Properties of Adhesive Mortars Using Waste Glass
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blengini, G.A.; Busto, M.; Fantoni, M.; Fino, D. Eco-Efficient Waste Glass Recycling: Integrated Waste Management and Green Product Development through LCA. Waste Manag. 2012, 32, 1000–1008. [Google Scholar] [CrossRef] [PubMed]
- Almendro-Candel, M.B.; Jordán Vidal, M.M. Glasses, Frits and Glass-Ceramics: Processes and Uses in the Context of Circular Economy and Waste Vitrification. Coatings 2024, 14, 346. [Google Scholar] [CrossRef]
- Butler, J.H.; Hooper, P.D. Glass Waste. In Waste; Elsevier: Amsterdam, The Netherlands, 2019; pp. 307–322. [Google Scholar]
- Delbari, S.A.; Hof, L.A. Glass Waste Circular Economy—Advancing to High-Value Glass Sheets Recovery Using Industry 4.0 and 5.0 Technologies. J. Clean. Prod. 2024, 462, 142629. [Google Scholar] [CrossRef]
- Bisikirske, D.; Blumberga, D.; Vasarevicius, S.; Skripkiunas, G. Multicriteria Analysis of Glass Waste Application. Environ. Clim. Technol. 2019, 23, 152–167. [Google Scholar] [CrossRef]
- Dyer, T.D. Glass Recycling. In Handbook of Recycling; Elsevier: Amsterdam, Netherlands, 2014; pp. 191–209. [Google Scholar]
- Kazmi, D.; Williams, D.J.; Serati, M. Waste Glass in Civil Engineering Applications—A Review. Int. J. Appl. Ceram. Technol. 2020, 17, 529–554. [Google Scholar] [CrossRef]
- Beerkens, R.G.C.; Santen, E.V. Recycling in Container Glass Production: Present Problems in European Glass Industry. In Proceedings of the 66th Conference on Glass Problems: Ceramic Engineering and Science Proceedings, Urbana, IL, USA, 24–26 October 2005; pp. 181–202. [Google Scholar]
- Bristogianni, T.; Oikonomopoulou, F. Glass Up-Casting: A Review on the Current Challenges in Glass Recycling and a Novel Approach for Recycling “as-Is” Glass Waste into Volumetric Glass Components. Glass Struct. Eng. 2023, 8, 255–302. [Google Scholar] [CrossRef]
- Moser, H. Glass Recycling Technology of Today. In Proceedings of the 72nd Conference on Glass Problems: A Collection of Papers Presented at the 72nd Conference on Glass Problems, Columbus, OH, USA, 18–19 October 2011; pp. 217–220. [Google Scholar]
- Sordoń-Kulibaba, B. Zagospodarowanie Odpadów Szklanych. Świat szkła 2008, 7–8, 46–49. [Google Scholar]
- Duda, J.; Szamałek, K. Energia i Środowisko w Technologiach Materiałów Budowlanych, Ceramicznych, Szklarskich i Ogniotrwałych: Praca Zbiorowa; Energia: Warsaw, Poland, 2010; ISBN 9788362105311. [Google Scholar]
- Thomason, J.L. Glass Fibre Sizing: A Review. Compos. Part A Appl. Sci. Manuf. 2019, 127, 105619. [Google Scholar] [CrossRef]
- Bignozzi, M.C.; Saccani, A.; Barbieri, L.; Lancellotti, I. Glass Waste as Supplementary Cementing Materials: The Effects of Glass Chemical Composition. Cem. Concr. Compos. 2015, 55, 45–52. [Google Scholar] [CrossRef]
- Khan, M.N.N.; Saha, A.K.; Sarker, P.K. Reuse of Waste Glass as a Supplementary Binder and Aggregate for Sustainable Cement-Based Construction Materials: A Review. J. Build. Eng. 2020, 28, 101052. [Google Scholar] [CrossRef]
- Tamanna, N.; Tuladhar, R. Sustainable Use of Recycled Glass Powder as Cement Replacement in Concrete. Open Waste Manag. J. 2020, 13, 1–13. [Google Scholar] [CrossRef]
