Improvement of the Durability of Recycled Masonry Aggregate Concrete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recycled Aggregate
2.2. Recycled Aggregate Concrete Mixtures
2.3. Evaluation Methodology
3. Results and Discussion
3.1. Physical Properties
3.2. Mechanical Properties
3.3. Durability Properties
3.3.1. Freeze-Thaw Resistance
3.3.2. Carbonation Resistance
4. Conclusions
- The improvement of mineral admixture utilization was verified. However, it was found it that has no significant positive impact on the evaluated mechanical properties.
- The water absorption by immersion was approximately three times higher without the positive effect of crystalline admixture. On the contrary, capillary water absorption verified the positive impact of crystalline admixture, however, it was still more than two times higher.
- The utilization of crystalline admixture leads to better freeze-thaw resistance of recycled masonry aggregate concrete, which meets the requirement of frost resistance according to the Czech standard.
- The carbonation depth of RMAC was more than two times higher in comparison with conventional concrete. For one set of samples (mixtures RMAC 1), the carbonation depth was clearly improved by the crystalline admixture.
Author Contributions
Funding
Conflicts of Interest
References
- Gomes, M.; De Brito, J. Structural concrete with incorporation of coarse recycled concrete and ceramic aggregates: Durability performance. Mater. Struct. 2008, 42, 663–675. [Google Scholar] [CrossRef]
- Pavlu, T. The Utilization of Recycled Materials for Concrete and Cement Production—A Review. IOP Conf. Ser. Mater. Sci. Eng. 2018, 442, 012014. [Google Scholar] [CrossRef]
- Otsuki, N.; Miyazato, S.-I.; Yodsudjai, W. Influence of Recycled Aggregate on Interfacial Transition Zone, Strength, Chloride Penetration and Carbonation of Concrete. J. Mater. Civ. Eng. 2003, 15, 443–451. [Google Scholar] [CrossRef]
- Kong, D.; Lei, T.; Zheng, J.; Ma, C.; Jiang, J.; Jiang, J. Effect and mechanism of surface-coating pozzalanics materials around aggregate on properties and ITZ microstructure of recycled aggregate concrete. Constr. Build. Mater. 2010, 24, 701–708. [Google Scholar] [CrossRef]
- Arredondo-Rea, S.P.; Corral-Higuera, R.; Soberón, J.M.V.G.; Gámez-García, D.C.; Bernal-Camacho, J.M.; Rosas, C.A.; Ungsson-Nieblas, M.J. Durability Parameters of Reinforced Recycled Aggregate Concrete: Case Study. Appl. Sci. 2019, 9, 617. [Google Scholar] [CrossRef] [Green Version]
- Chinchillas-Chinchillas, M.J.; Rosas, C.A.; Arredondo-Rea, S.P.; Soberón, J.M.V.G.; Corral-Higuera, R. SEM Image Analysis in Permeable Recycled Concretes with Silica Fume. A Quantitative Comparison of Porosity and the ITZ. Materials 2019, 12, 2201. [Google Scholar] [CrossRef] [Green Version]
- Kim, N.; Kim, J.; Yang, S. Mechanical Strength Properties of RCA Concrete Made by a Modified EMV Method. Sustainability 2016, 8, 924. [Google Scholar] [CrossRef] [Green Version]
- Montero, J.; Laserna, S. Influence of effective mixing water in recycled concrete. Constr. Build. Mater. 2017, 132, 343–352. [Google Scholar] [CrossRef]
