Reinforcing Increase of ΔTc in MgB2 Smart Meta-Superconductors by Adjusting the Concentration of Inhomogeneous Phases
Abstract
:1. Introduction
2. Model
3. Experiment
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bardeen, J.; Cooper, L.N.; Schrieffer, J.R. Theory of Superconductivity. Phys. Rev. 1957, 108, 1175–1204. [Google Scholar] [CrossRef] [Green Version]
- McMillan, W.L. Transition Temperature of Strong-Coupled Superconductors. Phys. Rev. 1968, 167, 331–344. [Google Scholar] [CrossRef]
- Bednorz, J.G.; Müller, K.A. Possible high Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B-Condens. Matter 1986, 64, 189–193. [Google Scholar] [CrossRef]
- Mohd Yusuf, N.; Awang Kechik, M.; Baqiah, H.; Soo Kien, C.; Kean Pah, L.; Shaari, A.; Wan Jusoh, W.; Abd Sukor, S.; Mousa Dihom, M.; Talib, Z.; et al. Structural and Superconducting Properties of Thermal Treatment-Synthesised Bulk YBa2Cu3O7−δ Superconductor: Effect of Addition of SnO2 Nanoparticles. Materials 2018, 12, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamihara, Y.; Watanabe, T.; Hirano, M.; Hosono, H. Iron-Based Layered Superconductor La[O1-XFX]FeAs (x = 0.05–0.12) with Tc = 26 K. J. Am. Chem. Soc. 2008, 130, 3296–3297. [Google Scholar] [CrossRef]
- Zhang, P.; Yaji, K.; Hashimoto, T.; Ota, Y.; Kondo, T.; Okazaki, K.; Wang, Z.; Wen, J.; Gu, G.D.; Ding, H.; et al. Observation of topological superconductivity on the surface of an iron-based superconductor. Science 2018, 360, 182–186. [Google Scholar] [CrossRef] [Green Version]
- Drozdov, A.P.; Eremets, M.I.; Troyan, I.A.; Ksenofontov, V.; Shylin, S.I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 2015, 525, 73–76. [Google Scholar] [CrossRef]
- Cantaluppi, A.; Buzzi, M.; Jotzu, G.; Nicoletti, D.; Mitrano, M.; Pontiroli, D.; Ricco, M.; Perucchi, A.; Di Pietro, P.; Cavalleri, A. Pressure tuning of light-induced superconductivity in K3C60. Nat. Phys. 2018, 14, 837–841. [Google Scholar] [CrossRef]
- Drozdov, A.P.; Kong, P.P.; Minkov, V.S.; Besedin, S.P.; Kuzovnikov, M.A.; Mozaffari, S.; Balicas, L.; Balakirev, F.F.; Graf, D.E.; Prakapenka, V.B.; et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 2019, 569, 528–531. [Google Scholar] [CrossRef] [Green Version]
- Snider, E.; Dasenbrock-Gammon, N.; McBride, R.; Debessai, M.; Vindana, H.; Vencatasamy, K.; Lawler, K.V.; Salamat, A.; Dias, R.P. Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature 2020, 586, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Fausti, D.; Tobey, R.I.; Dean, N.; Kaiser, S.; Dienst, A.; Hoffmann, M.C.; Pyon, S.; Takayama, T.; Takagi, H.; Cavalleri, A. Light-induced superconductivity in a stripe-ordered cuprate. Science 2011, 331, 189–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavalleri, A. Photo-induced superconductivity. Contemp. Phys. 2017, 59, 31–46. [Google Scholar] [CrossRef]
- Nagamatsu, J.; Nakagawa, N.; Muranaka, T.; Zenitani, Y.; Akimitsu, J. Superconductivity at 39 K in magnesium diboride. Nature 2001, 410, 63–64. [Google Scholar] [CrossRef]
- Bohnen, K.P.; Heid, R.; Renker, B. Phonon dispersion and electron-phonon coupling in MgB2 and AlB2. Phys. Rev. Lett. 2001, 86, 5771–5774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buzea, C.; Yamashita, T. Review of the superconducting properties of MgB2. Supercond. Sci. Technol. 2001, 14, R115–R146. [Google Scholar] [CrossRef] [Green Version]
