Bass Diffusion Model Adaptation Considering Public Policies to Improve Electric Vehicle Sales—A Brazilian Case Study
Abstract
:1. Introduction
2. Literature Review
2.1. Bass Diffusion Model
2.2. Public Policies to Promote EVs
2.3. Brazilian Regulatory Framework
2.4. Shared Mobility
3. Methodology
3.1. Scenarios
- The average annual distance traveled by each vehicle is 14,300 km, according to [70]. This value remains constant over the studied period;
- An annual increase in the efficiency of ICE vehicles in gasoline mode of 1% per year;
- The fixed values of 4.27 BRL/L and 0.82 BRL/kWh are adopted for the price of ethanol and electricity, respectively, until 2050. Gasoline has an initial value of 5.74 BRL/L in 2020, plus additional carbon tax over the years in the alternative scenario;
- Reduction in purchase and maintenance costs of EV over the years, mainly driven by the evolution of battery technology. According to [71], EV prices and maintenance costs in 2030 may be reduced by up to 31% and 27%, respectively, compared to 2020. This work assumes a linear reduction in both EV price and maintenance cost from 2030 to 2050, reaching 33% and 29% of the 2020 values, respectively;
- The EV used as a reference is the Jac iEV20, with a market price of 161,114 BRL and an operational cost of approximately 14,181 BRL per year.
3.2. Economic Analysis
3.2.1. Estimating Total Passenger Car Sales
3.2.2. Payback Calculation Considering Incentive Policies
3.3. Market Analysis
4. Results
4.1. Projection of Annual Licensing of Passenger Car
4.2. Diffusion Curve
4.3. Economic Impacts
4.4. Sensitivity Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Regression Statistics | ||||||
---|---|---|---|---|---|---|
Multiple R | 0.91 | Standard Error | 0.15 | |||
R Square | 0.82 | Observations | 84 | |||
Adjusted R Square | 0.82 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 4 | 8.41 | 2.10 | 92.83 | 4.66 × 10−29 | |
Residual | 79 | 1.79 | 2.26 × 10−2 | |||
Total | 83 | 10.20 | ||||
Coefficients | Standard Error | t Stat | p-value | Lower 95% | Upper 95% | |
Intercept | 32.02 | 2.81 | 11.39 | 2.38 × 10−18 | 26.43 | 37.61 |
Real GDP | 0.42 | 4.13 × 10−2 | 10.26 | 3.54 × 10−16 | 0.34 | 0.51 |
Interest rate (SELIC) | −0.40 | 0.07 | −5.60 | 3.01 × 10−7 | −0.55 | −0.26 |
Shared economy in the transportation sector | −2.93 | 0.35 | −8.41 | 1.38 × 10−12 | −3.63 | −2.24 |
Dummy (COVID-19 pandemic) | −0.94 | 0.12 | −7.87 | 1.60 × 10−11 | −1.17 | −0.70 |
Regression Statistics | ||||||
---|---|---|---|---|---|---|
Multiple R | 0.82 | Standard Error | 0.21 | |||
R Square | 0.67 | Observations | 84 | |||
Adjusted R Square | 0.66 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 3 | 6.81 | 2.27 | 53.53 | 4.41 × 10−19 | |
Residual | 80 | 3.39 | 4.24 × 10−2 | |||
Total | 83 | 10.20 | ||||
Coefficients | Standard Error | t Stat | p-value | Lower 95% | Upper 95% | |
Intercept | 8.94 | 0.83 | 10.74 | 3.54 × 10−17 | 7.29 | 10.60 |
Real GDP | 0.32 | 5.37 × 10−2 | 5.89 | 8.71 × 10−8 | 0.21 | 0.42 |
Interest rate (SELIC) | −0.27 | 0.10 | −2.83 | 5.93 × 10−3 | −0.46 | −0.08 |
Dummy (COVID-19 pandemic) | −0.84 | 0.16 | −5.16 | 1.77 × 10−6 | −1.16 | −0.51 |
References
- IEA Global EV Outlook 2021-Accelerating Ambitions despite the Pandemic; International Energy Agency: Paris, France, 2021.