- Silva, R.; Neves, R.; De Brito, J.; Dhir, R. Carbonation behaviour of recycled aggregate concrete. Cem. Concr. Compos. 2015, 62, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Tuyan, M.; Mardani-Aghabaglou, A.; Ramyar, K. Freeze–thaw resistance, mechanical and transport properties of self-consolidating concrete incorporating coarse recycled concrete aggregate. Mater. Des. 2014, 53, 983–991. [Google Scholar] [CrossRef]
- Rangel, C.S.; Amario, M.; Pepe, M.; Martinelli, E.; Filho, R.T. Durability of Structural Recycled Aggregate Concrete Subjected to Freeze-Thaw Cycles. Sustainability 2020, 12, 6475. [Google Scholar] [CrossRef]
- Cai, G.; Liu, L.; Yan, S.; Zhang, M.; Xia, J.; Xie, Y. Effect of freeze-thaw cycles on mechanical and porosity properties of recycled construction waste mixtures. Constr. Build. Mater. 2019, 210, 347–363. [Google Scholar] [CrossRef]
- Guo, H.; Shi, C.; Guan, X.; Zhu, J.; Ding, Y.; Ling, T.-C.; Zhang, H.; Wang, Y. Durability of recycled aggregate concrete—A review. Cem. Concr. Compos. 2018, 89, 251–259. [Google Scholar] [CrossRef]
- Del Bosque, I.S.; Heede, P.V.D.; De Belie, N.; De Rojas, M.S.; Medina, C. Carbonation of concrete with construction and demolition waste based recycled aggregates and cement with recycled content. Constr. Build. Mater. 2020, 234, 117336. [Google Scholar] [CrossRef]
- Amorim, P.; De Brito, J.; Evangelista, L. Concrete Made with Coarse Concrete Aggregate: Influence of Curing on Durability. ACI Mater. J. 2012, 109, 195–204. [Google Scholar] [CrossRef]
- Buyle-Bodin, F.; Hadjieva-Zaharieva, R. Influence of industrially produced recycled aggregates on flow properties of concrete. Mater. Struct. 2002, 35, 504–509. [Google Scholar] [CrossRef]
- Evangelista, L.; De Brito, J. Durability performance of concrete made with fine recycled concrete aggregates. Cem. Concr. Compos. 2010, 32, 9–14. [Google Scholar] [CrossRef]
- Sagoe-Crentsil, K.K.; Brown, T.; Taylor, A.H. Performance of concrete made with commercially produced coarse recycled concrete aggregate. Cem. Concr. Res. 2001, 31, 707–712. [Google Scholar] [CrossRef]
- Leelawat, T.; Dhir, R.K.; Limbachiya, M.C. Suitability of recycled concrete aggregate for Use in BS 5328 Designated mixes. Proc. Inst. Civ. Eng. Struct. Build. 1999, 134, 257–274. [Google Scholar] [CrossRef]
- Rao, A.; Jha, K.N.; Misra, S. Use of aggregates from recycled construction and demolition waste in concrete. Resour. Conserv. Recycl. 2007, 50, 71–81. [Google Scholar] [CrossRef]
- Xiao, J.; Lei, B.; Zhang, C. On carbonation behavior of recycled aggregate concrete. Sci. China Ser. E Technol. Sci. 2012, 55, 2609–2616. [Google Scholar] [CrossRef]
- Leemann, A.; Loser, R. Carbonation resistance of recycled aggregate concrete. Constr. Build. Mater. 2019, 204, 335–341. [Google Scholar] [CrossRef]
- Zega, C.J.; Di Maio, Á.A. Use of recycled fine aggregate in concretes with durable requirements. Waste Manag. 2011, 31, 2336–2340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cartuxo, F.; Jorge, D.B.; Luís, E.; Jiménez, J.R.; Ledesma, E.F. Increased Durability of Concrete Made with Fine Recycled Concrete Aggregates Using Superplasticizers. Materials 2016, 9, 98. [Google Scholar] [CrossRef] [Green Version]
- Torgal, F.M.A.S.P.; Jalali, S. Compressive strength and durability properties of ceramic wastes based concrete. Mater. Struct. 2010, 44, 155–167. [Google Scholar] [CrossRef]
