A Feasibility Study of Low Cement Content Foamed Concrete Using High Volume of Waste Lime Mud and Fly Ash for Road Embankment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mixture Proportions of Foamed Concrete
2.3. Specimen Preparation
2.4. Testing Methods
2.4.1. Flowability Measurement
2.4.2. Density Measurement
2.4.3. Mechanical Properties Measurement
2.4.4. Isothermal Calorimetry Test
2.4.5. ESEM and XRD
3. Results
3.1. Fresh Properties of Foamed Concrete
3.2. Influence of LM/FA Ratio on the Compressive Strength of Foamed Concrete
3.3. Compressive Strengths of Foamed Concrete
3.4. Tensile Strength of Foamed Concrete
3.5. Elastic Modulus
3.6. California Bearing Ratio
3.7. Calorimetry and Microstructure Characterization
4. Conclusions
- (1)
- The high alkalinity of LM stimulated the activity of FA, thereby enhancing the mechanical properties of the foamed concretes with high LM–FA dosages at an early age. The contribution of LM to the long-term strength is mainly due to its filling effect. The optimal LM/FA ratio was 1/5.
- (2)
- An exponential equation could describe the relationship between compressive strength and wet density. Both the splitting strength and flexural strength have a significant power function relationship with the compressive strength. The determination coefficients (R2) of all equations were above 0.95.
- (3)
- Both the elasticity modulus and CBR grow exponentially with the wet density increasing. A higher LM–FA dosage led to a larger increased rate of elasticity modulus and CBR.
- (4)
- The mechanical properties of foamed concrete increased with the wet density increasing or LM–FA dosage decreasing. The compressive strength, tensile strength, CBR of all mixtures were higher than the minimum requirement of 0.8 MPa, 0.15 MPa, and 8%, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FA | Fly ash |
LM | Lime mud |
WD | Wet density |
MA | Mineral additives |
OPC | Ordinary Portland cement |
PS | Polycarboxylate superplasticizer |
CBR | California bearing ratio |
XRD | X-ray diffractometer |
ESEM | Environmental scanning electron microscopy |
References
- Kim, T.H.; Kang, G.C. Performance evaluation of road embankment constructed using lightweight soils on an unimproved soft soil layer. Eng. Geol. 2013, 160, 34–43. [Google Scholar] [CrossRef]
- Shi, X.; Huang, J.; Su, Q. Experimental and numerical analyses of lightweight foamed concrete as filler for widening embankment. Constr. Build. Mater. 2020, 250, 118897. [Google Scholar] [CrossRef]
- Song, Y.; Lange, D. Influence of fine inclusions on the morphology and mechanical performance of lightweight foam concrete. Cem. Concr. Compos. 2021, 124, 104264. [Google Scholar] [CrossRef]
- Ramamurthy, K.; Kunhanandan Nambiar, E.K.; Indu Siva Ranjani, G. A classification of studies on properties of foam concrete. Cem. Concr. Compos. 2009, 31, 388–396. [Google Scholar] [CrossRef]
- Pan, Z.; Li, H.; Liu, W. Preparation and characterization of super low density foamed concrete from Portland cement and admixtures. Constr. Build. Mater. 2014, 72, 256–261. [Google Scholar] [CrossRef]
- Raj, A.; Sathyan, D.; Mini, K.M. Physical and functional characteristics of foam concrete: A review. Constr. Build. Mater. 2019, 221, 787–799. [Google Scholar] [CrossRef]
- Zhang, H.; Qi, X.; Ma, C.; Wu, J.; Bi, Y.; Sun, R.; Yu, J.; Xie, D.; Song, J. Effect Analysis of Soil Type and Silt Content on Silt-Based Foamed Concrete with Different Density. Materials 2020, 13, 3866. [Google Scholar] [CrossRef]
- Wu, J.; Lv, C.; Pi, R.; Zhang, H.; Bi, Y.; Song, X.; Wang, Z. The stability and durability of silt-based foamed concrete: A new type of road engineering material. Constr. Build. Mater. 2021, 304, 124674. [Google Scholar] [CrossRef]