- Singh, V.; Singh, V.; Vaibhav, S. A Review and Simple Meta-Analysis of Factors Influencing Adoption of Electric Vehicles. Transp. Res. Part D Transp. Environ. 2020, 86, 102436. [Google Scholar] [CrossRef]
- DENATRAN Frota de Veículos-2020. Available online: https://www.gov.br/infraestrutura/pt-br/assuntos/transito/conteudo-denatran/frota-de-veiculos-2020 (accessed on 15 July 2021).
- IEA. Global EV Outlook 2019: Scaling-up the Transition to Electric Mobility; OECD: Paris, France, 2019; ISBN 978-92-64-47013-2.
- Mersky, A.C.; Sprei, F.; Samaras, C.; Qian, Z. (Sean) Effectiveness of Incentives on Electric Vehicle Adoption in Norway. Transp. Res. Part D Transp. Environ. 2016, 46, 56–68. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Tang, L.; Pan, H. A Global Comparison and Assessment of Incentive Policy on Electric Vehicle Promotion. Sustain. Cities Soc. 2019, 44, 597–603. [Google Scholar] [CrossRef]
- Bose Styczynski, A.; Hughes, L. Public Policy Strategies for Next-Generation Vehicle Technologies: An Overview of Leading Markets. Environ. Innov. Soc. Transit. 2019, 31, 262–272. [Google Scholar] [CrossRef]
- Li, L.; Wang, Z.; Wang, Q. Do Policy Mix Characteristics Matter for Electric Vehicle Adoption? A Survey-Based Exploration. Transp. Res. Part D Transp. Environ. 2020, 87, 102488. [Google Scholar] [CrossRef]
- Al-Alawi, B.M.; Bradley, T.H. Review of Hybrid, Plug-in Hybrid, and Electric Vehicle Market Modeling Studies. Renew. Sustain. Energy Rev. 2013, 21, 190–203. [Google Scholar] [CrossRef]
- Jochem, P.; Gómez Vilchez, J.J.; Ensslen, A.; Schäuble, J.; Fichtner, W. Methods for Forecasting the Market Penetration of Electric Drivetrains in the Passenger Car Market. Transp. Rev. 2018, 38, 322–348. [Google Scholar] [CrossRef] [Green Version]
- Brdulak, A.; Chaberek, G.; Jagodziński, J. BASS Model Analysis in “Crossing the Chasm” in E-Cars Innovation Diffusion Scenarios. Energies 2021, 14, 3216. [Google Scholar] [CrossRef]
- Buchmann, T.; Wolf, P.; Fidaschek, S. Stimulating E-Mobility Diffusion in Germany (EMOSIM): An Agent-Based Simulation Approach. Energies 2021, 14, 656. [Google Scholar] [CrossRef]
- Ahkamiraad, A.; Wang, Y. An Agent-Based Model for Zip-Code Level Diffusion of Electric Vehicles and Electricity Consumption in New York City. Energies 2018, 11, 640. [Google Scholar] [CrossRef] [Green Version]
- Bass, F.M. A New Product Growth for Model Consumer Durables. Manag. Sci. 1969, 15, 215–227. [Google Scholar] [CrossRef]
- Bass, F.M.; Krishnan, T.V.; Jain, D.C. Why the Bass Model Fits without Decision Variables. Mark. Sci. 1994, 13, 203–223. [Google Scholar] [CrossRef]
- Melton, N.; Axsen, J.; Moawad, B. Which Plug-in Electric Vehicle Policies Are Best? A Multi-Criteria Evaluation Framework Applied to Canada. Energy Res. Soc. Sci. 2020, 64, 101411. [Google Scholar] [CrossRef]
