Al-Mg-MoS2 Reinforced Metal Matrix Composites: Machinability Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Composites
2.2. Machining of Composites
3. Optimization of Wire EDM Process
3.1. EDAS Technique
- m—number of options
- n—number of criteria
- —value of criterion j at option i.
3.2. Optimization of Wire EDM Process Parameters
3.3. Machining of Composites at Initial and Optimal Conditions
4. Conclusions
- The addition of MoS2 decreases the surface roughness and overcut of the composite’s materials due to the melting point difference and sticking property of MoS2 at higher working temperatures.
- EDAS is optimizing process parameters to obtain better surface roughness and overcut. This technique is applied to three samples fabricated by varying percentages of MoS2. It is observed that the steps for all the processes, including weightage used for output performance, are kept constant.
- The optimal process parameters are set at I3, Ton2, V1. Therefore, the increase in MoS2 content increases the machining performance of the composites and does not alter the optimal parameter setting range.
- Among the different process parameters, the contribution of pulse on-time and peak current plays a vital role in affecting the machining process.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Garg, P.; Jamwal, A.; Kumar, D.; Sadasivuni, K.K.; Hussain, C.M.; Gupta, P. Advance research progresses in aluminium matrix composites: Manufacturing & applications. J. Mater. Res. Technol. 2019, 8, 4924–4939. [Google Scholar]
- Samal, P.; Vundavilli, P.R.; Meher, A.; Mahapatra, M.M. Recent progress in aluminum metal matrix composites: A review on processing, mechanical and wear properties. J. Manuf. Processes 2020, 59, 131–152. [Google Scholar] [CrossRef]
- Mahesh, K.V.; Venkatesh, C.V. A comprehensive review on material selection, processing, characterization and applications of aluminium metal matrix composites. Mater. Res. Express 2019, 6, 072001. [Google Scholar]
- Pai, B.C.; Ramani, G.; Pillai, R.M.; Satyanarayana, K.G. Role of magnesium in cast aluminium alloy matrix composites. J. Mater. Sci. 1995, 30, 1903–1911. [Google Scholar] [CrossRef]
- Subba, R.E.; Ramanaiah, N. Experimental Study on Mechanical Properties of Aluminium Metal Matrix Composites (AA 6061 Reinforced with MOS_2). Int. J. Mater. Sci. 2016, 6, 91–99. [Google Scholar]
- Kumar, S.S.; Pandian, R.S.; Pitchipoo, P.; Rajakarunakaran, S.; Rajesh, S. Investigation of Al-Mg based composite incorporated with MoS2 through powder metallurgy. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2021, 235, 986–996. [Google Scholar] [CrossRef]
- Gupta, K.; Gupta, M.K. Developments in nonconventional machining for sustainable production: A state-of-the-art review. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 233, 4213–4232. [Google Scholar] [CrossRef]
- Gupta, N.K.; Somani, N.; Prakash, C.; Singh, R.; Walia, A.S.; Singh, S.; Pruncu, C.I. Revealing the WEDM Process Parameters for the Machining of Pure and Heat-Treated Titanium (Ti-6Al-4V) Alloy. Materials 2021, 14, 2292. [Google Scholar] [CrossRef]
- Basak, A.; Pramanik, A.; Prakash, C.; Shankar, S.; Debnath, S. Understanding the Micro-Mechanical Behaviour of Recast Layer Formed during WEDM of Titanium Alloy. Metals 2022, 12, 188. [Google Scholar] [CrossRef]
- Nair, H.; Pramanik, A.; Basak, A.; Prakash, C.; Debnath, S.; Shankar, S.; Dixit, A.R. Experimental investigation on material removal rate, kerf width, surface roughness and the dimensional accuracy the accuracy of hole in Inconel 718 using wire electric discharge. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2022. [Google Scholar] [CrossRef]