- Decký, M.; Drusa, M.; Zgútová, K.; Blaško, M.; Hájek, M.; Scherfel, W. Foam Concrete as New Material in Road Constructions. Procedia Eng. 2016, 161, 428–433. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.J.; Su, Q.; Zhao, W.H.; Li, T.; Zhang, X.X. Experimental study on use of lightweight foam concrete as subgrade bed filler of ballastless track. Constr. Build. Mater. 2017, 149, 911–920. [Google Scholar] [CrossRef]
- She, W.; Du, Y.; Zhao, G.; Feng, P.; Zhang, Y.; Cao, X. Influence of coarse fly ash on the performance of foam concrete and its application in high-speed railway roadbeds. Constr. Build. Mater. 2018, 170, 153–166. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, Y.; Gan, Y.; Chang, Z.; Schlangen, E.; Šavija, B. Microstructure informed micromechanical modelling of hydrated cement paste: Techniques and challenges. Constr. Build. Mater. 2020, 251, 118983. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, Y.; Gan, Y.; Chang, Z.; Schlangen, E.; Šavija, B. Combined experimental and numerical study of uniaxial compression failure of hardened cement paste at micrometre length scale. Cem. Concr. Res. 2019, 126, 105925. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Q.; Huang, Z. New insights into the early reaction of NaOH-activated slag in the presence of CaSO4. Compos. B Eng. 2020, 198, 108207. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, T.; Gao, X. Incorporation of self-ignited coal gangue in steam cured precast concrete. J. Clean. Prod. 2021, 292, 126004. [Google Scholar] [CrossRef]
- Bilal, H.; Chen, T.; Ren, M.; Gao, X.; Su, A. Influence of silica fume, metakaolin & SBR latex on strength and durability performance of pervious concrete. Constr. Build. Mater. 2021, 275, 122124. [Google Scholar]
- Farzampour, A. Compressive behavior of concrete under environmental effects. In Compressive Strength of Concrete; IntechOpen: London, UK, 2019. [Google Scholar]
- Chalangaran, N.; Farzampour, A.; Paslar, N.; Fatemi, H. Experimental investigation of sound transmission loss in concrete containing recycled rubber crumbs. Adv. Concr. Constr. 2021, 11, 447–454. [Google Scholar]
- Navid, C.; Alireza, F.; Nima, P. Nano Silica and Metakaolin Effects on the Behavior of Concrete Containing Rubber Crumbs. CivilEng 2020, 1, 264–274. [Google Scholar]
- Petrounias, P.; Rogkala, A.; Giannakopoulou, P.P.; Lampropoulou, P.; Koutsovitis, P.; Koukouzas, N.; Laskaris, N.; Pomonis, P.; Hatzipanagiotou, K. Removal of Cu (II) from industrial wastewater using mechanically activated serpentinite. Energies 2020, 13, 2228. [Google Scholar] [CrossRef]
- Petrounias, P.; Giannakopoulou, P.P.; Rogkala, A.; Kalpogiannaki, M.; Koutsovitis, P.; Damoulianou, M.-E.; Koukouzas, N. Petrographic characteristics of sandstones as a basis to evaluate their suitability in construction and energy storage applications. A case study from Klepa Nafpaktias (Central Western Greece). Energies 2020, 13, 1119. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, S.; Wang, Q. Inhibition mechanisms of steel slag on the early-age hydration of cement. Cem. Concr. Res. 2021, 140, 106283. [Google Scholar] [CrossRef]
- Kunhanandan Nambiar, E.K.; Ramamurthy, K. Influence of filler type on the properties of foam concrete. Cem. Concr. Compos. 2006, 28, 475–480. [Google Scholar] [CrossRef]
- Wang, L.; Yang, H.Q.; Zhou, S.H.; Chen, E.; Tang, S.W. Mechanical properties, long-term hydration heat, shinkage behavior and crack resistance of dam concrete designed with low heat Portland (LHP) cement and fly ash. Constr. Build. Mater. 2018, 187, 1073–1091. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Jaturapitakkul, C.; Sinsiri, T. Effect of fly ash fineness on compressive strength and pore size of blended cement paste. Cem. Concr. Compos. 2005, 27, 425–428. [Google Scholar] [CrossRef]
