Effect of Chlorine Salt Content on the Microstructural Development of C-S-H Gels and Ca(OH)2 at Different Curing Temperatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Materials
2.2. Specimen Preparation and Mixing Ratio
2.3. Test Methods and Procedures
2.3.1. SEM
2.3.2. XRD
2.3.3. DSC-TG Analysis
3. Analysis of Results
3.1. Effect on C-S-H Gel under Different Influencing Factors
3.1.1. Effect of Chloride Ion on C-S-H Gel
3.1.2. Effect of Fly Ash on C-S-H Gels
3.1.3. Effect of Maintenance Age on the Relative Content of C-S-H Gel
3.2. Analysis of Different Influencing Factors on CH Content
3.2.1. Effect of Chloride Ion on CH Content
3.2.2. Effect of Fly Ash on CH Content
3.2.3. Effect of Age of Maintenance on CH Content
3.3. Gray Correlation Analysis
3.3.1. Model Analysis
3.3.2. Discussion of Test Results
4. Conclusions
- (1)
- Chloride ions incorporated into the cement paste increased the concentration of calcium compounds with the increase in the dosage of chloride ions, thus increasing the amount of C-S-H gel production. At 1.3% chloride ion dosage, the content of C-S-H gel increased by 16.85% under 50 °C curing compared with the control group. It increased by 14.2% under standard curing compared with the control group.
- (2)
- Fly ash is rich in active SiO2 and AI2O3, which can react with CH generated by cement hydration to produce C-S-H gel. Compared with standard curing, 50 °C curing can stimulate the activity of fly ash and generate a large amount of C-S-H gel. The content of C-S-H gel increased by 13.55% under 50 °C curing compared with the control group when 25% of fly ash was added. The CH content decreased by 34.18% under 50 °C curing conditioning compared to control.
- (3)
- The microstructure of cement paste under 50 °C curing accumulates the hydration products with the increase of curing age, and the microstructure formed is more compact compared with that of standard curing. The contents of C-S-H gel and CH increased most at the elevated curing temperature at 7 days of curing, increasing by 9.35% and 19.58%, respectively.
- (4)
- The content of C-S-H gel and CH had the greatest gray correlation with fly ash dosage. The correlation between the content of C-S-H gel and the fly ash dosage was 0.801 and 0.806 at 50 °C curing and standard curing, respectively. The correlation between CH content and fly ash dosage was 0.76 and 0.799 at 50 °C curing and standard curing, respectively. The highest correlation between the chloride dosage and age of maintenance and the CH content under standard curing were 0.788 and 0.753, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meijuan, S.; Rui, Y.; Chunyuan, J. Quantitative effect of seawater on the hydration kinetics and microstructure development of Ultra High Performance Concrete (UHPC). Constr. Build. Mater. 2022, 340, 127733. [Google Scholar]
- Lu, Z.; Li, W.; Zeng, X. Durability of BFRP bars and BFRP reinforced seawater sea-sand concrete beams immersed in water and simulated seawater. Constr. Build. Mater. 2023, 363, 129845. [Google Scholar] [CrossRef]
- Chen, L.; Su, R. On the corrosion rate measurement of reinforcing steel in chloride induced macrocell corrosion. Cem. Concr. Compos. 2022, 134, 104775. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Y.; Cai, Y.; Lam, W.L.; Lu, J.-X.; Shen, P.; Poon, C.S. Mechanisms on Accelerating Hydration of Alite Mixed with Inorganic Salts in Seawater and Characteristics of Hydration Products. Acs Sustain. Chem. Eng. 2021, 9, 10479–10490. [Google Scholar] [CrossRef]
- Yaseen, S.A.; Yiseen, G.A.; Poon, C.S.; Li, Z. Influence of seawater on the morphological evolution and the microchemistry of hydration products of tricalcium silicates (C3S). Acs Sustain. Chem. Eng. 2020, 8, 15875–15887. [Google Scholar] [CrossRef]
- Cai, Y.; Xuan, D.; Hou, P.; Shi, J.; Poon, C.S. Effect of seawater as mixing water on the hydration behaviour of tricalcium aluminate. Cem. Concr. Res. 2021, 149, 106565. [Google Scholar] [CrossRef]