- Zhu, Y.-G.; Kou, S.-C.; Poon, C.-S.; Dai, J.-G.; Li, Q.-Y. Influence of silane-based water repellent on the durability properties of recycled aggregate concrete. Cem. Concr. Compos. 2013, 35, 32–38. [Google Scholar] [CrossRef]
- Lei, B.; Xiao, J.-Z. Research on carbonation resistance of recycled aggregate concrete. Jianzhu Cailiao Xuebao/J. Build. Mater. 2008, 11, 605–611. [Google Scholar]
- Kjellsen, K.O.; Guimaraes, M.; Nilsson, Å. The CO2 Balance of Concrete in a Life Cycle Perspective; Danish Technological Institute: Taastrup, Denmark, 2005. [Google Scholar]
- Kikuchi, T.; Kuroda, Y. Carbon Dioxide Uptake in Demolished and Crushed Concrete. J. Adv. Concr. Technol. 2011, 9, 115–124. [Google Scholar] [CrossRef] [Green Version]
- CSN EN 206+A1 Concrete: Specification, Performance, Production and Conformity; CEN: Prague, Czech Republic, 2018. (In Czech)
- Senthamarai, R.; Manoharan, P.D. Concrete with ceramic waste aggregate. Cem. Concr. Compos. 2005, 27, 910–913. [Google Scholar] [CrossRef]
- Yang, J.; Du, Q.; Bao, Y. Concrete with recycled concrete aggregate and crushed clay bricks. Constr. Build. Mater. 2011, 25, 1935–1945. [Google Scholar] [CrossRef]
- Crushed Bricks as Coarse Aggregate for Concrete. ACI Mater. J. 1999, 96, 478–484. [CrossRef]
- Medina, C.; De Rojas, M.I.S.; Thomas, C.; Polanco, J.A.; Frias, M.F. Durability of recycled concrete made with recycled ceramic sanitary ware aggregate. Inter-indicator relationships. Constr. Build. Mater. 2016, 105, 480–486. [Google Scholar] [CrossRef]
- Vieira, T.; Alves, A.; Jorge, D.B.; Correia, J.; Silva, R. Durability-related performance of concrete containing fine recycled aggregates from crushed bricks and sanitary ware. Mater. Des. 2016, 90, 767–776. [Google Scholar] [CrossRef]
- Correia, J.R.; De Brito, J.; Pereira, A.S. Effects on concrete durability of using recycled ceramic aggregates. Mater. Struct. 2006, 39, 169–177. [Google Scholar] [CrossRef]
- Rashid, K.; Razzaq, A.; Ahmad, M.; Rashid, T.; Tariq, S. Experimental and analytical selection of sustainable recycled concrete with ceramic waste aggregate. Constr. Build. Mater. 2017, 154, 829–840. [Google Scholar] [CrossRef]
- González, J.S.; Gayarre, F.L.; Pérez, C.L.-C.; Ros, P.S.; López, M.A.S. Influence of recycled brick aggregates on properties of structural concrete for manufacturing precast prestressed beams. Constr. Build. Mater. 2017, 149, 507–514. [Google Scholar] [CrossRef]
- Nepomuceno, M.C.; Isidoro, R.A.; Catarino, J.P. Mechanical performance evaluation of concrete made with recycled ceramic coarse aggregates from industrial brick waste. Constr. Build. Mater. 2018, 165, 284–294. [Google Scholar] [CrossRef]
- Cachim, P.B. Mechanical properties of brick aggregate concrete. Constr. Build. Mater. 2009, 23, 1292–1297. [Google Scholar] [CrossRef]
- Anderson, D.J.; Smith, S.T.; Au, F.T. Mechanical properties of concrete utilising waste ceramic as coarse aggregate. Constr. Build. Mater. 2016, 117, 20–28. [Google Scholar] [CrossRef]
- Zheng, C.; Lou, C.; Du, G.; Li, X.; Liu, Z.; Li, L. Mechanical properties of recycled concrete with demolished waste concrete aggregate and clay brick aggregate. Results Phys. 2018, 9, 1317–1322. [Google Scholar] [CrossRef]
- Alves, A.; Vieira, T.; Jorge, D.B.; Correia, J. Mechanical properties of structural concrete with fine recycled ceramic aggregates. Constr. Build. Mater. 2014, 64, 103–113. [Google Scholar] [CrossRef]
