Quantification of Thread Engagement in Screw-Plate Interface of Polyaxial Locking System Using X-ray Computed Tomography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Screw-Plate Constructs
2.2. Quantification of Thread-Engagement with Microct and Automated Image Processing
2.3. Relationship between ATE and Push-Out Strength
2.4. Statistical Analysis
3. Results
3.1. MicroCT Scans
3.2. Thread Engagement
3.3. Correlations with Push-Out Strength
4. Discussion
- -
- a shorter screw can be used,
- -
- a plate hole can be left empty,
- -
- a cortical screw can be used,
- -
- a polyaxial locking plate can be used instead of a fixed-angle locking plate,
- -
- intentionally use a fixed angle locking screw in an off-axis position.
5. Conclusions
- -
- ATE is affected by the insertion angle and locking torque. Thread engagement decreases with off-axis insertion angle and increases with applied torque,
- -
- push-out strength strongly correlates with ATE but the strengths of correlations are affected by the threshold, so careful adjustment of the image processing parameters is important.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hanschen, M.; Aschenbrenner, I.M.; Fehske, K.; Kirchhoff, S.; Keil, L.; Holzapfel, B.M.; Winkler, S.; Fuechtmeier, B.; Neugebauer, R.; Luehrs, S.; et al. Mono- versus Polyaxial Locking Plates in Distal Femur Fractures: A Prospective Randomized Multicentre Clinical Trial. Int. Orthop. 2014, 38, 857–863. [Google Scholar] [CrossRef]
- El-Zayat, B.F.; Efe, T.; Ruchholtz, S.; Khatib, S.; Timmesfeld, N.; Krüger, A.; Zettl, R. Mono- versus Polyaxial Locking Plates in Distal Femur Fractures—A Biomechanical Comparison of the Non-Contact-Bridging- (NCB) and the PERILOC-Plate. BMC Musculoskelet Disord. 2014, 15, 369. [Google Scholar] [CrossRef]
- Zettl, R.; Müller, T.; Topp, T.; Lewan, U.; Krüger, A.; Kühne, C.; Ruchholtz, S. Monoaxial versus Polyaxial Locking Systems: A Biomechanical Analysis of Different Locking Systems for the Fixation of Proximal Humeral Fractures. Int. Orthop. 2011, 35, 1245–1250. [Google Scholar] [CrossRef]
- Kaczmarek, J.; Bartkowiak, T.; Schuenemann, R.; Paczos, P.; Gapinski, B.; Bogisch, S.; Unger, M. Mechanical Performance of a Polyaxial Locking Plate and the Influence of Screw Angulation in a Fracture Gap Model. Vet. Comp. Orthop. Traumatol. 2020, 33, 36–44. [Google Scholar] [CrossRef]
- Hoffmann, M.F.; Lotzien, S.; Schildhauer, T.A. Outcome of Periprosthetic Femoral Fractures Following Total Hip Replacement Treated with Polyaxial Locking Plate. Eur. J. Orthop. Surg. Traumatol. 2017, 27, 107–112. [Google Scholar] [CrossRef]
- Bel, J.-C. Pitfalls and Limits of Locking Plates. Orthop. Traumatol. Surg. Res. 2019, 105, S103–S109. [Google Scholar] [CrossRef]
- Kaczmarek, J.; Bartkowiak, T.; Paczos, P.; Zawadzki, P.; Łączna, D.; Gapiński, B. What Is the Cost of Off-Axis Insertion of Locking Screws? A Biomechanical Comparison of a 3.5 Mm Fixed-Angle and 3.5 Mm Variable-Angle Stainless Steel Locking Plate Systems. Vet. Comp. Orthop. Traumatol. 2022, 35, 339–346. [Google Scholar] [CrossRef]
