Assessment of Low-Carbon Flexibility in Self-Organized Virtual Power Plants Using Multi-Agent Reinforcement Learning
Abstract
:1. Introduction
2. Low-Carbon Benefit Evaluation for Load Flexibility via Zero-Carbon Index
2.1. Definition of Zero-Carbon Index
2.2. Low-Carbon Benefits of Load Flexibility Using Zero-Carbon Index
3. Multi-Level Self-Organized Aggregation Model for DERs
3.1. Low-Carbon Fitness Measure Function
3.2. Analysis of Evolutionary Factors
3.3. Evolution Model
3.4. Multi-Level Dynamic Self-Organized Aggregation Rules
4. QMIX-Based Self-Organized Aggregation Algorithm
4.1. Self-Organized Aggregation Based on Markov Game Theory
4.2. Objectives of Multi Agent Reinforcement Learning
4.3. Training Process Based on QMIX Algorithm
4.4. An Example Using Two Air Conditioners
4.5. Framework and Workflow of Algorithm
5. Experimental Results
5.1. Experimental Setup
5.2. Result Analysis
5.3. Comparison Analysis with Existing Methods
5.4. Recommendations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shokouhinejad, H.; Guerra, E.C. Self-Scheduling Virtual Power Plant for Peak Management. Energies 2024, 17, 2705. [Google Scholar] [CrossRef]
- Ramos, L.F.; Canha, L.N.; Prado, J.C.d.; de Menezes, L.R.A.X. A Novel Virtual Power Plant Uncertainty Modeling Framework Using Unscented Transform. Energies 2022, 15, 3716. [Google Scholar] [CrossRef]
- Zhang, L.; Li, F.; Wang, Z.; Zhang, B.; Qu, D.; Lv, Q.; Liu, D. A Two-Stage Optimization Model of Capacity Allocation and Regulation Operation for Virtual Power Plant. Math. Probl. Eng. 2022, 2022, 7055106. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, D.; Lyu, L.; Zhang, L.; Du, H.; Luan, H.; Zheng, L. Multi-Time-Scale Low-Carbon Economic Dispatch Method for Virtual Power Plants Considering Pumped Storage Coordination. Energies 2024, 17, 2348. [Google Scholar] [CrossRef]
- Israr, A.; Yang, Q.; Israr, A. Emission-Aware Sustainable Energy Provision for 5G and B5G Mobile Networks. IEEE Trans. Sustain. Comput. 2023, 8, 670–681. [Google Scholar] [CrossRef]
- Huang, J.H.; Ciren, O.Z.; Zhou, H.; Xie, B.P.; Huang, T.; Hu, Y.L. Normalized Low-carbon Operation Scheme of Park Based on Green Power Index. High Volt. Eng. 2022, 48, 2554–2562. [Google Scholar]
- Li, Y.; Zhang, N.; Du, E.; Liu, Y.; Cai, X.; He, D. Mechanism study and benefit analysis on power system low carbon demand response based on carbon emission flow. Proc. CSEE 2022, 42, 2830–2842. [Google Scholar]
- Zhang, Y.; Ge, X.; Li, M.; Li, N.; Wang, F.; Wang, L.; Sun, Q. Demand Response Potential Day-Ahead Forecasting Approach Based on LSSA-BPNN Considering the Electricity-Carbon Coupling Incentive Effects. IEEE Trans. Ind. Appl. 2024, 60, 4505–4516. [Google Scholar] [CrossRef]
- Yuxia, D.; Mingjie, L. Enterprise digital transformation and Carbon Emissions: Reduce or promote?—Experience from listed companies in China (October 2023). IEEE Access 2024, 12, 15726–15734. [Google Scholar] [CrossRef]
- Yang, Y.; Qiu, J.; Zhang, C. Distribution Network Planning Towards a Low-Carbon Transition: A Spatial-Temporal Carbon Response Method. IEEE Trans. Sustain. Energy 2023, 15, 429–442. [Google Scholar] [CrossRef]