- Nematzadeh, M.; Dashti, J.; Ganjavi, B. Optimizing compressive behavior of concrete containing fine recycled refractory brick aggregate together with calcium aluminate cement and polyvinyl alcohol fibers exposed to acidic environment. Constr. Build. Mater. 2018, 164, 837–849. [Google Scholar] [CrossRef]
- Corominas, A.G.; Etxeberria, M. Properties of high performance concrete made with recycled fine ceramic and coarse mixed aggregates. Constr. Build. Mater. 2014, 68, 618–626. [Google Scholar] [CrossRef]
- Khalaf, F.M.; Devenny, A.S. Properties of New and Recycled Clay Brick Aggregates for Use in Concrete. J. Mater. Civ. Eng. 2005, 17, 456–464. [Google Scholar] [CrossRef]
- Khalaf, F.M.; Devenny, A.S. Recycling of Demolished Masonry Rubble as Coarse Aggregate in Concrete: Review. J. Mater. Civ. Eng. 2004, 16, 331–340. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Tam, V.; Labrincha, J.; Ding, Y.; de Brito, J. Handbook of Recycled Concrete and Demolition Waste; Woodhead Publishing Limited: Sawston, UK, 2013; ISBN 978-0-85709-690-6. [Google Scholar]
- Debieb, F.; Kenai, S. The use of coarse and fine crushed bricks as aggregate in concrete. Constr. Build. Mater. 2008, 22, 886–893. [Google Scholar] [CrossRef]
- Devenny, A.; Khalaf, F.M. The use of crushed brick as coarse aggregate in concrete. MI 1999, 12, 81–84. [Google Scholar]
- Verian, K.P.; Ashraf, W.; Cao, Y. Properties of recycled concrete aggregate and their influence in new concrete production. Resour. Conserv. Recycl. 2018, 133, 30–49. [Google Scholar] [CrossRef]
- Uddin, M.T.; Mahmood, A.H.; Kamal, R.I.; Yashin, S.; Zihan, Z.U.A. Effects of maximum size of brick aggregate on properties of concrete. Constr. Build. Mater. 2017, 134, 713–726. [Google Scholar] [CrossRef]
- Chen, H.-J.; Yen, T.; Chen, K.-H. Use of building rubbles as recycled aggregates. Cem. Concr. Res. 2003, 33, 125–132. [Google Scholar] [CrossRef]
- Nili, M.; Sasanipour, H.; Aslani, F. The Effect of Fine and Coarse Recycled Aggregates on Fresh and Mechanical Properties of Self-Compacting Concrete. Mater. 2019, 12, 1120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desmyter, J.; Van Dessel, J.; Blockmans, S. The use of recycled concrete and masonry aggregates in concrete: Improving the quality and purity of the aggregates. In Exploiting Wastes in Concrete; Thomas Telford Publishing: London, UK, 1999; pp. 139–149. ISBN 978-0-7277-4724-2. [Google Scholar]
- Cavalline, T.L.; Weggel, D.C. Recycled brick masonry aggregate concrete. Struct. Surv. 2013, 31, 160–180. [Google Scholar] [CrossRef]
- Khatib, J.M. Properties of concrete incorporating fine recycled aggregate. Cem. Concr. Res. 2005, 35, 763–769. [Google Scholar] [CrossRef]
- Tam, V.W.; Gao, X.; Tam, C. Microstructural analysis of recycled aggregate concrete produced from two-stage mixing approach. Cem. Concr. Res. 2005, 35, 1195–1203. [Google Scholar] [CrossRef] [Green Version]
- Grabiec, A.M.; Zawal, D.; Rasaq, W.A. The Effect of Curing Conditions on Selected Properties of Recycled Aggregate Concrete. Appl. Sci. 2020, 10, 4441. [Google Scholar] [CrossRef]
- Bogas, J.A.; De Brito, J.; Ramos, D. Freeze–thaw resistance of concrete produced with fine recycled concrete aggregates. J. Clean. Prod. 2016, 115, 294–306. [Google Scholar] [CrossRef]
