Long-Term Electricity Demand Forecasting in the Steel Complex Micro-Grid Electricity Supply Chain—A Coupled Approach
Abstract
:1. Introduction
1.1. Background and Motivation
1.2. Literature Review
1.3. Contributions and Paper Organization
2. Methodology
2.1. Discrete Wavelet Decomposition
2.2. Long Short-Term Memory Network (LSTM)
2.3. Adaptive Teaching–Learning-Based Optimization with Experience Learning
2.3.1. Teacher and Learner Phases in TLBO
2.3.2. Adaptive Selection
2.3.3. Experience Learning
Algorithm 1: Pseudo-code of ELATLBO [44] |
|
2.4. The Hybrid Method for Demand Time Series Forecasting
2.5. Evaluation of Results
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Deb, C.; Zhang, F.; Yang, J.; Lee, S.E.; Shah, K.W. A review on time series forecasting techniques for building energy consumption. Renew. Sustain. Energy Rev. 2017, 74, 902–924. [Google Scholar] [CrossRef]
- Domhan, T.; Springenberg, J.T.; Hutter, F. Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina, 25–31 July 2015. [Google Scholar]
- Mastrocinque, E.; Ramírez, F.J.; Honrubia-Escribano, A.; Pham, D.T. An AHP-based multi-criteria model for sustainable supply chain development in the renewable energy sector. Expert Syst. Appl. 2020, 150, 113321. [Google Scholar] [CrossRef]
- Sarah, J.; Khalili-Damghani, K. Fuzzy type-II De-Novo programming for resource allocation and target setting in network data envelopment analysis: A natural gas supply chain. Expert Syst. Appl. 2019, 117, 312–329. [Google Scholar]
- Abolghasemi, M.; Beh, E.; Tarr, G.; Gerlach, R. Demand forecasting in supply chain: The impact of demand volatility in the presence of promotion. Comput. Ind. Eng. 2020, 142, 106380. [Google Scholar] [CrossRef] [Green Version]
- Abedinia, O.; Amjady, N.; Zareipour, H. A New Feature Selection Technique for Load and Price Forecast of Electrical Power Systems. IEEE Trans. Power Syst. 2016, 32, 62–74. [Google Scholar] [CrossRef]
- Lin, W.-M.; Tu, C.-S.; Yang, R.-F.; Tsai, M.-T. Particle swarm optimisation aided least-square support vector machine for load forecast with spikes. IET Gener. Transm. Distrib. 2016, 10, 1145–1153. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, Y.; Muljadi, E.; Zhang, J.J.; Gao, D.W. A Short-Term and High-Resolution Distribution System Load Forecasting Approach Using Support Vector Regression with Hybrid Parameters Optimization. IEEE Trans. Smart Grid 2016, 9, 3341–3350. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, Y.; Infield, D.; Zhao, Y.; Han, S.; Yan, J. A Hybrid Forecasting Method for Wind Power Ramp Based on Orthogonal Test and Support Vector Machine (OT-SVM). IEEE Trans. Sustain. Energy 2016, 8, 451–457. [Google Scholar] [CrossRef] [Green Version]
- Nowotarski, J.; Weron, R. Computing electricity spot price prediction intervals using quantile regression and forecast averaging. Comput. Stat. 2015, 30, 791–803. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Nowotarski, J.; Hong, T.; Weron, R. Probabilistic Load Forecasting via Quantile Regression Averaging on Sister Forecasts. IEEE Trans. Smart Grid 2015, 8, 730–737. [Google Scholar] [CrossRef]
- Zhang, W.; Quan, H.; Srinivasan, D. An improved quantile regression neural network for probabilistic load forecasting. IEEE Trans. Smart Grid 2018, 10, 4425–4434. [Google Scholar] [CrossRef]
- Liu, Q.; Shen, Y.; Wu, L.; Li, J.; Zhuang, L.; Wang, S. A hybrid FCW-EMD and KF-BA-SVM based model for short-term load forecasting. CSEE J. Power Energy Syst. 2018, 4, 226–237. [Google Scholar] [CrossRef]
- Zeng, P.; Jin, M. Peak load forecasting based on multi-source data and day-to-day topological network. IET Gener. Transm. Distrib. 2018, 12, 1374–1381. [Google Scholar] [CrossRef]
- Shi, H.; Xu, M.; Li, R. Deep learning for household load forecasting—A novel pooling deep RNN. IEEE Trans. Smart Grid 2017, 9, 5271–5280. [Google Scholar] [CrossRef]
- Kong, W.; Dong, Z.Y.; Jia, Y.; Hill, D.J.; Xu, Y.; Zhang, Y. Short-Term Residential Load Forecasting Based on LSTM Recurrent Neural Network. IEEE Trans. Smart Grid 2017, 10, 841–851. [Google Scholar] [CrossRef]