- Yildirim, T.; Gulseren, O.; Lynn, J.W.; Brown, C.M.; Udovic, T.J.; Huang, Q.; Rogado, N.; Regan, K.A.; Hayward, M.A.; Slusky, J.S.; et al. Giant anharmonicity and nonlinear electron-phonon coupling in MgB2: A combined first-principles calculation and neutron scattering study. Phys. Rev. Lett. 2001, 87, 037001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, P.P. From E2g to other modes: Effects of pressure on electron-phonon interaction in MgB2. Phys. Rev. Lett. 2006, 97, 247002. [Google Scholar] [CrossRef] [Green Version]
- Vinod, K.; Varghese, N.; Syamaprasad, U. Superconductivity of MgB2 in the BCS framework with emphasis on extrinsic effects on critical temperature. Supercond. Sci. Technol. 2007, 20, R31–R45. [Google Scholar] [CrossRef]
- Varilci, A.; Yegen, D.; Tassi, M.; Stamopoulos, D.; Terzioglu, C. Effect of annealing temperature on some physical properties of MgB2 by using the Hall probe ac-susceptibility method. Phys. B: Condens. Matter 2009, 404, 4054–4059. [Google Scholar] [CrossRef]
- Zhao, Y.G.; Zhang, X.P.; Qiao, P.T.; Zhang, H.T.; Jia, S.L.; Cao, B.S.; Zhu, M.H.; Han, Z.H.; Wang, X.L.; Gu, B.L. Effect of Li doping on structure and superconducting transition temperature of Mg1-xLixB2. Phys. C 2001, 361, 91–94. [Google Scholar] [CrossRef] [Green Version]
- Mackinnon, I.D.R.; Winnett, A.; Alarco, J.A.; Talbot, P.C. Synthesis of MgB2 at low temperature and autogenous pressure. Materials 2014, 7, 3901–3918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozturk, O.; Asikuzun, E.; Kaya, S.; Koc, N.S.; Erdem, M. The effect of Ar ambient pressure and annealing duration on the cicrostructure, superconducting properties and activation energies of MgB2 superconductors. J. Supercond. Nov. Magn. 2016, 30, 1161–1169. [Google Scholar] [CrossRef]
- Cheng, F.; Ma, Z.; Liu, C.; Li, H.; Shahriar, A.; Hossain, M.; Bando, Y.; Yamauchi, Y.; Fatehmulla, A.; Farooq, W.A.; et al. Enhancement of grain connectivity and critical current density in the ex-situ sintered MgB2 superconductors by doping minor Cu. J. Alloys Compd. 2017, 727, 1105–1109. [Google Scholar] [CrossRef]
- Grivel, J.C.; Rubešová, K. Increase of the critical current density of MgB2 superconducting bulk samples by means of methylene blue dye additions. Phys. C 2019, 565, 1353506. [Google Scholar] [CrossRef]
- Li, S.Y.; Xiong, Y.M.; Mo, W.Q.; Fan, R.; Wang, C.H.; Luo, X.G.; Sun, Z.; Zhang, H.T.; Li, L.; Cao, L.Z.; et al. Alkali metal substitution efffects in Mg1-xAxB2 (A = Li and Na). Phys. C 2001, 363, 219–223. [Google Scholar] [CrossRef]
- Slusky, J.S.; Rogado, N.; Regan, K.A.; Hayward, M.A.; Khalifah, P.; He, T.; Inumaru, K.; Loureiro, S.M.; Haas, M.K.; Zandbergen, H.W.; et al. Loss of superconductivity with the addition of Al to MgB2 and a structural transition in Mg1-xAlxB2. Nature 2001, 410, 343. [Google Scholar] [CrossRef] [PubMed]
- Dou, S.X.; Soltanian, S.; Horvat, J.; Wang, X.L.; Zhou, S.H.; Ionescu, M.; Liu, H.K. Enhancement of the critical current density and flux pinning of MgB2 superconductor by nanoparticle SiC doping. Appl. Phys. Lett. 2002, 81, 3419–3421. [Google Scholar] [CrossRef] [Green Version]
- Li, G.Z.; Sumption, M.D.; Rindfleisch, M.A.; Thong, C.J.; Tomsic, M.J.; Collings, E.W. Enhanced higher temperature (20–30 K) transport properties and irreversibility field in nano-Dy2O3 doped advanced internal Mg infiltration processed MgB2 composites. Appl. Phys. Lett. 2014, 105, 112603. [Google Scholar] [CrossRef] [Green Version]