- Wolinetz, M.; Axsen, J. How Policy Can Build the Plug-in Electric Vehicle Market: Insights from the REspondent-Based Preference And Constraints (REPAC) Model. Technol. Forecast. Soc. Chang. 2017, 117, 238–250. [Google Scholar] [CrossRef]
- Lavasani, M.; Jin, X.; Du, Y. Market Penetration Model for Autonomous Vehicles on the Basis of Earlier Technology Adoption Experience. Transp. Res. Rec. 2016, 2597, 67–74. [Google Scholar] [CrossRef]
- Guo, Y.; Xin, F.; Barnes, S.J.; Li, X. Opportunities or Threats: The Rise of Online Collaborative Consumption (OCC) and Its Impact on New Car Sales. Electron. Commer. Res. Appl. 2018, 29, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Clewlow, R.R.; Mishra, G.S. Disruptive Transportation: The Adoption, Utilization, and Impacts of Ride-Hailing in the United States; Institute of Transportation Studies: Davis, CA, USA, 2017; p. 38. [Google Scholar]
- Mohamed, M.J.; Rye, T.; Fonzone, A. Operational and Policy Implications of Ridesourcing Services: A Case of Uber in London, UK. Case Stud. Transp. Policy 2019, 7, 823–836. [Google Scholar] [CrossRef]
- Young, M.; Farber, S. The Who, Why, and When of Uber and Other Ride-Hailing Trips: An Examination of a Large Sample Household Travel Survey. Transp. Res. Part A Policy Pract. 2019, 119, 383–392. [Google Scholar] [CrossRef] [Green Version]
- The World Bank GDP Growth (Annual %). Available online: https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG?end=2020&start=2011 (accessed on 22 July 2021).
- Internationaler Währungsfonds (Ed.) A Long and Difficult Ascent; World Economic Outlook; Internationaler Währungsfonds: Washington, DC, USA, 2020; ISBN 978-1-5135-5605-5. [Google Scholar]
- Gorner, M.; Paoli, L. How Global Electric Car Sales Defied Covid-19 in 2020. Available online: https://www.iea.org/commentaries/how-global-electric-car-sales-defied-covid-19-in-2020 (accessed on 22 July 2021).
- Irle, R. Global Plug-in Vehicle Sales Reached over 3,2 Million in 2020. Available online: https://www.ev-volumes.com/ (accessed on 22 July 2021).
- Benvenutti, L.M.M.; Ribeiro, A.B.; Uriona, M. Long Term Diffusion Dynamics of Alternative Fuel Vehicles in Brazil. J. Clean. Prod. 2017, 164, 1571–1585. [Google Scholar] [CrossRef]
- Oliveira, G.D.; Roth, R.; Dias, L.C. Diffusion of Alternative Fuel Vehicles Considering Dynamic Preferences. Technol. Forecast. Soc. Chang. 2019, 147, 83–99. [Google Scholar] [CrossRef]
- Yu, J.; Yang, P.; Zhang, K.; Wang, F.; Miao, L. Evaluating the Effect of Policies and the Development of Charging Infrastructure on Electric Vehicle Diffusion in China. Sustainability 2018, 10, 3394. [Google Scholar] [CrossRef] [Green Version]
- Beck, R.W. Distributed Renewable Energy Operating Impacts and Valuation Study. Prepared for Arizona Public Service. Available online: https://appsrv.pace.edu/VOSCOE/?do=DownloadFile&res=J8PAM033116121012 (accessed on 1 January 2019).