- Yildirim, S.T.; Meyer, C.; Herfellner, S. Effects of internal curing on the strength, drying shrinkage and freeze–thaw resistance of concrete containing recycled concrete aggregates. Constr. Build. Mater. 2015, 91, 288–296. [Google Scholar] [CrossRef]
- Bendimerad, A.Z.; Roziere, E.; Loukili, A. Plastic shrinkage and cracking risk of recycled aggregates concrete. Constr. Build. Mater. 2016, 121, 733–745. [Google Scholar] [CrossRef]
- Seara-Paz, S.; González-Fonteboa, B.; Martínez-Abella, F.; González-Taboada, I. Time-dependent behaviour of structural concrete made with recycled coarse aggregates. Creep and shrinkage. Constr. Build. Mater. 2016, 122, 95–109. [Google Scholar] [CrossRef]
- Role of Chemical and Mineral Admixtures on the Physical Properties and Frost-Resistance of Recycled Aggre-gate Concrete. ACI Mater. J. 1998, 95, 558–563. [CrossRef]
- Liu, Q.; Cen, G.; Cai, L.; Wu, H. Frost-resistant performance and mechanism of recycled concrete for airport pavement. Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/J. Huazhong Univ. Sci. Technol. (Nat. Sci. Ed.) 2011, 39, 128–132. [Google Scholar]
- Sun, J.-Y.; Geng, J. Effect of particle size and content of recycled fine aggregate on frost resistance of concrete. Jianzhu Cailiao Xuebao/J. Build. Mater. 2012, 15, 382–385. [Google Scholar] [CrossRef]
- Matias, D.; De Brito, J.; Rosa, A.D.; Pedro, D. Mechanical properties of concrete produced with recycled coarse aggregates—Influence of the use of superplasticizers. Constr. Build. Mater. 2013, 44, 101–109. [Google Scholar] [CrossRef]
- Corinaldesi, V.; Donnini, J.; Giosuã, C.; Mobili, A.; Tittarelli, F. Durability Assessment of Recycled Aggregate HVFA Concrete. Appl. Sci. 2020, 10, 6454. [Google Scholar] [CrossRef]
- Rahhal, V.; Bonavetti, V.; Delgado, A.; Pedrajas, C.; Talero, R. Scheme of the Portland cement hydration with crystalline mineral admixtures and other aspects. Silic. Ind. 2009, 74, 347–352. [Google Scholar]
- Escoffres, P.; Desmettre, C.; Charron, J.-P. Effect of a crystalline admixture on the self-healing capability of high-performance fiber reinforced concretes in service conditions. Constr. Build. Mater. 2018, 173, 763–774. [Google Scholar] [CrossRef]
- Azarsa, P.; Gupta, R.; Biparva, A. Crystalline Waterproofing Admixtures Effects on Self-healing and Permeability of Concrete. In Proceedings of the 1st International Conference on New Horizons in Green Civil Engineering (NHICE-01), Victoria, BC, Canada, 25–27 April 2018. [Google Scholar]
- Bohus, S.; Drochytka, R. Cement Based Material with Crystal-Growth Ability under Long Term Aggressive Medium Impact. Available online: https://www.scientific.net/AMM.166-169.1773 (accessed on 1 November 2020).
- Jianxin, W.; Guangda, L.; Liping, L. Influence of Shenkebao permeable crystalline admixture on concrete resistance to chemical corrosion and freeze-thaw cycles. Jiangsu Build. Mater. 2010, 2, 18–21. [Google Scholar]
- Pazderka, J.; Hájková, E. Crystalline admixtures and their effect on selected properties of concrete. Acta Polytech. 2016, 56, 306–311. [Google Scholar] [CrossRef] [Green Version]
- Reiterman, P.; Pazderka, J. Crystalline Coating and Its Influence on the Water Transport in Concrete. Available online: https://www.hindawi.com/journals/ace/2016/2513514/ (accessed on 30 October 2020).