- Susner, M.A.; Bohnenstiehl, S.D.; Dregia, S.A.; Sumption, M.D.; Yang, Y.; Donovan, J.J.; Collings, E.W. Homogeneous carbon doping of magnesium diboride by high-temperature, high-pressure synthesis. Appl. Phys. Lett. 2014, 104, 162603. [Google Scholar] [CrossRef]
- Shahabuddin, M.; Madhar, N.A.; Alzayed, N.S.; Asif, M. Uniform dispersion and exfoliation of multi-walled carbon nanotubes in CNT-MgB2 superconductor composites using surfactants. Materials 2019, 12, 3044. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhao, X.P.; Yang, Y.; Li, Q.W.; Lv, J. Fabrication of infrared left-handed metamaterials via double template-assisted electrochemical deposition. Adv. Mater. 2008, 20, 2050–2054. [Google Scholar] [CrossRef]
- Smolyaninova, V.N.; Zander, K.; Gresock, T.; Jensen, C.; Prestigiacomo, J.C.; Osofsky, M.S.; Smolyaninov, I.I. Using metamaterial nanoengineering to triple the superconducting critical temperature of bulk aluminum. Sci. Rep. 2015, 5, 15777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smolyaninov, I.I.; Smolyaninova, V.N. Theoretical modeling of critical temperature increase in metamaterial superconductors. Phys. Rev. B 2016, 93, 184510. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.T.; Xu, Z.L.; Chen, Z.; Zhao, X.P. Introduce uniformly distributed ZnO nano-defects into BSCCO superconductors by nano-composite method. J. Funct. Mater. 2007, 38, 157–160. Available online: http://www.cnki.com.cn/Article/CJFDTOTAL-GNCL200701046.htm (accessed on 30 April 2021). (In Chinese).
- Xu, S.H.; Zhou, Y.W.; Zhao, X.P. Research and development of inorganic powder EL materials. Mater. Rep. 2007, 21, 162–166. Available online: http://www.cnki.com.cn/Article/CJFDTotal-CLDB2007S3048.htm (accessed on 30 April 2021). (In Chinese).
- Zhang, Z.W.; Tao, S.; Chen, G.W.; Zhao, X.P. Improving the critical temperature of MgB2 superconducting metamaterials induced by electroluminescence. J. Supercond. Nov. Magn. 2016, 29, 1159–1162. [Google Scholar] [CrossRef] [Green Version]
- Tao, S.; Li, Y.B.; Chen, G.W.; Zhao, X.P. Critical temperature of smart meta-superconducting MgB2. J. Supercond. Nov. Magn. 2017, 30, 1405–1411. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.G.; Li, Y.B.; Chen, G.W.; Xu, L.X.; Zhao, X.P. The effect of inhomogeneous phase on the critical temperature of smart meta-superconductor MgB2. J. Supercond. Nov. Magn. 2018, 31, 3175–3182. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.B.; Chen, H.G.; Qi, W.C.; Chen, G.W.; Zhao, X.P. Inhomogeneous phase effect of smart meta-superconducting MgB2. J. Low. Temp. Phys. 2018, 191, 217–227. [Google Scholar] [CrossRef]
- Li, Y.B.; Chen, H.G.; Wang, M.Z.; Xu, L.X.; Zhao, X.P. Smart meta-superconductor MgB2 constructed by the dopant phase of luminescent nanocomposite. Sci. Rep. 2019, 9, 14194. [Google Scholar] [CrossRef]
- Chen, H.G.; Li, Y.B.; Wang, M.Z.; Han, G.Y.; Shi, M.; Zhao, X.P. Smart metastructure method for increasing Tc of Bi(Pb)SrCaCuO high-temperature superconductors. J. Supercond. Nov. Magn. 2020, 33, 3015–3025. [Google Scholar] [CrossRef]
- Chen, H.G.; Wang, M.Z.; Qi, Y.; Li, Y.B.; Zhao, X.P. Relationship between the TC of Smart Meta-Superconductor Bi(Pb)SrCaCuO and Inhomogeneous Phase Content. Nanomaterials 2021, 11, 1061. [Google Scholar] [CrossRef]
- Chen, G.W.; Qi, W.C.; Li, Y.B.; Yang, C.S.; Zhao, X.P. Hydrothermal synthesis of Y2O3:Eu3+ nanorods and its growth mechanism and luminescence properties. J. Mater. Sci. Mater. Electron. 2016, 27, 5628–5634. [Google Scholar] [CrossRef]