- Cattaneo, L. Plug-In Electric Vehicles-Evaluating the Effectiveness of State Policies for Increasing Deployment; Center for American Progress: Washington, DC, USA, 2018; p. 49. [Google Scholar]
- Kong, D.; Xia, Q.; Xue, Y.; Zhao, X. Effects of Multi Policies on Electric Vehicle Diffusion under Subsidy Policy Abolishment in China: A Multi-Actor Perspective. Appl. Energy 2020, 266, 114887. [Google Scholar] [CrossRef]
- Kumar, R.R.; Alok, K. Adoption of Electric Vehicle: A Literature Review and Prospects for Sustainability. J. Clean. Prod. 2020, 253, 119911. [Google Scholar] [CrossRef]
- Chu, W.; Im, M.; Song, M.R.; Park, J. Psychological and Behavioral Factors Affecting Electric Vehicle Adoption and Satisfaction: A Comparative Study of Early Adopters in China and Korea. Transp. Res. Part D Transp. Environ. 2019, 76, 1–18. [Google Scholar] [CrossRef]
- Broadbent, G.H.; Metternicht, G.I.; Wiedmann, T.O. Increasing Electric Vehicle Uptake by Updating Public Policies to Shift Attitudes and Perceptions: Case Study of New Zealand. Energies 2021, 14, 2920. [Google Scholar] [CrossRef]
- Barczak, R.; Duarte, F. Impactos Ambientais Da Mobilidade Urbana: Cinco Categorias de Medidas Mitigadoras. Urbe Rev. Bras. Gest. Urbana 2012, 4, 13–32. [Google Scholar] [CrossRef] [Green Version]
- Egnér, F.; Trosvik, L. Electric Vehicle Adoption in Sweden and the Impact of Local Policy Instruments. Energy Policy 2018, 121, 584–596. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Jin, L.; Cui, H.; Zhou, H. Assessment of Electric Car Promotion Policies in Chinese Cities; International Council on Clean Transportation: Washington, DC, USA, 2018. [Google Scholar]
- Axsen, J.; Goldberg, S.; Melton, N. Canada’s Electric Vehicle Policy Report Card; Simon Fraser University: Burnaby, BC, Canada, 2016. [Google Scholar]
- Fearnley, N.; Pfaffenbichler, P.; Figenbaum, E.; Jellinek, R. E-Vehicle Policies and Incentives-Assessment and Elbilinsentiver–Evaluering Og Anbefalinger Recommendations; Institute of Transport Economics: Oslo, Norway, 2015; ISBN 0808-1190. [Google Scholar]
- NEA Electric Transport in the Netherlands; Netherlands Enterprise Agency: The Hague, The Netherlands, 2016.
- Steinbacher, K.; Goes, M.; Jörling, K. Incentives for Electric Vehicles in Norway; Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU): Bonn, Germany; Berlin, Germany, 2018.
- JAMA Fact Sheet-Japanese Government Incentives for the Purchase Pf Environmentally Friendly Vehicles; Japan Automobile Manufacturers Association: Tokyo, Japan, 2010.
- EVAAP Incentives for EV & HEV; Electric Vehicle Association of Asia Pacific: Beijing, China, 2003.
- ACEA Overview of Purchase and Tax Incentives for Electric Vehicles in the EU; European Automobile Manufacturers Association: Brussels, Belgium, 2011.
- Yang, J.; Liu, Y.; Qin, P.; Liu, A.A. A Review of Beijing’s Vehicle Registration Lottery: Short-Term Effects on Vehicle Growth and Fuel Consumption. Energy Policy 2014, 75, 157–166. [Google Scholar] [CrossRef]
- Figenbaum, E.; Kolbenstvedt, M.; Transportøkonomisk Institutt (Norway); Akershus Fylke (Norway). Electromobility in Norway: Experiences and Opportunities with Electric Vehicles; Transportøkonomisk Institutt: Oslo, Norway, 2013; ISBN 978-82-480-1466-9. [Google Scholar]
- McDermott, E.G. Examining the Effects of Policy Interventions on Increasing Electric Vehicle Adoption in California. Mestrado; University of San Francisco: San Francisco, CA, USA, 2017. [Google Scholar]
- Carley, S.; Zirogiannis, N.; Siddiki, S.; Duncan, D.; Graham, J.D. Overcoming the Shortcomings of U.S. Plug-in Electric Vehicle Policies. Renew. Sustain. Energy Rev. 2019, 113, 109291. [Google Scholar] [CrossRef]
- Qian, L.; Grisolía, J.M.; Soopramanien, D. The Impact of Service and Government-Policy Attributes on Consumer Preferences for Electric Vehicles in China. Transp. Res. Part A Policy Pract. 2019, 122, 70–84. [Google Scholar] [CrossRef] [Green Version]
- Greene, D.L.; Park, S.; Liu, C. Public Policy and the Transition to Electric Drive Vehicles in the U.S.: The Role of the Zero Emission Vehicles Mandates. Energy Strategy Rev. 2014, 5, 66–77. [Google Scholar] [CrossRef]
- Bloomberg Gasoline Prices around the World: The Real Cost of Filling Up. Available online: https://www.bloomberg.com/graphics/gas-prices/#20192:United-States:USD:g (accessed on 23 August 2019).