- Amran, Y.H.M.; Farzadnia, N.; Abang Ali, A.A. Properties and applications of foamed concrete; a review. Constr. Build. Mater. 2015, 101, 990–1005. [Google Scholar] [CrossRef]
- Jitchaiyaphum, K.; Sinsiri, T.; Jaturapitakkul, C.; Chindaprasirt, P. Cellular lightweight concrete containing high-calcium fly ash and natural zeolite. Int. J. Miner. Met. Mater. 2013, 20, 462–471. [Google Scholar] [CrossRef]
- Kearsley, E.P.; Wainwrightb, P.J. The effect of high fly ash content on the compressive strength of foamed concrete. Cem. Concr. Res. 2001, 31, 105–112. [Google Scholar] [CrossRef]
- Kipkemboi, B.; Zhao, T.; Miyazawa, S.; Sakai, E.; Nito, N.; Hirao, H. Effect of C3S content of clinker on properties of fly ash cement concrete. Constr. Build. Mater. 2020, 240, 117840. [Google Scholar] [CrossRef]
- Park, S.S.; Kang, H.Y. Strength and microscopic characteristics of alkali-activated fly ash-cement. Korean J. Chem. Eng. 2006, 23, 367–373. [Google Scholar] [CrossRef]
- Sun, R.; Li, Y.; Liu, C.; Xie, X.; Lu, C. Utilization of lime mud from paper mill as CO2 sorbent in calcium looping process. Chem. Eng. J. 2013, 221, 124–132. [Google Scholar] [CrossRef]
- He, X.; Xu, W.; Sun, W.; Ni, J. Phosphate removal using compounds prepared from paper sludge and fly ash. Environ. Earth Sci. 2013, 70, 615–623. [Google Scholar] [CrossRef]
- Ye, C.; Yan, B.; Ji, X.; Liao, B.; Gong, R.; Pei, X.; Liu, G. Adsorption of fluoride from aqueous solution by fly ash cenospheres modified with paper mill lime mud: Experimental and modeling. Ecotoxicol. Environ. Saf. 2019, 180, 366–373. [Google Scholar] [CrossRef]
- Jena, S.K.; Dash, N.; Rath, S.S. Effective utilization of lime mud for the recovery of potash from mica scraps. J. Clean. Prod. 2019, 231, 64–76. [Google Scholar] [CrossRef]
- Cwirzen, A.; Provis, J.L.; Penttala, V.; Habermehl-Cwirzen, K. The effect of limestone on sodium hydroxide-activated metakaolin-based geopolymers. Constr. Build. Mater. 2014, 66, 53–62. [Google Scholar] [CrossRef]
- Sun, R.; Fang, C.; Zhang, H.; Ling, Y.; Feng, J.; Qi, H.; Ge, Z. Chemo-mechanical properties of alkali-activated slag/fly ash paste incorporating white mud. Constr. Build. Mater. 2021, 291, 123312. [Google Scholar] [CrossRef]
- Huang, H.; Gao, X.; Teng, L. Fiber alignment and its effect on mechanical properties of UHPC: An overview. Constr. Build. Mater. 2021, 296, 123741. [Google Scholar] [CrossRef]
- Ge, Z.; Feng, Y.; Yuan, H.; Zhang, H.; Sun, R.; Wang, Z. Durability and shrinkage performance of self-compacting concrete containing recycled fine clay brick aggregate. Constr. Build. Mater. 2021, 308, 125041. [Google Scholar] [CrossRef]
- CJJ/T 177-2012. Technical Specification for Foamed Mixture Lightweight Soil Filling Engineering; China Building Industry Press: Beijing, China, 2012. [Google Scholar]
- Ge, Z.; Yuan, H.; Sun, R.; Zhang, H.; Wang, W.; Qi, H. Use of green calcium sulphoaluminate cement to prepare foamed concrete for road embankment: A feasibility study. Constr. Build. Mater. 2020, 237, 117791. [Google Scholar] [CrossRef]
- GB/T 11969-2008. Test Methods of Autoclaved Aerated Concrete; China Standard Publishing House: Beijing, China, 2008. [Google Scholar]
- JTG E40—2007. Test Methods of Soils for Highway Engineering; Ministry of Communications, PRC: Beijing, China, 2007.
- JTG D30. Specification for Design of Highway Subgrades; Ministry of Transport, PRC: Beijing, China, 2015.
