Supersonic Motion of Atoms in an Octahedral Channel of fcc Copper
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Influence of Initial Position of a Bombarding Atom with Respect to the Crystal
3.2. Influence of the Location of the Entry Point of the Bombarding Atom
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Korznikova, E.; Schafler, E.; Steiner, G.; Zehetbauer, M.J. Measurements of vacancy type defects in SPD deformed Ni. TMS Annu. Meet. 2006, 2006, 97–102. [Google Scholar]
- Nordmark, H.; Holmestad, R.; Walmsley, J.C.; Ulyashin, A. Transmission electron microscopy study of hydrogen defect formation at extended defects in hydrogen plasma treated multicrystalline silicon. J. Appl. Phys. 2009, 105, 033506. [Google Scholar] [CrossRef]
- Murzin, S.P. Laser irradiation for enhancing mass transfer in the solid phase of metallic materials. Metals 2021, 11, 1359. [Google Scholar] [CrossRef]
- Hu, Y.; He, X.; Yu, G.; Ge, Z.; Zheng, C.; Ning, W. Heat and mass transfer in laser dissimilar welding of stainless steel and nickel. Appl. Surf. Sci. 2012, 258, 5914–5922. [Google Scholar] [CrossRef] [Green Version]
- Zheng, B.; Wang, K.; Zhang, Z.; Che, H.; Lei, M. Nitrogen mass transfer models for plasma-based low-energy ion implantation. J. Vac. Sci. Technol. A 2015, 33, 021311. [Google Scholar] [CrossRef]
- Terentyev, D.A.; Klaver, T.P.C.; Olsson, P.; Marinica, M.C.; Willaime, F.; Domain, C.; Malerba, L. Self-trapped interstitial-type defects in iron. Phys. Rev. Lett. 2008, 100, 145503. [Google Scholar] [CrossRef]
- Terentyev, D.A.; Malerba, L.; Hou, M. Dimensionality of interstitial cluster motion in bcc-Fe. Phys. Rev. B 2007, 75, 104108. [Google Scholar] [CrossRef]
- Zhang, Z.; Yabuuchi, K.; Kimura, A. Defect distribution in ion-irradiated pure tungsten at different temperatures. J. Nucl. Mater. 2016, 480, 207–215. [Google Scholar] [CrossRef]
- Zhou, W.H.; Zhang, C.G.; Li, Y.G.; Zeng, Z. Transport, dissociation and rotation of small self-interstitial atom clusters in tungsten. J. Nucl. Mater. 2014, 453, 202–209. [Google Scholar] [CrossRef]
- Granberg, F.; Byggmästar, J.; Nordlund, K. Molecular dynamics simulations of high-dose damage production and defect evolution in tungsten. J. Nucl. Mater. 2021, 556, 153158. [Google Scholar] [CrossRef]
- Li, Z.Z.; Li, Y.H.; Terentyev, D.; Castin, N.; Bakaev, A.; Bonny, G.; Yang, Z.; Liang, L.; Zhou, H.B.; Gao, F.; et al. Investigating the formation mechanism of void lattice in tungsten under neutron irradiation: From collision cascades to ordered nanovoids. Acta Mater. 2021, 219, 117239. [Google Scholar] [CrossRef]
- Wu, J.; Xu, Z.; Liu, L.; Hartmaier, A.; Rommel, M.; Nordlund, K.; Wang, T.; Janisch, R.; Zhao, J. MD simulation study on defect evolution and doping efficiency of p-type doping of 3C-SiC by Al ion implantation with subsequent annealing. J. Mater. Chem. C 2021, 9, 2258–2275. [Google Scholar] [CrossRef]
- Hanley, L.; Sinnott, S. The growth and modification of materials via ion-surface processing. Surf. Sci. 2002, 500, 500–522. [Google Scholar] [CrossRef]
- Wang, G.; Li, J.; Zhang, W.; Xu, L.; Pan, H.; Wen, J.; Wu, Q.; She, W.; Jiao, T.; Liu, X.; et al. Magnesium ion implantation on a micro/nanostructured titanium surface promotes its bioactivity and osteogenic differentiation function. Int. J. Nanomed. 2014, 9, 2387–2398. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, F.; Antonov, D.; Wang, Y.; Neumann, P.; Momenzadeh, S.; Häußermann, T.; Pasquarelli, A.; Denisenko, A.; Wrachtrup, J. Tailoring spin defects in diamond by lattice charging. Nat. Commun. 2017, 8, 15409. [Google Scholar] [CrossRef] [Green Version]