- Hu, Y.; Wang, Z.; Li, X. Impact of Policies on Electric Vehicle Diffusion: An Evolutionary Game of Small World Network Analysis. J. Clean. Prod. 2020, 265, 121703. [Google Scholar] [CrossRef]
- Deuten, S.; Gómez Vilchez, J.J.; Thiel, C. Analysis and Testing of Electric Car Incentive Scenarios in the Netherlands and Norway. Technol. Forecast. Soc. Chang. 2020, 151, 119847. [Google Scholar] [CrossRef]
- Bitencourt, L.d.A.; Borba, B.S.M.C.; Dias, B.H.; Maciel, R.S.; Dias, D.H.N.; Oliveira, L.W. Electric Vehicles Charging Optimization to Improve the Insertion Considering the Brazilian Regulatory Framework. Energy Storage 2019, 1, e76. [Google Scholar] [CrossRef] [Green Version]
- Consoni, F.L.; de Oliveira, A.; Barassa, E.; Martínez, J.; Marques, M.d.C.; Bermúdez, T. Estudo de Governança e Políticas Públicas Para Veículos Elétricos; PROMOB-e: Brasília, Brazil, 2018; ISBN 978-85-60206-08-7. [Google Scholar]
- Brazilian Government. Alíquotas Do Imposto Sobre Produtos Industrializados-IPI Incidente Sobre Veículos Equipados Com Motores Híbridos e Elétricos; Brazilian Government: Brasilia, Brazil, 2018; p. 4.
- Brazilian Government. Requisitos Obrigatórios Para a Comercialização de Veículos No Brasil; Brazilian Government: Brasilia, Brazil, 2018.
- Brazilian Government. Incidência Das Contribuições Para Os Programas de Integração Social e de Formação Do Patrimônio Do Servidor Público e Da Contribuição Para o Financiamento Da Seguridade Social; Brazilian Government: Brasilia, Brazil, 2002.
- ABVE IPVA-Imposto Sobre a Propriedade de Veículos Automotores Para Veículos Elétricos. Available online: http://www.abve.org.br/diversos/15/legislacao (accessed on 28 December 2017).
- Consoni, F.L.; Barassa, E.; Martínez, J.; Moraes, H.B. Roadmap Tecnológico Para Veículos Elétricos Leves No Brasil; PROMOB-e: Brasília, Brazil, 2019. [Google Scholar]
- Meisel, S.; Merfeld, T. Economic Incentives for the Adoption of Electric Vehicles: A Classification and Review of e-Vehicle Services. Transp. Res. Part D Transp. Environ. 2018, 65, 264–287. [Google Scholar] [CrossRef]
- Luna, T.F.; Uriona-Maldonado, M.; Silva, M.E.; Vaz, C.R. The Influence of E-Carsharing Schemes on Electric Vehicle Adoption and Carbon Emissions: An Emerging Economy Study. Transp. Res. Part D Transp. Environ. 2020, 79, 102226. [Google Scholar] [CrossRef]
- Henao, A.; Marshall, W.E. The Impact of Ride-Hailing on Vehicle Miles Traveled. Transportation 2018, 46, 2173–2194. [Google Scholar] [CrossRef]
- Ward, J.W.; Michalek, J.J.; Azevedo, I.L.; Samaras, C.; Ferreira, P. Effects of On-Demand Ridesourcing on Vehicle Ownership, Fuel Consumption, Vehicle Miles Traveled, and Emissions per Capita in U.S. States. Transp. Res. Part C Emerg. Technol. 2019, 108, 289–301. [Google Scholar] [CrossRef]
- Guo, Y.; Xin, F.; Li, X. The Market Impacts of Sharing Economy Entrants: Evidence from USA and China. Electron. Commer. Res. 2019, 20, 629–649. [Google Scholar] [CrossRef] [Green Version]
- Sabouri, S.; Brewer, S.; Ewing, R. Exploring the Relationship between Ride-Sourcing Services and Vehicle Ownership, Using Both Inferential and Machine Learning Approaches. Landsc. Urban Plan. 2020, 198, 103797. [Google Scholar] [CrossRef]
- FENABRAVE. Federação Nacional da Distribuição de Veículos Automotores. Available online: http://www.fenabrave.org.br/Portal/conteudo/conteudo/anuarios (accessed on 15 July 2021).
