 A |
RDS (on) | Static drain-source on-resistance at 150 °C | 59 mΩ |
Tj | Max Operating junction temperature in HiP247™ | 200 °C |
Parameter | Value |
---|---|
RMS grid voltage Vs | 230 V |
RMS grid current Is | 22.6 A |
Average Bus DC Voltage Vdc | 403 V |
Average output voltage Vo | 397 V |
Average output current Io | 12.4 A |
Input Apparent Power S | 5200 VA |
Input Active Power Pac | 5200 W |
Bus DC Power Pdc | 5030 W |
Output Power Po | 4910 W |
Power Factor | 0.999 |
Displacement Power Factor | 1 |
Total Harmonic Distortion | 7% |
AFE efficiency η = PDC/Pac | 96.7% |
DAB efficiency η = Po/PDC | 97.6% |
Power Efficiency ηp = Po/Pac | 94.42% |
Conversion Factor ηc = Po/S | 94.26% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aiello, G.; Cacciato, M.; Gennaro, F.; Rizzo, S.A.; Scarcella, G.; Scelba, G. A Tool for Evaluating the Performance of SiC-Based Bidirectional Battery Chargers for Automotive Applications. Energies 2020, 13, 6733. https://doi.org/10.3390/en13246733
Aiello G, Cacciato M, Gennaro F, Rizzo SA, Scarcella G, Scelba G. A Tool for Evaluating the Performance of SiC-Based Bidirectional Battery Chargers for Automotive Applications. Energies. 2020; 13(24):6733. https://doi.org/10.3390/en13246733
Chicago/Turabian StyleAiello, Giuseppe, Mario Cacciato, Francesco Gennaro, Santi Agatino Rizzo, Giuseppe Scarcella, and Giacomo Scelba. 2020. "A Tool for Evaluating the Performance of SiC-Based Bidirectional Battery Chargers for Automotive Applications" Energies 13, no. 24: 6733. https://doi.org/10.3390/en13246733
APA StyleAiello, G., Cacciato, M., Gennaro, F., Rizzo, S. A., Scarcella, G., & Scelba, G. (2020). A Tool for Evaluating the Performance of SiC-Based Bidirectional Battery Chargers for Automotive Applications. Energies, 13(24), 6733. https://doi.org/10.3390/en13246733