- Ibrahim, K.I.M. Recycled Waste Glass Powder as a Partial Replacement of Cement in Concrete Containing Silica Fume and Fly Ash. Case Stud. Constr. Mater. 2021, 15, e00630. [Google Scholar] [CrossRef]
- Ibrahim, S.; Meawad, A. Towards Green Concrete: Study the Role of Waste Glass Powder on Cement/Superplasticizer Compatibility. J. Build. Eng. 2022, 47, 103751. [Google Scholar] [CrossRef]
- Rutkowska, G.; Lipiński, R.; Wichowski, P. Wpływ Rozdrobnionych Odpadów Szklanych Na Wybrane Właściwości Betonów Sporządzonych z Ich Udziałem. Przegląd Nauk. Inżynieria I Kształtowanie Sr. 2019, 27, 463–475. [Google Scholar] [CrossRef]
- Zanwar, A.B.; Patil, Y.D. Utilization of Waste Glass Powder as a Cementitious Material in Concrete. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1070, 012040. [Google Scholar] [CrossRef]
- He, Z.H.; Zhan, P.M.; Du, S.G.; Liu, B.J.; Yuan, W.B. Creep Behavior of Concrete Containing Glass Powder. Compos. Part B Eng. 2019, 166, 13–20. [Google Scholar] [CrossRef]
- Rashad, A.M. Recycled Waste Glass as Fine Aggregate Replacement in Cementitious Materials Based on Portland Cement. Constr. Build. Mater. 2014, 72, 340–357. [Google Scholar] [CrossRef]
- Vaitkevičius, V.; Šerelis, E.; Hilbig, H. The Effect of Glass Powder on the Microstructure of Ultra High Performance Concrete. Constr. Build. Mater. 2014, 68, 102–109. [Google Scholar] [CrossRef]
- Kamali, M.; Ghahremaninezhad, A. An Investigation into the Hydration and Microstructure of Cement Pastes Modified with Glass Powders. Constr. Build. Mater. 2016, 112, 915–924. [Google Scholar] [CrossRef]
- Patel, D.; Tiwari, R.P.; Shrivastava, R.; Yadav, R.K. Effective Utilization of Waste Glass Powder as the Substitution of Cement in Making Paste and Mortar. Constr. Build. Mater. 2019, 199, 406–415. [Google Scholar] [CrossRef]
- Aliabdo, A.A.; Abd Elmoaty, A.E.M.; Aboshama, A.Y. Utilization of Waste Glass Powder in the Production of Cement and Concrete. Constr. Build. Mater. 2016, 124, 866–877. [Google Scholar] [CrossRef]
- Chandra Paul, S.; Šavija, B.; Babafemi, A.J. A Comprehensive Review on Mechanical and Durability Properties of Cement-Based Materials Containing Waste Recycled Glass. J. Clean. Prod. 2018, 198, 891–906. [Google Scholar] [CrossRef]
- Ghamari, A.; Powęzka, A.; Kytinou, V.K.; Amini, A. An Innovative Fire-Resistant Lightweight Concrete Infill Wall Reinforced with Waste Glass. Buildings 2024, 14, 626. [Google Scholar] [CrossRef]
- Abderraouf Belkadi, A.; Kessal, O.; Berkouche, A.; Noui, A.; Eddine Daguiani, S.; Dridi, M.; Benaniba, S.; Tayebi, T. Experimental Investigation into the Potential of Recycled Concrete and Waste Glass Powders for Improving the Sustainability and Performance of Cement Mortars Properties. Sustain. Energy Technol. Assess. 2024, 64, 103710. [Google Scholar] [CrossRef]
- Serpa, D.; Santos Silva, A.; de Brito, J.; Pontes, J.; Soares, D. ASR of Mortars Containing Glass. Constr. Build. Mater. 2013, 47, 489–495. [Google Scholar] [CrossRef]
- Shevchenko, V.V. ASR Effect in Glasses Used as Additives to Portland Cement. Glass Phys. Chem. 2012, 38, 466–471. [Google Scholar] [CrossRef]