- Just, A.; Middendorf, B. Microstructure of high-strength foam concrete. Mater. Charact. 2009, 60, 741–748. [Google Scholar] [CrossRef]
- Kunhanandan Nambiar, E.K.; Ramamurthy, K. Models for strength prediction of foam concrete. Mater. Struct. 2007, 41, 247–254. [Google Scholar] [CrossRef]
Materials | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | Na2O | K2O | LOI |
---|---|---|---|---|---|---|---|---|---|
OPC | 21.96 | 4.73 | 3.68 | 64.63 | 2.59 | 0.3 | 0.43 | 0.2 | 2.13 |
FA | 48.54 | 34.68 | 5.23 | 2.6 | 0.459 | 1.12 | − | − | 4.67 |
LM | 2.08 | 0.71 | 0.36 | 47.5 | 2.74 | − | 2.8 | 0.27 | 42.84 |
Series | Mixture Code | w/b | Targeted Wet Density (kg/m3) | LM–FA Dosage (%) | LM/FA | OPC (kg/m3) | FA (kg/m3) | LM (kg/m3) | Water (kg/m3) | PS (kg/m3) | Foam (kg/m3) |
---|---|---|---|---|---|---|---|---|---|---|---|
I | LM0 | 0.55 | 700 | 60 | 0/1 | 172 | 258 | 0 | 237 | 0 | 32.4 |
LM14 | 0.55 | 700 | 60 | 1/6 | 172 | 221 | 37 | 237 | 0.13 | 32.4 | |
LM17 | 0.55 | 700 | 60 | 1/5 | 172 | 215 | 43 | 237 | 0.15 | 32.4 | |
LM25 | 0.55 | 700 | 60 | 1/3 | 172 | 194 | 65 | 237 | 0.23 | 32.4 | |
LM50 | 0.55 | 700 | 60 | 1/1 | 172 | 129 | 129 | 237 | 0.45 | 32.4 | |
LM67 | 0.55 | 700 | 60 | 2/1 | 172 | 86 | 172 | 237 | 0.60 | 32.4 | |
II | WD600MA0 | 0.55 | 600 | 0 | — | 363 | 0 | 0 | 200 | 0 | 38.2 |
WD600MA50 | 0.55 | 600 | 50 | 1/5 | 182 | 152 | 30 | 200 | 0.11 | 36.9 | |
WD600MA60 | 0.55 | 600 | 60 | 1/5 | 146 | 182 | 36 | 200 | 0.13 | 36.6 | |
WD700MA0 | 0.55 | 700 | 0 | — | 429 | 0 | 0 | 236 | 0.00 | 34.4 | |
WD700MA50 | 0.55 | 700 | 50 | 1/5 | 215 | 179 | 36 | 237 | 0.13 | 32.8 | |
WD700MA60 | 0.55 | 700 | 60 | 1/5 | 172 | 215 | 43 | 237 | 0.15 | 32.4 | |
WD700MA70 | 0.55 | 700 | 70 | 1/5 | 129 | 251 | 50 | 237 | 0.18 | 32.2 | |
WD800MA0 | 0.55 | 800 | 0 | — | 496 | 0 | 0 | 273 | 0 | 31.3 | |
WD800MA50 | 0.55 | 800 | 50 | 1/5 | 249 | 207 | 41 | 273 | 0.14 | 29.6 | |
WD800MA60 | 0.55 | 800 | 60 | 1/5 | 199 | 249 | 50 | 274 | 0.18 | 29.4 | |
WD800MA70 | 0.55 | 800 | 70 | 1/5 | 149 | 290 | 58 | 274 | 0.20 | 29.2 | |
WD800MA80 | 0.55 | 800 | 80 | 1/5 | 100 | 332 | 66 | 274 | 0.23 | 28.7 | |
WD900MA0 | 0.55 | 900 | 0 | — | 563 | 0 | 0 | 309 | 0 | 28.3 | |
WD900MA50 | 0.55 | 900 | 50 | 1/5 | 282 | 235 | 47 | 310 | 0.16 | 26.9 | |
WD900MA60 | 0.55 | 900 | 60 | 1/5 | 226 | 282 | 56 | 310 | 0.20 | 26.3 | |
WD900MA70 | 0.55 | 900 | 70 | 1/5 | 169 | 329 | 66 | 310 | 0.23 | 25.8 | |
WD900MA80 | 0.55 | 900 | 80 | 1/5 | 113 | 376 | 75 | 311 | 0.26 | 25.1 |
Properties | Specimens Dimension | Curing Time (d) | Loading Speed |