- Fairchild, B.; Rubanov, S.; Lau, D.; Robinson, M.; Suarez-Martinez, I.; Marks, N.; Greentree, A.; McCulloch, D.; Prawer, S. Mechanism for the amorphisation of diamond. Adv. Mater. 2012, 24, 2024–2029. [Google Scholar] [CrossRef]
- Cress, C.; Schmucker, S.; Friedman, A.; Dev, P.; Culbertson, J.; Lyding, J.; Robinson, J. Nitrogen-Doped Graphene and Twisted Bilayer Graphene via Hyperthermal Ion Implantation with Depth Control. ACS Nano 2016, 10, 3714–3722. [Google Scholar] [CrossRef]
- Tripathi, M.; Markevich, A.; Böttger, R.; Facsko, S.; Besley, E.; Kotakoski, J.; Susi, T. Implanting Germanium into Graphene. ACS Nano 2018, 12, 4641–4647. [Google Scholar] [CrossRef] [Green Version]
- Bai, Z.; Zhang, L.; Liu, L. Improving low-energy boron/nitrogen ion implantation in graphene by ion bombardment at oblique angles. Nanoscale 2016, 8, 8761–8772. [Google Scholar] [CrossRef]
- Fang, F.; Chen, Y.; Zhang, X.; Hu, X.; Zhang, G. Nanometric cutting of single crystal silicon surfaces modified by ion implantation. CIRP Ann.-Manuf. Techn. 2011, 60, 527–530. [Google Scholar] [CrossRef]
- Liu, B.; Xu, Z.; Wang, Y.; Gao, X.; Kong, R. Effect of ion implantation on material removal mechanism of 6H-SiC in nano-cutting: A molecular dynamics study. Comp. Mater. Sci. 2020, 174. [Google Scholar] [CrossRef]
- Xiao, H.; Dai, Y.; Duan, J.; Tian, Y.; Li, J. Material removal and surface evolution of single crystal silicon during ion beam polishing. Appl. Surf. Sci. 2021, 544, 148954. [Google Scholar] [CrossRef]
- Liu, L.; Xu, Z.; Li, R.; Zhu, R.; Xu, J.; Zhao, J.; Wang, C.; Nordlund, K.; Fu, X.; Fang, F. Molecular dynamics simulation of helium ion implantation into silicon and its migration. Nucl. Instrum. Meth. B 2019, 456, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, S. Structure and dynamics of crowdion defects in bcc metals. J. Micromech. Mol. Phys. 2018, 3, 1840003. [Google Scholar] [CrossRef]
- Abdullina, D.U.; Bebikhov, Y.V.; Khazimullin, M.V.; Kudreyko, A.A.; Dmitriev, S.V. Atom deposition and sputtering at normal incidence simulated by the Frenkel-Kontorova chain. Phys. Rev. E 2022, 106, 024207. [Google Scholar] [CrossRef]
- Shepelev, I.A.; Dmitriev, S.V.; Kudreyko, A.A.; Velarde, M.G.; Korznikova, E.A. Supersonic voidions in 2D Morse lattice. Chaos, Soliton. Fract. 2020, 140, 110217. [Google Scholar] [CrossRef]
- Shepelev, I.A.; Korznikova, E.A.; Bachurin, D.V.; Semenov, A.S.; Chetverikov, A.P.; Dmitriev, S.V. Supersonic crowdion clusters in 2D Morse lattice. Phys. Lett. A 2020, 384, 126032. [Google Scholar] [CrossRef]
- Shepelev, I.A.; Bachurin, D.V.; Korznikova, E.A.; Dmitriev, S.V. Energy exchange in M-crowdion clusters in 2D Morse lattice. Eur. Phys. J. B 2020, 93, 167. [Google Scholar] [CrossRef]
- Shepelev, I.A.; Bachurin, D.V.; Korznikova, E.A.; Bayazitov, A.M.; Dmitriev, S.V. Mechanism of remote vacancy emergence by a supersonic crowdion cluster in a 2D Morse lattice. Chin. J. Phys. 2021, 70, 355–362. [Google Scholar] [CrossRef]
- Shepelev, I.A.; Dmitriev, S.V.; Korznikova, E.A. Evolution of supersonic 2-crowdion clusters in a 3D Morse lattice. Eur. Phys. J. B 2021, 94, 1–9. [Google Scholar] [CrossRef]
- Korznikova, E.A.; Shunaev, V.V.; Shepelev, I.A.; Glukhova, O.E.; Dmitriev, S.V. Ab initio study of the propagation of a supersonic 2-crowdion in fcc Al. Comp. Mater. Sci. 2022, 204, 111125. [Google Scholar] [CrossRef]