- Ashish, S.; Dixit, A.R.; Tiwari, S. Experimental investigation of wire EDM process parameteres on aluminum metal matrix composite Al2024/SiC. Int. J. Adv. Res. Innov. 2014, 2, 511–515. [Google Scholar]
- Rani, M.G.; Rao, C.V.P.; Kotaiah, K.R. Experimental investigation on optimization of the controlling factors for machining al 6061/mos2 metal matrix composites with wire edm. Int. J. Appl. Eng. Res. 2017, 12, 12023–12028. [Google Scholar]
- Saif, M.; Tiwari, S. Investigation towards surface roughness & material removal rate in Wire-EDM of aluminium alloy 6061 and 5083 using Taguchi method. Mater. Today Proc. 2021, 47, 1040–1047. [Google Scholar]
- Prakash, C.; Senthil, P.; Manikandan, N.; Palanisamy, D. Machinability Investigations of Aluminum Metal Matrix Composites (LM26 + Graphite + Flyash) by Using Wire Electrical Discharge Machining Process. In Recent Advances in Materials and Modern Manufacturing. Lecture Notes in Mechanical Engineering; Palani, I.A., Sathiya, P., Palanisamy, D., Eds.; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Ghaleb, A.M.; Kaid, H.; Alsamhan, A.; Mian, S.H.; Hidri, L. Assessment and comparison of various MCDM approaches in the selection of manufacturing process. Adv. Mater. Sci. Eng. 2020, 2020, 4039253. [Google Scholar] [CrossRef]
- Ozcalici, M.; Bumin, M. An integrated multi-criteria decision making model with Self-Organizing Maps for the assessment of the performance of publicly traded banks in Borsa Istanbul. Appl. Soft Comput. 2020, 90, 106166. [Google Scholar] [CrossRef]
- Basak, A.; Pramanik, A.; Prakash, C.; Kotecha, K. Micro-mechanical characterization of superficial layer synthesized by electric discharge machining process. Mater. Lett. 2021, 305, 130769. [Google Scholar] [CrossRef]
- Arora, R.; Kumar, K.; Dixit, S.; Mishra, L. Analyze the outcome of waste material as cement replacement agent in basic concrete. Mater. Today Proc. 2021, 56, 1877–1881. [Google Scholar] [CrossRef]
- Dixit, S.; Sharma, K. An Empirical Study of Major Factors Affecting Productivity of Construction Projects. In Lecture Notes in Civil Engineering; Springer: Singapore, 2020; Volume 61. [Google Scholar] [CrossRef]
- Dixit, S. Analysing the Impact of Productivity in Indian Transport Infra Projects. In Proceedings of the IOP Conference Series: Materials Science and Engineering; Creative Construction Conference (CCC 2021), 28–30 June 2021; Budapest, Hungary, 2022; Volume 1218, p. 12059. [Google Scholar]
- Dixit, S.; Arora, R.; Kumar, K.; Bansal, S.; Vatin, N.; Araszkiewicz, K.; Epifantsev, K. Replacing E-waste with coarse aggregate in architectural engineering and construction industry. Mater. Today Proc. 2021, 56, 2353–2358. [Google Scholar] [CrossRef]
- Dixit, S.; Sharma, K.; Ingh, S. Identifying and Analysing Key Factors Associated with Risks in Construction Projects. In Emerging Trends in Civil Engineering; Babu, K.G., Rao, H.S., Amarnath, Y., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2020; pp. 25–32. [Google Scholar]
- Dixit, S.; Stefańska, A. Digitisation of contemporary fabrication processes in the AEC sector. Mater. Today Proc. 2021, 56, 1882–1885. [Google Scholar] [CrossRef]
- Dixit, S.; Stefańska, A.; Singh, P. Manufacturing technology in terms of digital fabrication of contemporary biomimetic structures. Int. J. Constr. Manag. 2021, 1–9. [Google Scholar] [CrossRef]
- Kumar, K.; Arora, R.; Khan, S.; Dixit, S. Characterization of fly ash for potential utilization in green concrete. Mater. Today Proc. 2021, 56, 1886–1890. [Google Scholar] [CrossRef]