---|---|---|---|
Compressive strength | 100 mm × 100 mm × 100 mm | 3, 7, 28, 56 | 2.0 kN ± 0.5 kN/s |
Flexure strength | 100 mm × 100 mm × 400 mm | 28 | 0.2 kN ± 0.05 kN/s |
Splitting strength | 100 mm × 100 mm × 100 mm | 28 | 0.2 kN ± 0.05 kN/s |
Elastic modulus | 100 mm × 100 mm × 300 mm | 28 | − |
CBR | Φ 150 mm× 170 mm | 7 | 1 mm/min |
Series | Mixture Code | Targeted Wet Density (kg/m3) | Measured Wet Density (kg/m³) | Density Ratio | Flowability (mm) | Dry Density (kg/m3) |
---|---|---|---|---|---|---|
I | LM0 | 700 | 702 | 1.003 | 185 | 503 |
LM14 | 700 | 701 | 1.001 | 181 | 502 | |
LM17 | 700 | 697 | 0.996 | 179 | 499 | |
LM25 | 700 | 695 | 0.993 | 185 | 498 | |
LM50 | 700 | 699 | 0.999 | 183 | 501 | |
LM67 | 700 | 703 | 1.004 | 175 | 504 | |
II | WD600MA0 | 600 | 594 | 0.990 | 173 | 453 |
WD600MA50 | 600 | 604 | 1.007 | 181 | 422 | |
WD600MA60 | 600 | 598 | 0.997 | 179 | 411 | |
WD700MA0 | 700 | 695 | 0.993 | 181 | 545 | |
WD700MA50 | 700 | 702 | 1.002 | 188 | 518 | |
WD700MA60 | 700 | 702 | 1.003 | 185 | 503 | |
WD700MA70 | 700 | 706 | 1.009 | 184 | 482 | |
WD800MA0 | 800 | 800 | 1.000 | 181 | 643 | |
WD800MA50 | 800 | 808 | 1.010 | 190 | 590 | |
WD800MA60 | 800 | 798 | 0.998 | 180 | 576 | |
WD800MA70 | 800 | 802 | 1.003 | 185 | 560 | |
WD800MA80 | 800 | 800 | 1.000 | 183 | 545 | |
WD900MA0 | 900 | 891 | 0.990 | 188 | 745 | |
WD900MA50 | 900 | 908 | 1.009 | 172 | 680 | |
WD900MA60 | 900 | 900 | 1.000 | 181 | 661 | |
WD900MA70 | 900 | 900 | 1.000 | 185 | 643 | |
WD900MA80 | 900 | 896 | 0.996 | 185 | 612 |
Mixtures | Wet Density (kg/m3) | LM–FA Dosage (%) | Compressive Strengths | |||
---|---|---|---|---|---|---|
3 d | 7 d | 28 d | 56 d | |||
WD600MA0 | 600 | 0 | 0.99 | 1.30 | 2.07 | 2.54 |
WD600MA50 | 600 | 50 | 0.48 | 0.65 | 1.39 | 1.71 |
WD600MA60 | 600 | 60 | 0.31 | 0.51 | 1.31 | 1.47 |
WD700MA0 | 700 | 0 | 1.50 | 1.96 | 2.52 | 3.06 |
WD700MA50 | 700 | 50 | 0.77 | 1.05 | 2.03 | 2.70 |
WD700MA60 | 700 | 60 | 0.56 | 0.95 | 1.66 | 2.26 |
WD700MA70 | 700 | 70 | 0.42 | 0.66 | 1.44 | 1.65 |
WD800MA0 | 800 | 0 | 2.54 | 3.21 | 3.97 | 4.78 |
WD800MA50 | 800 | 50 | 1.07 | 1.56 | 3.04 | 3.78 |
WD800MA60 | 800 | 60 | 0.75 | 1.24 | 2.39 | 3.15 |
WD800MA70 | 800 | 70 | 0.48 | 1.10 | 2.03 | 2.73 |
WD800MA80 | 800 | 80 | 0.31 | 0.71 | 1.81 | 1.98 |
WD900MA0 | 900 | 0 | 3.28 | 4.29 | 5.54 | 6.22 |
WD900MA50 | 900 | 50 | 1.26 | 2.15 | 4.71 | 5.36 |
WD900MA60 | 900 | 60 | 1.05 | 1.67 | 3.55 | 4.66 |
WD900MA70 | 900 | 70 | 0.73 | 1.39 | 3.02 | 4.05 |