- Korznikova, E.A.; Shepelev, I.A.; Chetverikov, A.P.; Dmitriev, S.V.; Fomin, S.Y.; Zhou, K. Dynamics and stability of subsonic crowdion clusters in 2D Morse crystal. J. Exp. Theor. Phys. 2018, 127, 1009–1015. [Google Scholar] [CrossRef]
- Dmitriev, S.V.; Korznikova, E.A.; Chetverikov, A.P. Supersonic N-crowdions in a two-dimensional Morse crystal. J. Exp. Theor. Phys. 2018, 126, 347–352. [Google Scholar] [CrossRef]
- Dmitriev, S.V.; Medvedev, N.N.; Chetverikov, A.P.; Zhou, K.; Velarde, M.G. Highly enhanced transport by supersonic N-crowdions. Phys. Status Solidi RRL 2017, 11, 1700298. [Google Scholar] [CrossRef]
- Kolesnikov, I.D.; Shepelev, I.A. Excitation and propagation of 1-crowdion in bcc niobium. Mater. Tecnol. Des. 2022, 4, 5. [Google Scholar] [CrossRef]
- Marjaneh, A.M.; Saadatmand, D.; Evazzade, I.; Babicheva, R.I.; Soboleva, E.G.; Srikanth, N.; Zhou, K.; Korznikova, E.A.; Dmitriev, S.V. Mass transfer in the Frenkel-Kontorova chain initiated by molecule impact. Phys. Rev. E 2018, 98, 023003. [Google Scholar] [CrossRef] [Green Version]
- Uche, O.U.; Perez, D.; Voter, A.F.; Hamilton, J.C. Rapid diffusion of magic-size islands by combined glide and vacancy mechanism. Phys. Rev. Lett. 2009, 103, 046101. [Google Scholar] [CrossRef] [PubMed]
- Matsukawa, Y.; Zinkle, S.J. One-dimensional fast migration of vacancy clusters in metals. Science 2007, 318, 959–962. [Google Scholar] [CrossRef]
- Mazilova, T.I.; Sadanov, E.V.; Voyevodin, V.N.; Ksenofontov, V.A.; Mikhailovskij, I.M. Impact-induced concerted mass transport on W surfaces by a voidion mechanism. Surf. Sci. 2018, 669, 10–15. [Google Scholar] [CrossRef]
- Flach, S.; Gorbach, A.V. Discrete breathers—Advances in theory and applications. Phys. Rep. 2008, 467, 1–116. [Google Scholar] [CrossRef]
- Babicheva, R.I.; Semenov, A.S.; Soboleva, E.G.; Kudreyko, A.A.; Zhou, K.; Dmitriev, S.V. Discrete breathers in a triangular β-Fermi-Pasta-Ulam-Tsingou lattice. Phys. Rev. E 2021, 103, 052202. [Google Scholar] [CrossRef]
- Dmitriev, S.V.; Korznikova, E.A.; Baimova, Y.A.; Velarde, M.G. Discrete breathers in crystals. Physics-Uspekhi 2016, 59, 446–461. [Google Scholar] [CrossRef] [Green Version]
- Bachurina, O.V. Plane and plane-radial discrete breathers in fcc metals. Model. Simul. Mater. Sci. 2019, 27, 055001. [Google Scholar] [CrossRef]
- Bachurina, O.V.; Kudreyko, A.A. Two-dimensional discrete breathers in fcc metals. Comp. Mater. Sci. 2020, 182, 109737. [Google Scholar] [CrossRef]
- Murzaev, R.T.; Bachurin, D.V.; Korznikova, E.A.; Dmitriev, S.V. Localized vibrational modes in diamond. Phys. Lett. A 2017, 381, 1003–1008. [Google Scholar] [CrossRef]
- Krylova, K.A.; Lobzenko, I.P.; Semenov, A.S.; Kudreyko, A.A.; Dmitriev, S.V. Spherically localized discrete breathers in bcc metals V and Nb. Compu. Mater. Sci. 2020, 180, 109695. [Google Scholar] [CrossRef]
- Zakharov, P.V.; Korznikova, E.A.; Dmitriev, S.V.; Ekomasov, E.G.; Zhou, K. Surface discrete breathers in Pt3Al intermetallic alloy. Surf. Sci. 2019, 679, 1–5. [Google Scholar] [CrossRef]
- Murzaev, R.T.; Babicheva, R.I.; Zhou, K.; Korznikova, E.A.; Fomin, S.Y.; Dubinko, V.I.; Dmitriev, S.V. Discrete breathers in alpha-uranium. Eur. Phys. J. B 2016, 89, 1–6. [Google Scholar] [CrossRef]
- Bachurina, O.V.; Murzaev, R.T.; Semenov, A.S.; Korznikova, E.A.; Dmitriev, S.V. Properties of moving discrete breathers in beryllium. Phys. Solid State 2018, 60, 989–994. [Google Scholar] [CrossRef]