- Pramanik, A.; Basak, A.K.; Prakash, C.; Shankar, S.; Sharma, S.; Narendranath, S. Recast layer formation during wire electrical discharge machining of Titanium (Ti-Al6-V4) alloy. J. Mater. Eng. Perform. 2021, 30, 8926–8935. [Google Scholar] [CrossRef]
- Hassan, K.; Kang, A.S.; Prakash, C.; Singh, G. Grey based multi-objective optimization of machining performance in boring of aluminium alloy 6061 through piezoelectric shunt damping. Mater. Today Proc. 2022, 50, 1043–1047. [Google Scholar] [CrossRef]
- Shinde, D.; Öktem, H.; Kalita, K.; Chakraborty, S.; Gao, X.-Z. Optimization of Process Parameters for Friction Materials Using Multi-Criteria Decision Making: A Comparative Analysis. Processes 2021, 9, 1570. [Google Scholar] [CrossRef]
- Dixit, S. Study of factors affecting the performance of construction projects in AEC industry. Organ. Technol. Manag. Constr. 2020, 12, 2275–2282. [Google Scholar] [CrossRef]
- Dixit, S. Impact of management practices on construction productivity in Indian building construction projects: An empirical study. Organ. Technol. Manag. Constr. 2021, 13, 2383–2390. [Google Scholar] [CrossRef]
- Mouralova, K.; Kovar, J.; Klakurkova, L.; Bednar, J.; Benes, L.; Zahradnicek, R. Analysis of surface morphology and topography of pure aluminium machined using WEDM. Measurement 2018, 114, 169–176. [Google Scholar] [CrossRef]
- Dar, S.A.; Kumar, J.; Sharma, S.; Singh, G.; Singh, J.; Aggarwal, V.; Chohan, J.; Kumar, R.; Sharma, A.; Mishra, M.; et al. Investigations on the effect of electrical discharge machining process parameters on the machining behavior of aluminium matrix composites. Mater. Today Proc. 2022, 48, 1048–1054. [Google Scholar] [CrossRef]
- Dixit, S.; Singh, P. Investigating the disposal of E-Waste as in architectural engineering and construction industry. Mater. Today Proc. 2021, 56, 1891–1895. [Google Scholar] [CrossRef]
- Dixit, S.; Stefańska, A.; Musiuk, A. Architectural form finding in arboreal supporting structure optimisation. Ain Shams Eng. J. 2012, 12, 2321–2329. [Google Scholar] [CrossRef]
- Bhavya, H.R.; Bhaskar, H.B. Influence of Process Variables in Wire Cut Electric Discharge Machining on Surface Roughness of Al2285-MgO Composites. Int. J. Manag. IT Eng. 2019, 9, 119–126. [Google Scholar]
- Ram, H.S.; Uthayakumar, M.; Kumar, S.S.; Kumaran, S.T.; Azzopardi, B.; Korniejenko, K. Prediction of Kerf Width and Surface Roughness of Al6351 Based Composite in Wire-Cut Electric Discharge Machining Using Mathematical Modelling. Materials 2022, 15, 1102. [Google Scholar]
- Abhay, S.G.; Nilesh, G.P. Wire electro discharge machining of metal matrix composites: A review. Procedia Manuf. 2018, 20, 41–52. [Google Scholar]
Control Factor | Unit | Symbol | Range | Level 1 | Level 2 | Level 3 |
---|---|---|---|---|---|---|
Peak Current | A | 8–12 | 8 | 10 | 12 | |
Pulse on-time | µs | 10–20 | 10 | 15 | 20 | |
Gap voltage | V | 10–30 | 10 | 20 | 30 |
I | Ton | V | Ra µm | OC mm | Ra µm | OC mm | Ra µm | OC mm |
---|---|---|---|---|---|---|---|---|
Sample A | Sample B | Sample C | ||||||
1 | 1 | 1 | 7.4320 | 0.4200 | 6.3713 | 0.4957 | 6.9463 | 0.3614 |
1 | 2 | 2 | 7.5672 | 0.5301 | 6.5439 | 0.5827 | 6.9626 | 0.4449 |
1 | 3 | 3 | 7.5339 | 0.4623 | 6.6167 | 0.6723 | 6.9752 | 0.5425 |
2 | 1 | 2 | 7.5974 | 0.6957 | 6.7492 | 0.7752 | 6.9693 | 0.6461 |
2 | 2 | 3 | 7.5624 | 0.7356 | 6.8493 | 0.8513 | 6.9193 | 0.7223 |
2 | 3 | 1 | 7.5165 | 0.7756 | 6.9142 | 0.8770 | 6.9956 | 0.7449 |
3 | 1 | 3 | 7.5794 | 0.8356 | 6.9317 | 0.9270 | 6.9379 | 0.7991 |