- Jiang, Y.; Ling, T.-C.; Mo, K.H.; Shi, C. A Critical Review of Waste Glass Powder—Multiple Roles of Utilization in Cement-Based Materials and Construction Products. J. Environ. Manag. 2019, 242, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Musgraves, J.; Hu, J.; Calves, L. Handbook of Glass; Musgraves, J.D., Hu, J., Calvez, L., Eds.; Springer Handbooks; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-319-93726-7. [Google Scholar]
- Szewczenko, W. Glass in Building; DULP: Lviv, Ukraine, 1996. [Google Scholar]
- Falcone, J. Silicon Compounds: Anthropogenic Silicas and Silicates. In Kirk-Othmer Encyclopedia of Chemical Technology; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Roggendorf, H. Water Glass. In Encyclopedia of Glass Science, Technology, History, and Culture; Wiley: Hoboken, NJ, USA, 2021; pp. 857–865. [Google Scholar]
- Scholze, H. Glass Nature, Structure, and Properties. In Glass; Springer New York: New York, NY, USA, 1991; pp. 156–364. [Google Scholar]
- Baliński, A. O Strukturze Uwodnionego Krzemianu Sodu Jako Spoiwa Mas Formierskich; Instytut Odlewnictwa: Kraków, Poland, 2009. [Google Scholar]
- Czarnecki, L.; Broniewski, T.; Henning, O. Chemia w Budownictwie; Wydawnictwo Arkady: Warszawa, Poland, 2010. [Google Scholar]
- Łukowski, P. Modyfikacja Materiałowa Betonu; Stowarzyszenie Producentów Cementu: Kraków, Poland, 2016. [Google Scholar]
- Shi, C.; Roy, D.; Krivenko, P. Alkali-Activated Cements and Concretes; CRC Press: Boca Raton, FL, USA, 2003; ISBN 9780429180712. [Google Scholar]
- Provis, J.L.; Van Deventer, J.S.J. Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM.; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Provis, J.L. Alkali-Activated Materials. Cem. Concr. Res. 2018, 114, 40–48. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymer Chemistry&Applications, 5th ed.; Institut Geopolymere: Saint-Quentin, France, 2020. [Google Scholar]
- Ogłaza, L. Sodium and Potassium Water Glasses: Present and New Challenges. Chemik 2010, 64, 133–136. [Google Scholar]
- The OxyChem Sodium Silicates Handbook; Occidental Petroleum Corporation: Houston, TX, USA, 2018; Available online: https://www.oxy.com/siteassets/documents/chemicals/products/other-essentials/silicate.pdf (accessed on 1 March 2024).
- Rabek, J.F. Contemporary Knowledge of Polymers; 2017.
- Available online: https://pph-Rewa.Pl/Produkt/Kulki-Szklane/ (accessed on 30 July 2023).
- Available online: http://www.Zchrudniki.Com.Pl (accessed on 30 July 2023).
- PN-EN, 1936: 2010; Natural Stone Test Methods—Determination of Real Density and Apparent Density, and of Total and Open Porosity. Polish Committee for Standardization: Warsaw, Poland, 2013.
- PN-EN, 196–6; Cement Testing Methods—Part 6: Determination of Grinding Degree. Polish Committee for Standardization: Warsaw, Poland, 2019; p. 17.
- PN-EN 1015-12:2002; Methods of Test for Mortars for Masonry—Part 12: Determination of Adhesion Strenngth of Hardened Rendering and Plastering Mortars on Substrates. Polish Committee for Standardization: Warsaw, Poland, 2002; p. 12.