- Weng, T.-L.; Cheng, A. Influence of curing environment on concrete with crystalline admixture. Monatshefte für Chemie—Chem. Mon. 2013, 145, 195–200. [Google Scholar] [CrossRef]
- CSN EN 12620+A1 Aggregate for Concrete; CEN: Prague, Czech Republic, 2008. (In Czech)
- De Brito, J.; Saikia, N. Recycled Aggregate in Concrete; Green Energy and Technology; Springer: London, UK, 2013; ISBN 978-1-4471-4539-4. [Google Scholar]
- Dhir, R.K.; de Brito, J.; Silva, R.V.; Lye, C.Q. 10—Recycled Aggregate Concrete: Durability Properties. In Sustainable Construction Materials; Dhir, R.K., de Brito, J., Silva, R.V., Lye, C.Q., Eds.; Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Duxford, UK, 2019; pp. 365–418. ISBN 978-0-08-100985-7. [Google Scholar]
- Pavlů, T.; Šefflová, M. Study of the Freeze-Thaw resistance of the fine-aggregate concrete. In Proceedings of the EAN 2016—54th International Conference on Experimental Stress Analysis, Srni, Czech Republic, 30 May–2 June 2016. [Google Scholar]
- Bravo, M.; De Brito, J.; Pontes, J.; Evangelista, L. Durability performance of concrete with recycled aggregates from construction and demolition waste plants. Constr. Build. Mater. 2015, 77, 357–369. [Google Scholar] [CrossRef]
- Pavlu, T.; Šefflová, M. The Static and the Dynamic Modulus of Elasticity of Recycled Aggregate Concrete. Adv. Mater. Res. 2014, 1054, 221–226. [Google Scholar] [CrossRef]
- Silva, R.V.; De Brito, J.; Dhir, R.K. Establishing a relationship between modulus of elasticity and compressive strength of recycled aggregate concrete. J. Clean. Prod. 2016, 112, 2171–2186. [Google Scholar] [CrossRef]
- Dhir, R.K.; de Brito, J.; Silva, R.V.; Lye, C.Q. 9—Deformation of Concrete Containing Recycled Concrete Aggregate. In Sustainable Construction Materials; Dhir, R.K., de Brito, J., Silva, R.V., Lye, C.Q., Eds.; Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Duxford, UK, 2019; pp. 283–363. ISBN 978-0-08-100985-7. [Google Scholar]
- Morandeau, A.; Thiery, M.; Dangla, P. Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties. Cem. Concr. Res. 2014, 56, 153–170. [Google Scholar] [CrossRef] [Green Version]
- Neville, A.M. Properties of Concrete, 5th ed.; Pearson: Harlow, UK, 2011; ISBN 978-0-273-75580-7. [Google Scholar]
Types of Recycled Aggregate | Grading (mm) | Content of Finest Particles | Oven-Dried Particle Density | Water Absorption Capacity (%) | ||
---|---|---|---|---|---|---|
f (%) | ρRD (kg/m3) | σ | WA24 (%) | σ | ||
Natural aggregate (NA) | 0–4 | 2.0 | 2570 | 81 | 1.0 | 0.0 |
4–8 | 0.1 | 2530 | 12 | 1.7 | 0.3 | |
8–16 | 0.2 | 2540 | 12 | 1.9 | 0.2 | |
Recycled masonry aggregate 1 (RMA 1) | 0–4 | 2.9 | 2340 | 108 | 3.7 | 0.6 |
4–8 | 0.4 | 1920 | 62 | 12.4 | 0.7 | |
8–16 | 0.7 | 2130 | 72 | 7.8 | 0.5 | |
Recycled masonry aggregate 2 (RMA 2) | 0–4 | 1.3 | 1950 | 166 | 13.3 | 2.1 |