3 | 2 | 1 | 7.5654 | 0.8926 | 7.4371 | 0.9578 | 6.9817 | 0.8313 |
3 | 3 | 2 | 7.6158 | 0.5213 | 7.9955 | 0.4823 | 6.9765 | 0.3489 |
S. No | Sample A | Sample B | Sample C | |||
---|---|---|---|---|---|---|
EDAS | Rank | EDAS | Rank | EDAS | Rank | |
1. | 0.5000 | 2 | 0.4624 | 6 | 0.4765 | 3 |
2. | 0.2542 | 7 | 0.3023 | 12 | 0.3108 | 6 |
3. | 0.3946 | 3 | 0.1625 | 15 | 0.1230 | 8 |
4. | 0.0983 | 9 | 0.1331 | 16 | 0.0926 | 9 |
5. | 0.1746 | 8 | 0.2806 | 13 | 0.2679 | 7 |
6. | 0.2619 | 6 | 0.3229 | 9 | 0.3150 | 5 |
7. | 0.3846 | 4 | 0.4313 | 8 | 0.4337 | 4 |
8. | 0.5010 | 1 | 0.5729 | 1 | 0.5032 | 1 |
9. | 0.2811 | 5 | 0.5000 | 3 | 0.5000 | 2 |
I | Ton | V | |
---|---|---|---|
Level 1 | 0.3829 | 0.3276 | 0.4206 |
Level 2 | 0.1783 | 0.3096 | 0.2112 |
Level 3 | 0.3886 | 0.3125 | 0.3179 |
Delta | 0.2103 | 0.0180 | 0.2094 |
Rank | 1 | 2 | 3 |
DF | Adj SS | Adj MS | Contribution In % | |
---|---|---|---|---|
I | 2 | 0.086146 | 0.043073 | 55.96 |
Ton | 2 | 0.056221 | 0.000281 | 39.19 |
V | 2 | 0.065802 | 0.032901 | 42.74 |
Error | 2 | 0.001434 | 0.000717 | 0.93 |
Total | 8 | 0.153944 | 100 |
I | Ton | V | |
---|---|---|---|
Level 1 | 0.3091 | 0.3423 | 0.4527 |
Level 2 | 0.2455 | 0.3853 | 0.3118 |
Level 3 | 0.5014 | 0.3285 | 0.2915 |
Delta | 0.2559 | 0.0568 | 0.1613 |
Rank | 1 | 3 | 2 |
DF | Adj SS | Adj MS | Contribution In % | |
---|---|---|---|---|
I | 2 | 0.106496 | 0.053248 | 58.70 |
Ton | 2 | 0.046283 | 0.002633 | 25.51 |
V | 2 | 0.005266 | 0.023141 | 12.89 |
Error | 2 | 0.023375 | 0.011688 | 2.900 |
Total | 8 | 0.181420 | 100.00 |
I | Ton | V | |
---|---|---|---|
Level 1 | 0.3034 | 0.3343 | 0.4316 |
Level 2 | 0.2252 | 0.3606 | 0.3011 |
Level 3 | 0.4790 | 0.3127 | 0.2749 |
Delta | 0.2538 | 0.0480 | 0.1567 |
Rank | 1 | 2 | 3 |
DF | Adj SS | Adj MS | Contribution In % | |
---|---|---|---|---|
I | 2 | 0.101352 | 0.050676 | 52.12 |
Ton | 2 | 0.047391 | 0.001731 | 24.37 |
V | 2 | 0.042258 | 0.021129 | 21.73 |
Error | 2 | 0.003463 | 0.023696 | 1.780 |
Total | 8 | 0.194463 | 100 |
Description | Input Parameters | Ra | OC | Ra | OC | Ra | OC |
---|---|---|---|---|---|---|---|
Sample A | Sample B | Sample C | |||||
Initial Setting | I2, Ton3, V3 | 7.9622 | 0.9781 | 7.1425 | 0.8476 | 7.7731 | 0.9012 |
Optimal Setting | I3, Ton2, V1 | 7.4371 | 0.9578 | 6.9817 | 0.8313 | 7.5654 | 0.8926 |
% Of improvement | 6.67% | 2.07% | 2.25% | 1.92% | 2.67% | 0.95% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shanmugavel, R.; Chinthakndi, N.; Selvam, M.; Madasamy, N.; Shanmugakani, S.K.; Nair, A.; Prakash, C.; Buddhi, D.; Dixit, S. Al-Mg-MoS2 Reinforced Metal Matrix Composites: Machinability Characteristics. Materials 2022, 15, 4548. https://doi.org/10.3390/ma15134548
Shanmugavel R, Chinthakndi N, Selvam M, Madasamy N, Shanmugakani SK, Nair A, Prakash C, Buddhi D, Dixit S. Al-Mg-MoS2 Reinforced Metal Matrix Composites: Machinability Characteristics. Materials. 2022; 15(13):4548. https://doi.org/10.3390/ma15134548
Chicago/Turabian StyleShanmugavel, Rajesh, Narmada Chinthakndi, Mayakannan Selvam, Naganandhan Madasamy, Senthil Kumar Shanmugakani, Anish Nair, Chander Prakash, Dharam Buddhi, and Saurav Dixit. 2022. "Al-Mg-MoS2 Reinforced Metal Matrix Composites: Machinability Characteristics" Materials 15, no. 13: 4548. https://doi.org/10.3390/ma15134548
APA StyleShanmugavel, R., Chinthakndi, N., Selvam, M., Madasamy, N., Shanmugakani, S. K., Nair, A., Prakash, C., Buddhi, D., & Dixit, S. (2022). Al-Mg-MoS2 Reinforced Metal Matrix Composites: Machinability Characteristics. Materials, 15(13), 4548. https://doi.org/10.3390/ma15134548