- Hua, H.; Chen, X.; Gan, L.; Sun, J.; Dong, N.; Liu, D.; Qin, Z.; Li, K.; Hu, S. Demand-Side Joint Electricity and Carbon Trading Mechanism. IEEE Trans. Ind. Cyber-Phys. Syst. 2024, 2, 14–25. [Google Scholar] [CrossRef]
- Liu, B.; Dong, J.; Park, B.; Lian, J.; Kuruganti, T. Impact of Price-Responsive Load and Renewables in an Emission-Aware Power Systems. IEEE Open Access J. Power Energy 2024, 11, 15–26. [Google Scholar] [CrossRef]
- Zhou, H.; Huang, T.; Lu, S.X.; He, G.Y.; Zhou, Y.C.; Yan, Z. Discrete Analysis Theory and Calculation Method of Electricity-carbon Decoupling Sharing by Contribution to Carbon Emission Reduction. Proc. CSEE 2023, 43, 9033–9045. [Google Scholar]
- Kang, C.; Zhou, T.; Chen, Q.; Wang, J.; Sun, Y.; Xia, Q.; Yan, H. Carbon Emission Flow from Generation to Demand: A Network-Based Model. IEEE Trans. Smart Grid 2015, 6, 2386–2394. [Google Scholar] [CrossRef]
- Chen, X.; Wang, J.; Xie, J.; Xu, S.; Yu, K.; Gan, L. Demand response potential evaluation for residential air conditioning loads. IET Gener. Transm. Distrib. 2018, 12, 4260–4268. [Google Scholar] [CrossRef]
- Hui, H.; Tang, J.Y.; Wang, Y.F.; Xia, X.R.; Wang, F.; Hu, P.F. Long-time-scale Charging and Discharging Scheduling of Electric Vehicles Under Joint Price and Incentive Demand Response. Autom. Electr. Power Syst. 2022, 46, 46–55. [Google Scholar]
- Chen, C.S.; Duan, S.X.; Cai, T.; Dai, Q. Short-Term Photovoltaic Generation Forecasting System Based on Fuzzy Recognition. Trans. China Electrotech. Soc. 2011, 26, 83–89. [Google Scholar]
- Zhou, H.; Shuai, F.; Wu, Q.; Dong, L.X.; Li, Z.Y.; He, G.Y. Stimulus-response control strategy based on autonomous decentralized system theory for exploitation of flexibility by virtual power plant. Appl. Energy 2021, 285, 116424. [Google Scholar] [CrossRef]
- Zhai, S.; Zhou, H.; Wang, Z.; He, G. Analysis of dynamic appliance flexibility considering user behavior via non-intrusive load monitoring and deep user modeling. CSEE J. Power Energy Syst. 2020, 6, 41–51. [Google Scholar] [CrossRef]
- Chao, H.; Quan, D.; Yang, T. Multi-time Scale Simulation of Optimal Scheduling Strategy for Virtual Power Plant Considering Load Response. In Proceedings of the 2018 International Conference on Power System Technology (POWERCON), Guangzhou, China, 6–8 November 2018; pp. 2142–2148. [Google Scholar]
- Zhu, Z.; Chan, K.W.; Xia, S.; Bu, S. Optimal Bi-Level Bidding and Dispatching Strategy Between Active Distribution Network and Virtual Alliances Using Distributed Robust Multi-Agent Deep Reinforcement Learning. IEEE Trans. Smart Grid 2022, 13, 2833–2843. [Google Scholar] [CrossRef]
- Zhao, L.; Chang, T.; Chu, K.; Guo, L.; Zhang, L. Survey of Fully Cooperative Multi-Agent Deep Reinforcement Learning. Comput. Eng. Appl. 2023, 59, 14. [Google Scholar] [CrossRef]
- Han, O.; Ding, T.; Bai, L.; He, Y.; Li, F.; Shahidehpour, M. Evolutionary Game Based Demand Response Bidding Strategy for End-Users Using Q-Learning and Compound Differential Evolution. IEEE Trans. Cloud Comput. 2022, 10, 97–110. [Google Scholar] [CrossRef]