- Xu, F.Y.; Cun, X.; Yan, M.; Yuan, H.; Wang, Y.; Lai, L.L. Power Market Load Forecasting on Neural Network with Beneficial Correlated Regularization. IEEE Trans. Ind. Inform. 2018, 14, 5050–5059. [Google Scholar] [CrossRef]
- Rafiei, M.; Niknam, T.; Aghaei, J.; Shafie-Khah, M.; Catalão, J.P. Probabilistic load forecasting using an improved wavelet neural network trained by generalized extreme learning machine. IEEE Trans. Smart Grid 2018, 9, 6961–6971. [Google Scholar] [CrossRef]
- Yu, Z.; Niu, Z.; Tang, W.; Wu, Q. Deep Learning for Daily Peak Load Forecasting–A Novel Gated Recurrent Neural Network Combining Dynamic Time Warping. IEEE Access 2019, 7, 17184–17194. [Google Scholar] [CrossRef]
- Ye, C.; Ding, Y.; Wang, P.; Lin, Z. A data-driven bottom-up approach for spatial and temporal electric load forecasting. IEEE Trans. Power Syst. 2019, 34, 1966–1979. [Google Scholar] [CrossRef]
- Ouyang, T.; He, Y.; Li, H.; Sun, Z.; Baek, S. Modeling and Forecasting Short-Term Power Load With Copula Model and Deep Belief Network. IEEE Trans. Emerg. Top. Comput. Intell. 2019, 3, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Chen, K.; Wang, Q.; He, Z.; Hu, J.; He, J. Short-Term Load Forecasting with Deep Residual Networks. IEEE Trans. Smart Grid 2018, 10, 3943–3952. [Google Scholar] [CrossRef]
- Deng, Z.; Wang, B.; Xu, Y.; Xu, T.; Liu, C.; Zhu, Z. Multi-Scale Convolutional Neural Network with Time-Cognition for Multi-Step Short-Term Load Forecasting. IEEE Access 2019, 7, 88058–88071. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, N.; Chen, Q.; Kirschen, D.S.; Li, P.; Xia, Q. Data-Driven Probabilistic Net Load Forecasting with High Penetration of Behind-the-Meter PV. IEEE Trans. Power Syst. 2017, 33, 3255–3264. [Google Scholar] [CrossRef]
- Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for hyper-parameter optimization. In Advances in Neural Information Processing Systems; 2011; p. 24. [Google Scholar]
- Kim, T.-Y.; Cho, S.-B. Particle swarm optimization-based CNN-LSTM networks for forecasting energy consumption. In Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019. [Google Scholar]
- Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Suganuma, M.; Shirakawa, S.; Nagao, T. A genetic programming approach to designing convolutional neural network architectures. In Proceedings of the genetic and evolutionary computation conference, Berlin, Germany, 15–19 July 2017. [Google Scholar]
- Lv, L.; Kong, W.; Qi, J.; Zhang, J. An improved long short-term memory neural network for stock forecast. MATEC Web Conf. 2018, 232, 01024. [Google Scholar] [CrossRef]
- Rokhsatyazdi, E.; Rahnamayan, S.; Amirinia, H.; Ahmed, S. Optimizing LSTM Based Network for Forecasting Stock Market. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, 19–24 July 2020. [Google Scholar]
- Khan, M.A.; Saqib, S.; Alyas, T.; Rehman, A.U.; Saeed, Y.; Zeb, A.; Zareei, M.; Mohamed, E.M. Effective demand forecasting model using business intelligence empowered with machine learning. IEEE Access 2020, 8, 116013–116023. [Google Scholar] [CrossRef]
- Wu, D.; Xu, Y.T.; Jenkin, M.; Wang, J.; Li, H.; Liu, X.; Dudek, G. Short-term Load Forecasting with Deep Boosting Transfer Regression. In Proceedings of the ICC 2022-IEEE International Conference on Communications, Seoul, Korea, 16–20 May 2022. [Google Scholar]
- Han, X.; Su, J.; Hong, Y.; Gong, P.; Zhu, D. Mid-to Long-Term Electric Load Forecasting Based on the EMD–Isomap–Adaboost Model. Sustainability 2022, 14, 7608. [Google Scholar] [CrossRef]
- Alsharekh, M.F.; Habib, S.; Dewi, D.A.; Albattah, W.; Islam, M.; Albahli, S. Improving the Efficiency of Multistep Short-Term Electricity Load Forecasting via R-CNN with ML-LSTM. Sensors 2022, 22, 6913. [Google Scholar] [CrossRef]
- Ahmad, A.; Javaid, N.; Mateen, A.; Awais, M.; Khan, Z.A. Short-Term Load Forecasting in Smart Grids: An Intelligent Modular Approach. Energies 2019, 12, 164. [Google Scholar] [CrossRef] [Green Version]
- Xu, A.; Tian, M.-W.; Firouzi, B.; Alattas, K.A.; Mohammadzadeh, A.; Ghaderpour, E. A New Deep Learning Restricted Boltzmann Machine for Energy Consumption Forecasting. Sustainability 2022, 14, 10081. [Google Scholar] [CrossRef]