- Holmes, C. Here’s What the Carbon Tax Means for You. Available online: https://theconversation.com/heres-what-the-carbon-tax-means-for-you-114671 (accessed on 2 April 2019).
- CETESB Emissões Veiculares No Estado de São Paulo; CETESB: São Paulo, Brazil, 2019.
- Lutsey, N.; Nicholas, N. Update on Electric Vehicle Costs in the United States through 2030. Int. Counc. Clean Transp. 2019, 12. [Google Scholar] [CrossRef]
- EPE Demanda de Energia Dos Veículos Leves: 2018–2030; Empresa de Pesquisa Energética: Rio de Janeiro, Brazil, 2018.
- Massiani, J.; Gohs, A. The Choice of Bass Model Coefficients to Forecast Diffusion for Innovative Products: An Empirical Investigation for New Automotive Technologies. Res. Transp. Econ. 2015, 50, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Casas, M.J.; Kuramochi, T.; Hagemann, M.; Sterl, S.; Fekete, H.; Höhne, N.; van Breevoort, P. Electric Vehicles Policy Impact Quantification Tool; New Climate Institute: Berlin, Germany, 2018. [Google Scholar]
- Ramstein, C.; Dominioni, G.; Ettehad, S.; Lam, L.; Quant, M.; Zhang, J.; Mark, L.; Nierop, S.; Berg, T.; Leuschner, P.; et al. State and Trends of Carbon Pricing 2019; The World Bank: Washington, DC, USA, 2019; ISBN 978-1-4648-1435-8. [Google Scholar]
- IFM. Fiscal Monitor: How to Mitigate Climate Change; International Monetary Fund: Washington, DC, USA, 2019; ISBN 978-1-4983-2122-8. [Google Scholar]
- ME Setor Automotivo, Brazil. Available online: http://www.mdic.gov.br/index.php/competitividade-industrial/setor-automotivo (accessed on 28 November 2019).
- U.S DOE Workplace Charging for Plug-In Electric Vehicles. Alternative Fuels Data Center. Available online: https://afdc.energy.gov/fuels/electricity_charging_workplace.html (accessed on 3 December 2019).
- MEA Vision on the Charging Infrastructure for Electric Transport; Ministry of Economic Affairs: The Hague, The Netherlands, 2017; Available online: https://www.rvo.nl/sites/default/files/2017/05/Vision%20on%20the%20charging%20infrastructure%20for%20electric%20transport.pdf (accessed on 23 August 2019).