- PL237507B1; Method of Determining the Alkaline Activity of Cement Products. 2018; Warsaw, Poland, p. 5.
- PN-EN ISO 148-1:2017-02; Metallic Materials—Charpy Pendulum Impact Test—Part 1: Test Method. Polish Committee for Standardization: Warsaw, Poland, 2017.
- PN-EN, 196–1:2016; Methods of Testing Cement. Determination of Strength. Polish Committee for Standardization: Warsaw, Poland, 2016; p. 34.
- Yashchyshyn, Y. Glass Technology.Physics and Chemistry of Glass. Part 1; Beskyd Bit Publishing House: Lviv, Ukraine, 2008. [Google Scholar]
- Yashchyshyn, Y.; Vakhula, Y.; Zheplinsky, T.; Koziy, O. Glass Technology. Part 3; Publishing House: Lviv, Ukraine, 2011. [Google Scholar]
- Kotsay, G.; Szewczenko, W. Extraction of Alkalis from Silicate Materials PART 2—Crystalline Silicate Materials. Materials 2022, 15, 6059. [Google Scholar] [CrossRef]
- Handke, M. Krystalochemia Krzemianów; AGH. Uczelniane Wydawnictwa Naukowo-Dydaktyczne: Kraków, Poland, 2008. [Google Scholar]
- Sedliak, J.; Mamiński, M. Adhesives and Adhesive Processes; SGGW Publishing House: Warsaw, Poland, 2016. [Google Scholar]
- Szewczenko, W.; Kotsay, G. Influence of Water Glass Introduction Methods on Selected Properties of Portland Cement. Materials 2021, 14, 3257. [Google Scholar] [CrossRef] [PubMed]
- Shevchenko, V.V.; Kotsay, G.N. The Effect of Additives of Water-Soluble Glass on the Extraction of Alkali from Portland Cement. Glass Phys. Chem. 2019, 45, 596–598. [Google Scholar] [CrossRef]
Materials | Oxides (wt %) | Siliceous Module | Density, g/cm3 | Specific Surface, m2/g | |||||
---|---|---|---|---|---|---|---|---|---|
SiO2 | Na2O | K2O | Al2O3 | CaO + MgO | H2O | ||||
Waste glass (GW) | 72 | 10 | 4 | 1.0 | 12.0 | - | - | 2.43 | 3987 |
Sodium water glass (SWG) | 26.38 | 8.02 | - | - | - | 65.6 | 3.4 | 1.45 | - |
Potassium water glass (PWG) | 21.41 | - | 7.59 | - | - | 71.0 | 4.4 | 1.25 | - |
N | Composition of Glass Polymer (GP) (wt %) | Tensile Strength ft, (MPa) | Zone Fracture | Note | |||||
---|---|---|---|---|---|---|---|---|---|
Sodium Water Glass (SWG) | Potassium Water Glass (PWG) | Waste Glass (GW) | 7 Days | 14 Days | 21 Days | 28 Days | |||
1 | 100 | - | - | 0.06 | 0.46 | 0.54 | 0.65 | Fracture in GP | fcoh SWG |
2 | - | 100 | - | 0.07 | 0.07 | 0.10 | 0.70 | Fracture in GP | fcoh PWG |
3 | 50.0 | 50.0 | - | 0.46 | 0.52 | 0.71 | 0.69 | Fracture in GP | fcoh SWG + PWG |
4 | 80.0 | 20.0 | - | 0.47 | 0.53 | 0.62 | 0.67 | Fracture in GP | fcoh SWG + PWG |
5 | 33.30 | - | 67.70 | 4.11 | 3.79 | 3.96 | 4.02 | Fracture in concrete | fcoh.c * |