4–8 | 0.4 | 2050 | 41 | 10.6 | 0.4 | |
8–16 | 0.3 | 1990 | 33 | 10.6 | 1.1 |
Designation | NAC 1 C0 | RMAC 1 C0 | RMAC 1 C1 | RMAC 1 C3 | NAC 2 C0 | RMAC 2 C0 | RMAC 2 C1 | RMAC 2 C3 |
---|---|---|---|---|---|---|---|---|
Cement (kg/m) | 260 | 260 | 260 | 260 | 260 | 260 | 260 | 260 |
Water (kg/m3) | 169 | 219 | 219 | 219 | 169 | 284 | 284 | 284 |
Sand (kg/m3) | 710 | 0 | 0 | 0 | 710 | 0 | 0 | 0 |
NA 4/8 (kg/m3) | 520 | 0 | 0 | 0 | 520 | 0 | 0 | 0 |
NA 8/16 (kg/m3) | 609 | 0 | 0 | 0 | 609 | 0 | 0 | 0 |
RMA 0/4 (kg/m3) | 0 | 807 | 807 | 807 | 0 | 949 | 949 | 949 |
RMA 4/8 (kg/m3) | 0 | 54 | 54 | 54 | 0 | 32 | 32 | 32 |
RMA 8/16 (kg/m3) | 0 | 653 | 653 | 653 | 0 | 500 | 500 | 500 |
Crystalline admixture (kg/m3) | 0 | 0 | 5 | 10 | 0 | 0 | 5 | 10 |
w/c eff (-) | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 |
w/c (-) | 0.65 | 1.09 | 1.09 | 1.09 | 0.65 | 0.84 | 0.84 | 0.84 |
Recycled Concrete Mixture | Dry Density | Water Absorption by Immersion | Capillary Water Absorption | |||
---|---|---|---|---|---|---|
Designation | (kg/m3) | σ | (%) | σ | (kg/m2) | σ |
NAC 1 C0 | 2240 | 21 | 5.3 | 0.1 | 6.45 (1) | 0.68 |
RMAC 1 C0 | 1726 | 22 | 17.3 | 0.7 | 24.31 (1) | 2.08 |
RMAC 1 C1 | 1765 | 65 | 17.0 | 1.0 | 18.19 (1) | 1.59 |
RMAC 1 C3 | 1755 | 26 | 16.6 | 0.3 | 17.05 (1) | 1.18 |
NAC 2 C0 | 2141 | 32 | 5.5 | 0.2 | 0.93 (2) | 0.25 |
RMAC 2 C0 | 1708 | 21 | 17.0 | 0.8 | 4.45 (2) | 0.69 |
RMAC 2 C1 | 1673 | 20 | 18.1 | 0.3 | 4.74 (2) | 0.61 |
RMAC 2 C3 | 1659 | 7 | 18.3 | 0.4 | 5.03 (2) | 0.11 |
Recycled Concrete Mixture | Compressive Strength | Flexural Strength | Static Modulus of Elasticity | Dynamic Modulus of Elasticity | ||||||
---|---|---|---|---|---|---|---|---|---|---|
28 Days | 60 Days | |||||||||
Designation | (MPa) | σ | (MPa) | σ | (MPa) | σ | (GPa) | σ | (GPa) | σ |
NAC 1 C0 | 34.0 | 0.7 | 38.2 | 0.4 | 6.6 | 0.4 | 38.2 | 4.8 | 34.8 | 4.1 |
RMAC 1 C0 | 20.9 | 0.5 | 23.1 | 1.5 | 4.2 | 0.2 | 15.9 | 1.7 | 21.4 | 1.1 |
RMAC 1 C1 | 24.7 | 0.4 | 25.3 | 0.9 | 4.7 | 0.3 | 15.9 | 0.2 | 21.2 | 1.0 |
RMAC 1 C3 | 24.2 | 0.3 | 26.5 | 0.3 | 4.7 | 0.1 | 15.2 | 0.5 | 19.9 | 2.4 |
NAC 2 C0 | - | - | 35.3 | 1.4 | 6.7 (1) | 0.7 | 33.8 (1) | 0.4 | 39.1 | 5.1 |
RMAC 2 C0 | - | - | 18.2 | 0.4 | 4.1 (1) | 0.2 | 16.9 (1) | 0.7 | 22.0 | 1.4 |
RMAC 2 C1 | - | - | 18.2 | 0.7 | 3.4 (1) | 0.0 | 15.4 (1) | 0.1 | 21.9 | 1.5 |
RMAC 2 C3 | - | - | 16.2 | 0.6 | 3.4 (1) | 0.1 | 15.9 (1) | 0.4 | 18.9 | 1.0 |
Recycled Concrete Mixture | Dynamic Modulus of Elasticity (GPa) + Frost Resistance Coefficient (-) | Freeze-Thaw Resistance | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Designation | 0 cycles | 25 Cycles | 50 Cycles | 75 Cycles | 100 Cycles | Cycles | ||||
NAC 1 C0 | 34.8 | 32.8 | 0.94 | 26.7 | 0.77 | 24.7 | 0.71 | 16.5 | 0.48 | 50 |