- Hall, D.; Lutsey, N. Emerging Best Practices for Electric Vehicle Charging Infrastructure; The International Council on Clean Transportation: Washington, DC, USA, 2017; 54p. [Google Scholar]
Category | Policy | Norway | USA | Canada | China | Japan | Netherlands |
---|---|---|---|---|---|---|---|
Economic, fiscal, and financial | Reduction in registration tax | 🗸 | 🗶 | 🗶 | 🗸 | 🗸 | 🗸 |
Reduction in acquisition tax | 🗸🗸 | 🗸🗸 | 🗸🗸 | 🗸🗸 | 🗸🗸 | 🗸🗸 | |
Annual licensing reduction | 🗸 | 🗸 | 🗶 | - | 🗶 | 🗸🗸 | |
Reduction tax for business car | - | 🗶 | 🗶 | 🗶 | 🗶 | 🗸🗸 | |
Carbon tax | 🗸🗸 | 🗶 | 🗸🗸 | 🗶 | 🗶 | 🗸 | |
Increase ICE circulation tax | 🗶 | - | - | 🗶 | 🗶 | 🗶 | |
Insurance reduction | 🗶 | 🗶 | 🗶 | - | 🗶 | 🗶 | |
Regulatory | ZEV mandate | 🗶 | 🗸🗸 | 🗸🗸 | 🗶 | 🗸 | 🗶 |
Exemption from gas emission fees | 🗶 | 🗸 | - | 🗶 | 🗶 | 🗶 | |
Government fleet | 🗶 | 🗸 | 🗶 | 🗶 | 🗶 | 🗶 | |
Urban and transport planning | Access in the bus and HOV lanes | 🗸🗸 | 🗸 | - | 🗸 | 🗶 | 🗸 |
Parking reduction | 🗸 | - | 🗶 | 🗸 | 🗸 | 🗸 | |
Toll reduction | 🗸🗸 | - | 🗶 | - | 🗸 | 🗸 |
Instrument | Definition | Direct Impact on the Calculation | Reference | ||
---|---|---|---|---|---|
Expected Impact | 2025 | 2050 | |||
a | Reduction in IPVA | Reduction in the acquisition and operational cost of EVs | 100% | 65% | 100% reduction in IPVA (Brazil) |
b | Reduction in IPI | 100% | 65% | 100% reduction in IPI (Brazil) | |
c | Subsidies on EV incremental cost | 50% | 40% | Subsidies of up to 50% of the incremental cost (Japan) | |
d | Carbon tax on fossil fuels | Increase in fuel cost | 1% | 5.57% | 3% to 11% increase in the price of gasoline (Canada) |
e | Taxation proportional to the emission of ICE vehicles | Increase in the price of ICE vehicles | 1%/12.4 km/L | 3%/18 km/L | 11% increase in the price of ICE vehicles (Norway) |
Period | 2025 | 2050 | |||||
---|---|---|---|---|---|---|---|
Maximum subsidy (BRL) | - | 8500 | 10,000 | 12,000 | 14,000 | 16,000 | 18,000 |
Reduction in IPVA | 100% | 10% | 30% | 45% | 55% | 65% | 75% |
Reduction in IPI | 100% | 10% | 30% | 45% | 55% | 65% | 75% |
Subsidies on EV incremental cost | 50% | 0% | 10% | 20% | 30% | 40% | 50% |
Carbon tax on fossil fuels | 1% | 1.64% | 3.11% | 4.05% | 5.06% | 5.57% | 6.91% |
Base efficiency [km/L] | 12.4 | 13 | 14 | 15.5 | 16.5 | 18 | 19 |
EV diffusion [%] | - | 23 | 27 | 31 | 36 | 41 | 47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bitencourt, L.; Abud, T.; Santos, R.; Borba, B. Bass Diffusion Model Adaptation Considering Public Policies to Improve Electric Vehicle Sales—A Brazilian Case Study. Energies 2021, 14, 5435. https://doi.org/10.3390/en14175435
Bitencourt L, Abud T, Santos R, Borba B. Bass Diffusion Model Adaptation Considering Public Policies to Improve Electric Vehicle Sales—A Brazilian Case Study. Energies. 2021; 14(17):5435. https://doi.org/10.3390/en14175435
Chicago/Turabian StyleBitencourt, Leonardo, Tiago Abud, Rachel Santos, and Bruno Borba. 2021. "Bass Diffusion Model Adaptation Considering Public Policies to Improve Electric Vehicle Sales—A Brazilian Case Study" Energies 14, no. 17: 5435. https://doi.org/10.3390/en14175435
APA StyleBitencourt, L., Abud, T., Santos, R., & Borba, B. (2021). Bass Diffusion Model Adaptation Considering Public Policies to Improve Electric Vehicle Sales—A Brazilian Case Study. Energies, 14(17), 5435. https://doi.org/10.3390/en14175435