- Anders, J.L.; Cismoski, D.A.; Pattillo, P.; Fox, A.; Pitts, D. Analysis of Thread Engagement Requirements for Studs and Nuts. In Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 21 September 2008. [Google Scholar]
- Parisen, J.D. Thread Engagement in Cast Iron. SAE Technical Paper 680130, 1 February 1968. [Google Scholar] [CrossRef]
- Duan, W.; Joshi, S. Failure Analysis of Threaded Connections in Large-Scale Steel Tie Rods. Eng. Fail. Anal. 2011, 18, 2008–2018. [Google Scholar] [CrossRef]
- Kaczmarek, J.; Bartkowiak, T.; Paczos, P.; Gapinski, B.; Jader, H.; Unger, M. How Do the Locking Screws Lock? A Micro-CT Study of 3.5-Mm Locking Screw Mechanism. Vet. Comp. Orthop. Traumatol. 2020, 33, 316–326. [Google Scholar] [CrossRef]
- Marcián, P.; Borák, L.; Zikmund, T.; Horáčková, L.; Kaiser, J.; Joukal, M.; Wolff, J. On the Limits of Finite Element Models Created from (Micro)CT Datasets and Used in Studies of Bone-Implant-Related Biomechanical Problems. J. Mech. Behav. Biomed. Mater. 2021, 117, 104393. [Google Scholar] [CrossRef]
- Chevalier, Y. Numerical Methodology to Evaluate the Effects of Bone Density and Cement Augmentation on Fixation Stiffness of Bone-Anchoring Devices. J. Biomech. Eng. 2015, 137, 091005. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, Y.; Matsuura, M.; Krüger, S.; Traxler, H.; Fleege, C.; Rauschmann, M.; Schilling, C. The Effect of Cement Augmentation on Pedicle Screw Fixation under Various Load Cases. Bone Joint. Res. 2021, 10, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, Y.; Matsuura, M.; Krüger, S.; Fleege, C.; Rickert, M.; Rauschmann, M.; Schilling, C. Micro-CT and Micro-FE Analysis of Pedicle Screw Fixation under Different Loading Conditions. J. Biomech. 2018, 70, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Defino, H.; Vendrame, J. Role of Cortical and Cancellous Bone of the Vertebral Pedicle in Implant Fixation. Eur. Spine J. 2001, 10, 325–333. [Google Scholar] [CrossRef]
- Halvorson, T.L.; Kelley, L.A.; Thomas, K.A.; Whitecloud, T.S.; Cook, S.D. Effects of Bone Mineral Density on Pedicle Screw Fixation. Spine 1994, 19, 2415–2420. [Google Scholar] [CrossRef]
- Wirth, A.J.; Goldhahn, J.; Flaig, C.; Arbenz, P.; Müller, R.; van Lenthe, G.H. Implant Stability Is Affected by Local Bone Microstructural Quality. Bone 2011, 49, 473–478. [Google Scholar] [CrossRef]
- Torcasio, A.; Zhang, X.; Van Oosterwyck, H.; Duyck, J.; van Lenthe, G.H. Use of Micro-CT-Based Finite Element Analysis to Accurately Quantify Peri-Implant Bone Strains: A Validation in Rat Tibiae. Biomech. Model. Mechanobiol. 2012, 11, 743–750. [Google Scholar] [CrossRef]
- Steiner, J.A.; Christen, P.; Affentranger, R.; Ferguson, S.J.; van Lenthe, G.H. A Novel in Silico Method to Quantify Primary Stability of Screws in Trabecular Bone. J. Orthop. Res. 2017, 35, 2415–2424. [Google Scholar] [CrossRef]
- Batista, R.; Moreira, A.; Oliveira, S.J.; Mesquita, P.; Sampaio-Fernandes, J.; Figueiral, M.H. Deformation of Implant Retaining Screws—Study with Stereoscopic Microscopy and MicroCT. J. Esthet. Restor. Dent. 2022, 34, 1147–1155. [Google Scholar] [CrossRef]