RMAC 1 C0 | 21.4 | 14.9 | 0.70 | 12.8 | 0.59 | 8.2 | 0.38 | 6.8 | 0.32 | 0 |
RMAC 1 C1 | 21.2 | 22.3 | 1.05 | 22.1 | 1.04 | 22.0 | 1.04 | 21.4 | 1.01 | 100 |
RMAC 1 C3 | 19.9 | 20.1 | 1.01 | 17.4 | 0.87 | 15.6 | 0.78 | 14.2 | 0.71 | 75 |
NAC 2 C0 | 39.1 | 15.7 | 0.40 | 6.2 | 0.16 | - | - | - | - | 0 |
RMAC 2 C0 | 22.0 | 15.0 | 0.68 | 13.5 | 0.61 | 13.8 | 0.63 | 12.6 | 0.57 | 0 |
RMAC 2 C1 | 21.9 | 16.4 | 0.75 | 14.8 | 0.68 | 16.5 | 0.75 | 17.4 | 0.79 | 100 |
RMAC 2 C3 | 18.9 | 15.0 | 0.79 | 14.5 | 0.77 | 17.0 | 0.90 | 17.1 | 0.90 | 100 |
Recycled Concrete Mixture | Flexural Strength | Frost Resistance Coefficient | |||
---|---|---|---|---|---|
(MPa) | σ | (-) | |||
Designation | 0 | 100 | 0 | 100 | |
NAC 1 C0 | 6.6 | 2.4 | 0.4 | 0.4 | 0.36 |
RMAC 1 C0 | 4.2 | 1.8 | 0.2 | 2.5 | 0.42 |
RMAC 1 C1 | 4.7 | 4.4 | 0.3 | 0.3 | 0.93 |
RMAC 1 C3 | 4.7 | 2.5 | 0.1 | 1.1 | 0.52 |
NAC 2 C0 | 6.7 | 1.5 | 0.7 | 0.3 | 0.23 |
RMAC 2 C0 | 4.1 | 2.6 | 0.2 | 0.4 | 0.63 |
RMAC 2 C1 | 3.4 | 2.8 | 0.0 | 0.4 | 0.81 |
RMAC 2 C3 | 3.4 | 3.0 | 0.1 | 0.3 | 0.89 |
Recycled Concrete Mixture | Flexural Strength | Dynamic Modulus of Elasticity | Indicator of Increase of Carbonation Depth Compared to NAC | ||||||
---|---|---|---|---|---|---|---|---|---|
No Exposition to CO2 | Exposition to CO2 | No Exposition to CO2 | Exposition to CO2 | ||||||
Designation | (MPa) | σ | (MPa) | σ | (GPa) | σ | (GPa) | σ | (mm) |
NAC 1 C0 | 6.6 | 0.4 | 6.4 | 0.6 | 34.8 | 4.1 | 30.5 | 0.7 | 1.00 |
RMAC 1 C0 | 4.2 | 0.2 | 3.9 | 0.1 | 21.4 | 1.1 | 15.7 | 0.8 | 2.54 |
RMAC 1 C1 | 4.7 | 0.3 | 4.0 | 0.2 | 21.2 | 1.0 | 15.8 | 0.9 | 1.70 |
RMAC 1 C3 | 4.7 | 0.1 | 4.1 | 0.2 | 19.9 | 2.4 | 17.5 | 0.9 | 1.74 |
NAC 2 C0 | 6.7 | 0.7 | 7.4 | 0.4 | 39.1 | 5.1 | 29.4 | 4.2 | 1.00 |
RMAC 2 C0 | 4.1 | 0.2 | 3.6 | 0.3 | 22.0 | 1.4 | 17.2 | 1.0 | 2.28 |
RMAC 2 C1 | 3.4 | 0.0 | 3.4 | 0.2 | 21.9 | 1.5 | 15.9 | 0.9 | 2.23 |
RMAC 2 C3 | 3.4 | 0.1 | 3.4 | 0.1 | 18.9 | 1.0 | 15.5 | 1.4 | 2.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavlů, T.; Fořtová, K.; Řepka, J.; Mariaková, D.; Pazderka, J. Improvement of the Durability of Recycled Masonry Aggregate Concrete. Materials 2020, 13, 5486. https://doi.org/10.3390/ma13235486
Pavlů T, Fořtová K, Řepka J, Mariaková D, Pazderka J. Improvement of the Durability of Recycled Masonry Aggregate Concrete. Materials. 2020; 13(23):5486. https://doi.org/10.3390/ma13235486
Chicago/Turabian StylePavlů, Tereza, Kristina Fořtová, Jakub Řepka, Diana Mariaková, and Jiří Pazderka. 2020. "Improvement of the Durability of Recycled Masonry Aggregate Concrete" Materials 13, no. 23: 5486. https://doi.org/10.3390/ma13235486
APA StylePavlů, T., Fořtová, K., Řepka, J., Mariaková, D., & Pazderka, J. (2020). Improvement of the Durability of Recycled Masonry Aggregate Concrete. Materials, 13(23), 5486. https://doi.org/10.3390/ma13235486