- Li, P.; Li, W.; Sun, Z.; Shen, L.; Sheng, D. Development of sustainable concrete incorporating seawater: A critical review on cement hydration, microstructure and mechanical strength. Cem. Concr. Compos. 2021, 121, 104100. [Google Scholar] [CrossRef]
- Yan, Y.; Tang, J.; Geng, G. Exploring microstructure development of C-S-H gel in cement blends with starch-based polysaccharide additives. Case Stud. Constr. Mater. 2023, 19, e02589. [Google Scholar] [CrossRef]
- Tulio, H. Permeability of C-S-H. Cem. Concr. Res. 2024, 176, 107408. [Google Scholar]
- Sun, Y.; Lu, J.; Poon, C.S. Strength degradation of seawater-mixed alite pastes: An explanation from statistical nanoindentation perspective. Cem. Concr. Res. 2022, 152, 106669. [Google Scholar] [CrossRef]
- Bullard, J.W.; Jennings, H.M.; Livingston, R.A.; Nonat, A.; Scherer, G.W.; Schweitzer, J.S.; Scrivener, K.L.; Thomas, J.J. Mechanisms of cement hydration. Cem. Concr. Res. 2011, 41, 1208–1223. [Google Scholar] [CrossRef]
- Marty, N.C.M.; Grangeon, S.; Warmont, F.; Lerouge, C. Alteration of nanocrystalline calcium silicate hydrate (C-S-H) at pH 9.2 and room temperature: A combined mineralogical and chemical study. Mineral. Mag. 2018, 79, 437–458. [Google Scholar] [CrossRef]
- Hu, C.; Ruan, Y.; Yao, S.; Wang, F.; He, Y.; Gao, Y. Insight into the evolution of the elastic properties of calcium-silicate-hydrate (C-S-H) gel. Cem. Concr. Compos. 2019, 104, 103342. [Google Scholar] [CrossRef]
- Chang, H.; Feng, P.; Lyu, K.; Liu, J. A novel method for assessing C-S-H chloride adsorption in cement pastes. Constr. Build. Mater. 2019, 225, 324–331. [Google Scholar] [CrossRef]
- Yoshida, S.; Elakneswaran, Y.; Nawa, T. Electrostatic properties of C–S–H and C-A-S-H for predicting calcium and chloride adsorption. Cem. Concr. Compos. 2021, 121, 104109. [Google Scholar] [CrossRef]
- De Weerdt, K.; Colombo, A.; Coppola, L.; Justnes, H.; Geiker, M.R. Impact of the associated cation on chloride binding of Portland cement paste. Cem. Concr. Res. 2015, 68, 196–202. [Google Scholar] [CrossRef]
- De Weerdt, K.; Orsáková, D.; Geiker, M.R. The impact of sulphate and magnesium on chloride binding in Portland cement paste. Cem. Concr. Res. 2014, 65, 30–40. [Google Scholar] [CrossRef]
- Bu, Y.; Luo, D.; Weiss, J. Using Fick’s second law and Nernst–Planck approach in prediction of chloride ingress in concrete materials. Adv. Civil. Eng. Mater. 2014, 3, 566–585. [Google Scholar] [CrossRef]
- Qiao, C.; Ni, W.; Wang, Q.; Weiss, J. Chloride diffusion and wicking in concrete exposed to NaCl and MgCl2 solutions. J. Mater. Civ. Eng. 2018, 30, 04018015. [Google Scholar] [CrossRef]
- Shi, Z.; Geiker, M.R.; De Weerdt, K.; Østnor, T.A.; Lothenbach, B.; Winnefeld, F.; Skibsted, J. Role of calcium on chloride binding in hydrated Portland cement–metakaolin–limestone blends. Cem. Concr. Res. 2017, 95, 205–216. [Google Scholar] [CrossRef]
- Chang, H. Chloride binding capacity of pastes influenced by carbonation under three conditions. Cem. Concr. Compos. 2017, 84 (Suppl. C), 1–9. [Google Scholar] [CrossRef]
- Qiao, C.; Suraneni, P.; Ying, T.N.W.; Choudhary, A.; Weiss, J. Chloride binding of cement pastes with fly ash exposed to CaCl2 solutions at 5 and 23 °C. Cem. Concr. Compos. 2019, 97, 43–53. [Google Scholar] [CrossRef]
- Jain, A.; Gencturk, B.; Pirbazari, M.; Dawood, M.; Belarbi, A.; Sohail, M.G.; Kahraman, R. Influence of pH on chloride binding isotherms for cement paste and its components. Cem. Concr. Res. 2021, 143, 106378. [Google Scholar] [CrossRef]
- Otsuki, N.; Saito, T.; Tadokoro, Y. Possibility of seawater as mixing water in concrete. J. Civ. Eng. Archit. 2012, 6, 1273–1279. [Google Scholar]
- Honglei, C.; Shuyuan, F.; Zhengkun, G.; Yan, M.; Zhaofeng, L.; Zhiwu, Z.; Jian, L.; Lin, Y. Chloride binding behavior of calcium silicate hydrates and Friedel’s salt of pastes. J. Build. Eng. 2023, 76, 107318. [Google Scholar]
- Bresson, B.; Meducin, F.; Zanni, H.; Noik, C. