High-Order Band-Pass Active Damping Control and Predictive Control for Three-Phase Small-Film DC-Link Capacitor IPMSM Drive Systems
Abstract
:1. Introduction
2. Active Damping Controller
2.1. Control Method
2.2. High-Order Band-Pass Filter Design
3. Predictive Speed-Loop Controller Design
3.1. Mathematical Model of the Motor Speed Dynamics
3.2. Predictive Constrained Speed-Loop Controller
4. Predictive Current-loop Controller Design
4.1. Mathematical Model of the d–q Axis Current Dynamics
4.2. Predictive Constrained Current-Loop Controller
5. Implementation
6. Simulated and Experimental Results
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AC | alternating current |
DC | direct current |
DSP | digital signal processor |
IGBT | insulated-gate bipolar transistor |
IPMSM | interior permanent-magnet synchronous motor |
PCB | printed circuit board |
PMSM | permanent-magnet synchronous motor |
THD | total harmonic distortion |
References
- Inazuma, K.; Utsugi, H.; Ohishi, K.; Haga, H. High-power-factor single-phase diode rectifier driven by repetitively controlled IPM motor. IEEE Trans. Ind. Electron. 2013, 60, 4427–4437. [Google Scholar] [CrossRef]
- Zhao, N.; Wang, G.; Xu, D.; Zhu, L.; Zhang, G.; Huo, J. Inverters power control based on DC-link voltage regulation for IPMSM drives without electrolytic capacitors. IEEE Trans. Power Electron. 2018, 33, 558–571. [Google Scholar] [CrossRef]
- Bao, D.; Pan, X.; Wang, Y. A novel hybrid control method for single-phase-input variable frequency speed control system with a small DC-link capacitor. IEEE Trans. Power Electron. 2019, 34, 9016–9032. [Google Scholar] [CrossRef]
- Son, Y.; Ha, J.I. Discontinuous grid current control of motor drive system with single-phase diode rectifier and small DC-link capacitor. IEEE Trans. Power Electron. 2017, 32, 1324–1334. [Google Scholar] [CrossRef]
- Son, Y.; Ha, J.I. Direct power control of a three-phase inverter for grid input current shaping of a single-phase diode rectifier with a small DC-link capacitor. IEEE Trans. Power Electron. 2015, 30, 3794–3803. [Google Scholar] [CrossRef]
- Li, H.; Wang, Q.Y.Q.; Luo, H.; Hou, Y. A novel DC-link voltage feedback active damping control method for IPMSM drives with small DC-link capacitors. IEEE Trans. Ind. Electron. 2022, 69, 2426–2436. [Google Scholar] [CrossRef]
- Jung, J.; Lim, S.; Nam, K. A feedback linearizing control scheme for a PWM converter-inverter havin g a very small DC-link capacitor. IEEE Trans. Ind. Appl. 1999, 35, 1124–1131. [Google Scholar] [CrossRef]
- Liutanakul, P.; Pierfederici, S.; Meibody-Tabar, F. Application of SMC with I/O feedback linearization to the control of the cascade controlled-rectifier/inverter-motor drive system with small DC-link capacitor. IEEE Trans. Power Electron. 2008, 23, 2489–2499. [Google Scholar] [CrossRef]
- Mathe, L.; Torok, L.; Wang, D.; Sera, D. Resonance reduction for AC drives with small capacitance in the DC link. IEEE Trans. Ind. Appl. 2017, 53, 3814–3820. [Google Scholar] [CrossRef]
- Wang, D.; Lu, K.; Rasmussen, P.O.; Mathe, L.; Feng, Y.; Blaabjerg, F. Voltage modulation using virtual positive impedance concept for active damping of small DC-link drive system. IEEE Trans. Power Electron. 2018, 33, 10611–10621. [Google Scholar] [CrossRef] [Green Version]
- Khaled, N.; Pattel, B. Practical Design and Application of Model Predictive Control-MPC for MATLAB and Simulink Users; Elsevier: Oxford, UK, 2018. [Google Scholar]
- Sitbon, E.; Ostrovsky, R.; Malka, D. Optimizations of thermo-optic phase shifter heaters using doped silicon heaters in rib waveguide structure. Photonics Nanostruct.-Fundam. Appl. 2022, 51, 101052. [Google Scholar] [CrossRef]
- Moshaev, V.; Leibin, Y.; Malka, D. Optimizations of Si PIN diode phase-shifter for controlling MZM quarature bias point using SOI rib waveguide technology. Opt. Laser Technol. 2021, 138, 106844. [Google Scholar] [CrossRef]
- Kwak, B.; Um, J.H.; Seok, J.K. Direct Active Reactive Control of Three-Phase Inverter for AC Motor Drives With Small DC-Link Capacitors Fed by Single-Phase Diode Rectifier. IEEE Trans. Ind. Appl. 2019, 55, 3842–3850. [Google Scholar] [CrossRef]
- Velander, E.; Kruse, L.; Wiik, T.; Wiberg, A.; Colmenares, J.; Nee, H.P. An IGBT Turn-ON Concept Offering Low Losses Under Motor Drive dv/dt Constraints Based on Diode Current Adaption. IEEE Trans. Power Electron. 2018, 33, 1143–1153. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, Z.; Gao, F.; Liu, J. Research on Anti-DC Bias and High-Order Harmonics of a Fifth-Order Flux Observer for IPMSM Sensorless Drive. IEEE Trans. Ind. Electron. 2022, 69, 3393–3406. [Google Scholar] [CrossRef]
- Hatua, K.; Jain, A.K.; Banerjee, D.; Ranganathan, V.T. Active Damping of Output LC filter Resonance for Vector-Controlled VSI-Fed AC Motor Drives. IEEE Trans. Ind. Electron. 2012, 59, 334–342. [Google Scholar] [CrossRef]
- Rodriguez, J.; Cortes, P. Predictive Control of Power Converters and Electrical Drives; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Yin, L.; Zhao, Z.; Lu, T.; Yang, S.; Zou, G. An improved DC-link voltage fast control scheme for a PWM rectifier-inverter system. IEEE Trans. Ind. Appl. 2014, 50, 462–473. [Google Scholar] [CrossRef]
- Hcyncn. Aluminum Electrolytic Capacitors vs. Flim Capacitors. 2018.
- Chen, W.; McCarthy, K.G.; Mathewson, A.; Copuroglu, M.; Brien, S.O.; Winfield, R. High-Performance MIM Capacitors Using Novel PMNT Thin Films. IEEE Electron. Dev. Lett. 2010, 31, 996–998. [Google Scholar] [CrossRef]
Types | Electrolytic Capacitor | Small-Film Capacitor |
---|---|---|
Characteristics | ||
Volume | ||
Weight | 41 g | 35 g |
Cost | USD $10 | USD $4 |
Medium | Aluminium oxide | Metallized Film |
Dielectric coefficient | 8–8.5 | 2.2 ± 0.2 |
Polarity | Yes | No |
Voltage Stress | 450 V | 1000 V |
Life | Capacitor deteriorates within five years of use | Capacitor does not deteriorate |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.-H.; Cheng, S.-H.; Fan, C.-Y. High-Order Band-Pass Active Damping Control and Predictive Control for Three-Phase Small-Film DC-Link Capacitor IPMSM Drive Systems. Energies 2022, 15, 7449. https://doi.org/10.3390/en15197449
Liu T-H, Cheng S-H, Fan C-Y. High-Order Band-Pass Active Damping Control and Predictive Control for Three-Phase Small-Film DC-Link Capacitor IPMSM Drive Systems. Energies. 2022; 15(19):7449. https://doi.org/10.3390/en15197449
Chicago/Turabian StyleLiu, Tian-Hua, Sheng-Hsien Cheng, and Chong-Yi Fan. 2022. "High-Order Band-Pass Active Damping Control and Predictive Control for Three-Phase Small-Film DC-Link Capacitor IPMSM Drive Systems" Energies 15, no. 19: 7449. https://doi.org/10.3390/en15197449
APA StyleLiu, T.-H., Cheng, S.-H., & Fan, C.-Y. (2022). High-Order Band-Pass Active Damping Control and Predictive Control for Three-Phase Small-Film DC-Link Capacitor IPMSM Drive Systems. Energies, 15(19), 7449. https://doi.org/10.3390/en15197449