- Bachurina, O.V. Linear discrete breather in fcc metals. Comp. Mater. Sci. 2019, 160, 217–221. [Google Scholar] [CrossRef]
- Murzaev, R.T.; Kistanov, A.A.; Dubinko, V.I.; Terentyev, D.A.; Dmitriev, S.V. Moving discrete breathers in bcc metals V, Fe and W. Comp. Mater. Sci. 2015, 98, 88–92. [Google Scholar] [CrossRef]
- Korznikova, E.A.; Morkina, A.Y.; Singh, M.; Krivtsov, A.M.; Kuzkin, V.A.; Gani, V.A.; Bebikhov, Y.V.; Dmitriev, S.V. Effect of discrete breathers on macroscopic properties of the Fermi-Pasta-Ulam chain. Eur. Phys. J. B 2020, 93, 1–9. [Google Scholar] [CrossRef]
- Morkina, A.Y.; Bachurin, D.V.; Dmitriev, S.V.; Semenov, A.S.; Korznikova, E.A. Modulational instability of delocalized modes in fcc copper. Materials 2022, 15, 5597. [Google Scholar] [CrossRef]
- Shcherbinin, S.A.; Krylova, K.A.; Chechin, G.M.; Soboleva, E.G.; Dmitriev, S.V. Delocalized nonlinear vibrational modes in fcc metals. Commun. Nonlinear Sci. 2022, 104, 106039. [Google Scholar] [CrossRef]
- Upadhyaya, A.; Semenova, M.N.; Kudreyko, A.A.; Dmitriev, S.V. Chaotic discrete breathers and their effect on macroscopic properties of triangular lattice. Commun. Nonlinear Sci. 2022, 112, 106541. [Google Scholar] [CrossRef]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; in’t Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2022, 271, 108171. [Google Scholar] [CrossRef]
- Cai, J.; Ye, Y.Y. Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys. Phys. Rev. B 1996, 54, 8398–8410. [Google Scholar] [CrossRef]
- Ziegler, J.; Ziegler, M.; Biersack, J. SRIM—The stopping and range of ions in matter (2010). Nucl. Instruments Methods Phys. Res. Sect. Beam Interact. Mater. Atoms 2010, 268, 1818–1823. [Google Scholar] [CrossRef] [Green Version]
- Nath, D.; Singh, F.; Das, R. Atomistic strain and structural analysis of 120 MeV Ni ions irradiated CdSe nanocrystals through molecular dynamics simulation method. Vacuum 2020, 182, 109794. [Google Scholar] [CrossRef]
- Zhang, Y.; Bae, I.T.; Sun, K.; Wang, C.; Ishimaru, M.; Zhu, Z.; Jiang, W.; Weber, W. Damage profile and ion distribution of slow heavy ions in compounds. J. Appl. Phys. 2009, 105. [Google Scholar] [CrossRef]
- Vo, H.; Reichardt, A.; Frazer, D.; Bailey, N.; Chou, P.; Hosemann, P. In situ micro-tensile testing on proton beam-irradiated stainless steel. J. Nucl. Mater. 2017, 493, 336–342. [Google Scholar] [CrossRef]
- Kaneko, T. MeV Cluster Ion Beam–Material Interaction. Quantum Beam Sci. 2022, 6, 6. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayazitov, A.M.; Bachurin, D.V.; Bebikhov, Y.V.; Korznikova, E.A.; Dmitriev, S.V. Supersonic Motion of Atoms in an Octahedral Channel of fcc Copper. Materials 2022, 15, 7260. https://doi.org/10.3390/ma15207260
Bayazitov AM, Bachurin DV, Bebikhov YV, Korznikova EA, Dmitriev SV. Supersonic Motion of Atoms in an Octahedral Channel of fcc Copper. Materials. 2022; 15(20):7260. https://doi.org/10.3390/ma15207260
Chicago/Turabian StyleBayazitov, Ayrat M., Dmitry V. Bachurin, Yuri V. Bebikhov, Elena A. Korznikova, and Sergey V. Dmitriev. 2022. "Supersonic Motion of Atoms in an Octahedral Channel of fcc Copper" Materials 15, no. 20: 7260. https://doi.org/10.3390/ma15207260
APA StyleBayazitov, A. M., Bachurin, D. V., Bebikhov, Y. V., Korznikova, E. A., & Dmitriev, S. V. (2022). Supersonic Motion of Atoms in an Octahedral Channel of fcc Copper. Materials, 15(20), 7260. https://doi.org/10.3390/ma15207260