- Foerster, J.; Farquhar, G.; Afouras, T.; Nardelli, N.; Whiteson, S. Counterfactual Multi-Agent Policy Gradients. Proc. AAAI Conf. Artif. Intell. 2018, 32, 11794. [Google Scholar] [CrossRef]
- Dietzenbacher, B.; Borm, P.; Hendrickx, R. Decomposition of network communication games. Math. Methods Oper. Res. 2017, 85, 407–423. [Google Scholar] [CrossRef]
- Han, C.; Yao, H.; Mai, T.; Zhang, N.; Guizani, M. QMIX Aided Routing in Social-Based Delay-Tolerant Networks. IEEE Trans. Veh. Technol. 2022, 71, 1952–1963. [Google Scholar] [CrossRef]
Off | ModeC-18 °C | ModeC-22 °C | ModeC-26 °C | ModeC-30 °C | |
---|---|---|---|---|---|
off | (off, off) (0, 0) | (off, ModeC-26 °C) (0, 1.01) | (off, ModeC-30 °C) (0, 1.07) | (off, ModeC-30 °C) (0, 1.08) | (off, ModeC-30 °C) (0, 0.84) |
ModeC-18 °C | (ModeC-26 °C, off) (1.01, 0) | (ModeC-26 °C, ModeC-26 °C) (1.01, 1.01) | (ModeC-26 °C, ModeC-30 °C) (1.01, 1.07) | (ModeC-26 °C, ModeC-30 °C) (1.01, 1.08) | (ModeC-26 °C, ModeC-30 °C) (1.01, 0.84) |
ModeC-22 °C | (ModeC-30 °C, off) (1.07, 0) | (ModeC-30 °C, ModeC-26 °C) (1.07, 1.01) | (ModeC-30 °C, ModeC-30 °C) (1.07, 1.07) | (ModeC-30 °C, ModeC-30 °C) (1.07, 1.08) | (ModeC-30 °C, ModeC-30 °C) (1.07, 0.84) |
ModeC-26 °C | (ModeC-30 °C, off) (1.08, 0) | (ModeC-30 °C, ModeC-26 °C) (1.08, 1.01) | (ModeC-30 °C, ModeC-30 °C) (1.08, 1.07) | (ModeC-30 °C, ModeC-30 °C) (1.08, 1.08) | (ModeC-30 °C, ModeC-30 °C) (1.08, 0.84) |
ModeC-30 °C | (ModeC-30 °C, off) (0.84, 0) | (ModeC-30 °C, ModeC-26 °C) (0.84, 1.01) | (ModeC-30 °C, ModeC-30 °C) (0.84, 1.07) | (ModeC-30 °C, ModeC-30 °C) (0.84, 1.08) | (ModeC-30 °C, ModeC-30 °C) (0.84, 0.84) |
Number of Agents | Centralized Algorithm Mixed Integer Programming | Distributed Algorithm Lagrangian Multipliers | Self-Organized Aggregation QMIX |
---|---|---|---|
56 | 0.71 | 1.11 | 0.81 |
560 | 0.84 | 1.28 | 0.96 |
5600 | 2.6 | 1.59 | 1.35 |
56000 | 14.99 | 8.65 | 6.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, G.; Huang, Y.; Huang, G.; Liu, X.; Li, P.; Zhang, Y. Assessment of Low-Carbon Flexibility in Self-Organized Virtual Power Plants Using Multi-Agent Reinforcement Learning. Energies 2024, 17, 3688. https://doi.org/10.3390/en17153688
He G, Huang Y, Huang G, Liu X, Li P, Zhang Y. Assessment of Low-Carbon Flexibility in Self-Organized Virtual Power Plants Using Multi-Agent Reinforcement Learning. Energies. 2024; 17(15):3688. https://doi.org/10.3390/en17153688
Chicago/Turabian StyleHe, Gengsheng, Yu Huang, Guori Huang, Xi Liu, Pei Li, and Yan Zhang. 2024. "Assessment of Low-Carbon Flexibility in Self-Organized Virtual Power Plants Using Multi-Agent Reinforcement Learning" Energies 17, no. 15: 3688. https://doi.org/10.3390/en17153688
APA StyleHe, G., Huang, Y., Huang, G., Liu, X., Li, P., & Zhang, Y. (2024). Assessment of Low-Carbon Flexibility in Self-Organized Virtual Power Plants Using Multi-Agent Reinforcement Learning. Energies, 17(15), 3688. https://doi.org/10.3390/en17153688