- Claudino, M.; Mecca, L.; Soares, P.; Ribeiro, L.; Farago, P.; Bernardes, S.; Gonzaga, C.; de Araujo, M. Implant Osseointegration in Grafted Autogenous Bone Blocks Fixed with Screws and Cyanoacrylate-Based Adhesive: Histomorphometric and Micro-CT Analyses. Int. J. Oral. Maxillofac. Implant. 2022, 37, 311–319. [Google Scholar] [CrossRef]
- Li, J.Y.; Pow, E.H.N.; Zheng, L.W.; Ma, L.; Kwong, D.L.W.; Cheung, L.K. Quantitative Analysis of Titanium-Induced Artifacts and Correlated Factors during Micro-CT Scanning. Clin. Oral Implant. Res. 2014, 25, 506–510. [Google Scholar] [CrossRef] [PubMed]
- Alemayehu, D.-B.; Jeng, Y.-R. Three-Dimensional Finite Element Investigation into Effects of Implant Thread Design and Loading Rate on Stress Distribution in Dental Implants and Anisotropic Bone. Materials 2021, 14, 6974. [Google Scholar] [CrossRef] [PubMed]
- López-Campos, J.A.; Segade, A.; Casarejos, E.; Fernández, J.R.; Vilán, J.A.; Izquierdo, P. Finite Element Study of a Threaded Fastening: The Case of Surgical Screws in Bone. Symmetry 2018, 10, 335. [Google Scholar] [CrossRef]
- Mešić, E.; Muratović, E.; Redžepagić-Vražalica, L.; Pervan, N.; Muminović, A.J.; Delić, M.; Glušac, M. Experimental & FEM Analysis of Orthodontic Mini-Implant Design on Primary Stability. Appl. Sci. 2021, 11, 5461. [Google Scholar] [CrossRef]
Torque | Insertion Angle | ATE | ||
---|---|---|---|---|
Threshold = 0.25 | Threshold = 0.30 | Threshold = 0.35 | ||
1.5 Nm | 0 deg | 35.16% ± 2.28% | 29.37% ± 2.2% | 22.51% ± 2.51% |
5 deg | 22.06% ± 2.17% | 17.61% ± 2.77% | 13.72% ± 2.27% | |
10 deg | 12.89% ± 5.7% | 8.77% ± 4.82% | 5.62% ± 4.18% | |
15 deg | 14.52% ± 3.86% | 10.47% ± 3.59% | 7.46% ± 3.04% | |
20 deg | 14.41% ± 3.43% | 11.37% ± 3.05% | 6.56% ± 0.87% | |
2.5 Nm | 0 deg | 41.34% ± 4.37% | 37.33% ± 4.43% | 32.73% ± 5.39% |
5 deg | 28.88% ± 4.53% | 23.77% ± 5.01% | 15.36% ± 7.47% | |
10 deg | 18.77% ± 3.92% | 14.45% ± 3.29% | 10.02% ± 3.26% | |
15 deg | 17.6% ± 5.67% | 13.83% ± 4.46% | 10.06% ± 3.86% | |
20 deg | 19.31% ± 4.08% | 15.46% ± 3.48% | 12.65% ± 4.26% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartkowiak, T.; Madalińska, D.; Mietliński, P.; Kaczmarek, J.; Gapiński, B.; Pelic, M.; Paczos, P. Quantification of Thread Engagement in Screw-Plate Interface of Polyaxial Locking System Using X-ray Computed Tomography. Materials 2023, 16, 5926. https://doi.org/10.3390/ma16175926
Bartkowiak T, Madalińska D, Mietliński P, Kaczmarek J, Gapiński B, Pelic M, Paczos P. Quantification of Thread Engagement in Screw-Plate Interface of Polyaxial Locking System Using X-ray Computed Tomography. Materials. 2023; 16(17):5926. https://doi.org/10.3390/ma16175926
Chicago/Turabian StyleBartkowiak, Tomasz, Daria Madalińska, Patryk Mietliński, Jakub Kaczmarek, Bartosz Gapiński, Marcin Pelic, and Piotr Paczos. 2023. "Quantification of Thread Engagement in Screw-Plate Interface of Polyaxial Locking System Using X-ray Computed Tomography" Materials 16, no. 17: 5926. https://doi.org/10.3390/ma16175926
APA StyleBartkowiak, T., Madalińska, D., Mietliński, P., Kaczmarek, J., Gapiński, B., Pelic, M., & Paczos, P. (2023). Quantification of Thread Engagement in Screw-Plate Interface of Polyaxial Locking System Using X-ray Computed Tomography. Materials, 16(17), 5926. https://doi.org/10.3390/ma16175926