- Wang, M.Z.; Xu, L.X.; Chen, G.W.; Zhao, X.P. Topological luminophor Y2O3:Eu3++Ag with high electroluminescence performance. ACS Appl. Mater. Interfaces 2019, 11, 2328–2335. [Google Scholar] [CrossRef]
- Xu, L.X.; Wang, M.Z.; Liu, Z.X.; Zhao, X.P. Nano-topological luminophor Y2O3:Eu3+ + Ag with concurrent photoluminescence and electroluminescence. J. Mater. Sci. Mater. Electron. 2019, 30, 20243–20252. [Google Scholar] [CrossRef]
- Eyidi, D.; Eibl, O.; Wenzel, T.; Nickel, K.G.; Giovannini, M.; Saccone, A. Phase analysis of superconducting polycrystalline MgB2. Micron 2003, 34, 85–96. [Google Scholar] [CrossRef]
- Shi, Q.Z.; Liu, Y.C.; Gao, Z.M.; Zhao, Q. Formation of MgO whiskers on the surface of bulk MgB2 superconductors during in situ sintering. J. Mater. Sci. 2007, 43, 1438–1443. [Google Scholar] [CrossRef]
- Ma, Z.Q.; Liu, Y.C.; Shi, Q.Z.; Zhao, Q.; Gao, Z.M. The improved superconductive properties of MgB2 bulks with minor Cu addition through reducing the MgO impurity. Phys. C 2008, 468, 2250–2253. [Google Scholar] [CrossRef]
- Singh, D.K.; Tiwari, B.; Jha, R.; Kishan, H.; Awana, V.P.S. Role of MgO impurity on the superconducting properties of MgB2. Phys. C 2014, 505, 104–108. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.C.; Zeng, R.; Xu, X.; Dou, S.X. Superconducting transition width under magnetic field in MgB2 polycrystalline samples. J. Appl. Phys. 2010, 108, 093907. [Google Scholar] [CrossRef] [Green Version]
- Dogruer, M.; Yildirim, G.; Ozturk, O.; Terzioglu, C. Analysis of indentation size effect on mechanical properties of Cu-diffused bulk MgB2 superconductor using experimental and different theoretical models. J. Supercond. Nov. Magn. 2012, 26, 101–109. [Google Scholar] [CrossRef]
- Mizutani, S.; Yamamoto, A.; Shimoyama, J.-I.; Ogino, H.; Kishio, K. Self-sintering-assisted high intergranular connectivity in ball-milled ex situ MgB2 bulks. Supercond. Sci. Technol. 2014, 27, 114001. [Google Scholar] [CrossRef]
- Ozturk, O.; Asikuzun, E.; Kaya, S. Significant change in micro mechanical, structural and electrical properties of MgB2 superconducting ceramics depending on argon ambient pressure and annealing duration. J. Mater. Sci. Mater. Electron. 2015, 26, 3840–3852. [Google Scholar] [CrossRef]
ΔTcs | Y2O3 | Y2O3:Sm3+ | Y2O3:Eu3+ | Y2O3:Eu3+/Ag |
---|---|---|---|---|
aMgB2 (0.5%) | −0.6 K | −0.5 K | 0.2 K | 0.4 K |
bMgB2 (0.8%) | −0.8 K | −0.6 K | 0.8 K | 0.9 K |
cMgB2 (1.2%) | −1.1 K | −1.1 K | 1.0 K | 1.2 K |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Han, G.; Zou, H.; Tang, L.; Chen, H.; Zhao, X. Reinforcing Increase of ΔTc in MgB2 Smart Meta-Superconductors by Adjusting the Concentration of Inhomogeneous Phases. Materials 2021, 14, 3066. https://doi.org/10.3390/ma14113066
Li Y, Han G, Zou H, Tang L, Chen H, Zhao X. Reinforcing Increase of ΔTc in MgB2 Smart Meta-Superconductors by Adjusting the Concentration of Inhomogeneous Phases. Materials. 2021; 14(11):3066. https://doi.org/10.3390/ma14113066
Chicago/Turabian StyleLi, Yongbo, Guangyu Han, Hongyan Zou, Li Tang, Honggang Chen, and Xiaopeng Zhao. 2021. "Reinforcing Increase of ΔTc in MgB2 Smart Meta-Superconductors by Adjusting the Concentration of Inhomogeneous Phases" Materials 14, no. 11: 3066. https://doi.org/10.3390/ma14113066
APA StyleLi, Y., Han, G., Zou, H., Tang, L., Chen, H., & Zhao, X. (2021). Reinforcing Increase of ΔTc in MgB2 Smart Meta-Superconductors by Adjusting the Concentration of Inhomogeneous Phases. Materials, 14(11), 3066. https://doi.org/10.3390/ma14113066