WD900MA80 | 900 | 80 | 0.37 | 0.87 | 2.02 | 3.01 |
Mixtures | Flexural Strength (MPa) | Splitting Strength (MPa) | Flexural Strength/Compressive Strength | Splitting Strength/Compressive Strength |
---|---|---|---|---|
WD600MA0 | 0.41 | 0.38 | 0.198 | 0.184 |
WD600MA50 | 0.32 | 0.28 | 0.230 | 0.204 |
WD600MA60 | 0.29 | 0.25 | 0.221 | 0.191 |
WD700MA0 | 0.54 | 0.47 | 0.214 | 0.187 |
WD700MA50 | 0.45 | 0.38 | 0.222 | 0.187 |
WD700MA60 | 0.36 | 0.32 | 0.219 | 0.193 |
WD700MA70 | 0.33 | 0.29 | 0.229 | 0.201 |
WD800MA0 | 0.70 | 0.65 | 0.176 | 0.164 |
WD800MA50 | 0.60 | 0.56 | 0.197 | 0.184 |
WD800MA60 | 0.52 | 0.48 | 0.218 | 0.201 |
WD800MA70 | 0.45 | 0.41 | 0.222 | 0.202 |
WD800MA80 | 0.41 | 0.35 | 0.227 | 0.193 |
WD900MA0 | 0.83 | 0.90 | 0.150 | 0.162 |
WD900MA50 | 0.73 | 0.78 | 0.155 | 0.166 |
WD900MA60 | 0.63 | 0.67 | 0.177 | 0.188 |
WD900MA70 | 0.54 | 0.59 | 0.179 | 0.196 |
WD900MA80 | 0.43 | 0.42 | 0.212 | 0.207 |
Code | Formula |
---|---|
American Concrete Institute | ft,tp = 0.59(fc)0.5 |
CEB-FIP Model Code: Design Code | ft,tp = 0.301(fc)0.67 |
Mixture | LM–FA Dosage (%) | ||||
---|---|---|---|---|---|
0 | 50 | 60 | 70 | 80 | |
WD600 | 25.21 | 17.46 | 13.56 | - | - |
WD700 | 42.31 | 26.00 | 19.32 | 13.72 | - |
WD800 | 56.67 | 37.49 | 24.56 | 18.56 | 13.95 |
WD900 | 81.00 | 53.31 | 37.00 | 30.53 | 18.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Yuan, H.; Gao, F.; Zhang, H.; Ge, Z.; Wang, K.; Sun, R.; Guan, Y.; Ling, Y.; Jiang, N. A Feasibility Study of Low Cement Content Foamed Concrete Using High Volume of Waste Lime Mud and Fly Ash for Road Embankment. Materials 2022, 15, 86. https://doi.org/10.3390/ma15010086
Li Z, Yuan H, Gao F, Zhang H, Ge Z, Wang K, Sun R, Guan Y, Ling Y, Jiang N. A Feasibility Study of Low Cement Content Foamed Concrete Using High Volume of Waste Lime Mud and Fly Ash for Road Embankment. Materials. 2022; 15(1):86. https://doi.org/10.3390/ma15010086
Chicago/Turabian StyleLi, Zhanchen, Huaqiang Yuan, Faliang Gao, Hongzhi Zhang, Zhi Ge, Kai Wang, Renjuan Sun, Yanhua Guan, Yifeng Ling, and Nengdong Jiang. 2022. "A Feasibility Study of Low Cement Content Foamed Concrete Using High Volume of Waste Lime Mud and Fly Ash for Road Embankment" Materials 15, no. 1: 86. https://doi.org/10.3390/ma15010086
APA StyleLi, Z., Yuan, H., Gao, F., Zhang, H., Ge, Z., Wang, K., Sun, R., Guan, Y., Ling, Y., & Jiang, N. (2022). A Feasibility Study of Low Cement Content Foamed Concrete Using High Volume of Waste Lime Mud and Fly Ash for Road Embankment. Materials, 15(1), 86. https://doi.org/10.3390/ma15010086