6 | - | 33.30 | 67.70 | 3.66 | 3.13 | 3.21 | 3.61 | Fracture in concrete | fcoh.c * |
N | Adhesive Substance | ft, (MPa) |
---|---|---|
1 | SWG-100% | 1.4 |
2 | PWG-100% | 0.7 |
3 | GP (SWG:GW/1:2) | 6.5 |
4 | GP (PWG:GW/1:2) | 5.1 |
5 | GP (SWG:GW */1:2) | 2.3 |
6 | GP (PWG:GW */1:2) | 1.9 |
N | Composition of Glass Polymer * (wt %) | Tensile Strength in Bending (MPa) | Zone Fracture | Note | |||||
---|---|---|---|---|---|---|---|---|---|
Sodium Water Glass (SWG) | Potassium Water Glass (PWG) | Waste Glass (GW) | 7 Days | 14 Days | 21 Days | 28 Days | |||
1 | 33.3 | - | 67.7 | 3.04 | 3.39 | 3.38 | 3.32 | By concrete | fcoh.c |
2 | - | 33.3 | 67.7 | 3.38 | 3.63 | 3.38 | 3.19 | By concrete | fcoh.c |
N | Composition of Solid Glass Polymer (wt %) | Alkaline Activity—AA (ppm/dm2) | ∑Na+ + К+ | |
---|---|---|---|---|
Na+ | K+ | |||
1 | SWG-100 | 1.940 | 0.077 | 2.017 |
2 | PWG-100 | 0.095 | 8.060 | 8.155 |
3 | SWG:PWG/1:1 | 0.810 | 2.380 | 3.190 |
4 | SWG:PWG/4:1 | 1.840 | 2.200 | 4.040 |
5 | GW(powder) | 0.080 | 0.022 | 0.102 |
6 | GW-dA *(powder) | 0.031 | 0.008 | 0.039 |
7 | SWG:GW/1:1 | 1.700 | 0.190 | 1.890 |
8 | SWG:GW/1:2 | 1.460 | 0.080 | 1.540 |
9 | PWG:GW/1:1 | 0.380 | 3.970 | 4.350 |
10 | PWG:GW/1:2 | 0.170 | 5.560 | 5.730 |
11 | SWG:GWdA/1:1 | 1.350 | 0.055 | 1.405 |
12 | PWG:GWdA/1:1 | 0.130 | 4.400 | 4.530 |
13 | SWG:PWG:GW/1:1:2 | 1.460 | 2.290 | 3.750 |
14 | SWG:PWG:GWdA/1:1:2 | 1.020 | 1.410 | 2.430 |
N | Composition of Glass Polymer | Impact Strength (J) | Compressive Strength (MPa) | ||||
---|---|---|---|---|---|---|---|
by 5 Days | by 9 Days | by 16 Days | by 5 Days | by 9 Days | by 16 Days | ||
1 | SWG:GW/1:1 | 0.213 | 0.220 | 0.225 | 2.86 | 4.67 | 5.83 |
2 | SWG:GW/1:2 | 0.222 | 0.230 | 0.234 | 2.86 | 4.70 | 5.85 |
3 | SWG:GW/1:3 | 0.168 | 0.171 | 0.201 | 2.44 | 3.82 | 4.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotsay, G.; Szewczenko, W. Properties of Adhesive Mortars Using Waste Glass. Materials 2024, 17, 3853. https://doi.org/10.3390/ma17153853
Kotsay G, Szewczenko W. Properties of Adhesive Mortars Using Waste Glass. Materials. 2024; 17(15):3853. https://doi.org/10.3390/ma17153853
Chicago/Turabian StyleKotsay, Galyna, and Wiktor Szewczenko. 2024. "Properties of Adhesive Mortars Using Waste Glass" Materials 17, no. 15: 3853. https://doi.org/10.3390/ma17153853
APA StyleKotsay, G., & Szewczenko, W. (2024). Properties of Adhesive Mortars Using Waste Glass. Materials, 17(15), 3853. https://doi.org/10.3390/ma17153853