- Alotaibi, M.A. Machine Learning Approach for Short-Term Load Forecasting Using Deep Neural Network. Energies 2022, 15, 6261. [Google Scholar] [CrossRef]
- Kondaiah, V.Y.; Saravanan, B. Short-Term Load Forecasting with a Novel Wavelet-Based Ensemble Method. Energies 2022, 15, 5299. [Google Scholar] [CrossRef]
- Duan, Y. A Novel Interval Energy-Forecasting Method for Sustainable Building Management Based on Deep Learning. Sustainability 2022, 14, 8584. [Google Scholar] [CrossRef]
- Bai, W.; Zhu, J.; Zhao, J.; Cai, W.; Li, K. An Unsupervised Multi-Dimensional Representation Learning Model for Short-Term Electrical Load Forecasting. Symmetry 2022, 14, 1999. [Google Scholar] [CrossRef]
- Strang, G.; Nguyen, T. Wavelets and Filter Banks; Wellesley-Cambridge: Cambridge, MA, USA, 1996. [Google Scholar]
- Liu, Y.; Qin, Y.; Guo, J.; Cai, C.; Wang, Y.; Jia, L. Short-term forecasting of rail transit passenger flow based on long short-term memory neural network. In Proceedings of the 2018 International Conference on Intelligent Rail Transportation (ICIRT), Singapore, 12–14 December 2018. [Google Scholar]
- Rao, R.V.; Savsani, V.J.; Vakharia, D. Teaching–learning-based optimization: An optimization method for continuous non-linear large scale problems. Inf. Sci. 2012, 183, 1–15. [Google Scholar] [CrossRef]
- Mi, X.; Liao, Z.; Li, S.; Gu, Q. Adaptive teaching–learning-based optimization with experience learning to identify photovoltaic cell parameters. Energy Rep. 2021, 7, 4114–4125. [Google Scholar] [CrossRef]
Design Variable | Hyperparameter | Limits |
---|---|---|
X1 | Hidden units number of 1st layer | 1 ≤ X1 ≤ 200 |
X2 | Hidden units number of 2nd layer | 1 ≤ X2 ≤ 200 |
X3 | Hidden units number of 3rd layer | 1 ≤ X3 ≤ 100 |
X4 | Hidden units number of 4th layer | 1 ≤ X4 ≤ 100 |
X5 | Maximum number of training epochs (LSTM) | 100 ≤ X6 ≤ 500 |
X6 | Learn rate | 0 < X7 ≤ 1 |
X7 | Learn rate drop period | 1 ≤ X8 ≤ 25 |
X8 | Learn rate drop factor | 0 < X9 ≤ 1 |
Design Variable | Hyperparameter | d1 | a1 |
---|---|---|---|
X1 | Hidden units number of 1st layer | 195 | 200 |
X2 | Hidden units number of 2nd layer | 181 | 189 |
X3 | Hidden units number of 3rd layer | 92 | 90 |
X4 | Hidden units number of 4th layer | 77 | 82 |
X5 | Maximum number of training epochs | 500 | 500 |
X6 | Learn rate | 0.00489 | 0.00501 |
X7 | Learn rate drop period | 22 | 25 |
X8 | Learn rate drop factor | 0.2010 | 0.1869 |
Method | Optimization Method | MAE | MAPE | MSE | RMSE | Standard Deviation |
---|---|---|---|---|---|---|
W-LSTM | ELATLBO | 3.023 | 1.8161 | 39.515 | 6.2861 | 12.9090 |
Gaussian SVM | BO | 3.2191 | 1.9339 | 53.895 | 7.3413 | 13.4734 |
Decision Tree | BO | 3.1224 | 1.8758 | 49.847 | 7.0603 | 13.5507 |
Boosted Tree | BO | 3.2901 | 1.9765 | 48.299 | 6.9498 | 13.8292 |
Random Forest | BO | 3.0611 | 1.839 | 48.513 | 6.9651 | 13.6558 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moalem, S.; Ahari, R.M.; Shahgholian, G.; Moazzami, M.; Kazemi, S.M. Long-Term Electricity Demand Forecasting in the Steel Complex Micro-Grid Electricity Supply Chain—A Coupled Approach. Energies 2022, 15, 7972. https://doi.org/10.3390/en15217972
Moalem S, Ahari RM, Shahgholian G, Moazzami M, Kazemi SM. Long-Term Electricity Demand Forecasting in the Steel Complex Micro-Grid Electricity Supply Chain—A Coupled Approach. Energies. 2022; 15(21):7972. https://doi.org/10.3390/en15217972
Chicago/Turabian StyleMoalem, Sepehr, Roya M. Ahari, Ghazanfar Shahgholian, Majid Moazzami, and Seyed Mohammad Kazemi. 2022. "Long-Term Electricity Demand Forecasting in the Steel Complex Micro-Grid Electricity Supply Chain—A Coupled Approach" Energies 15, no. 21: 7972. https://doi.org/10.3390/en15217972
APA StyleMoalem, S., Ahari, R. M., Shahgholian, G., Moazzami, M., & Kazemi, S. M. (2022). Long-Term Electricity Demand Forecasting in the Steel Complex Micro-Grid Electricity Supply Chain—A Coupled Approach. Energies, 15(21), 7972. https://doi.org/10.3390/en15217972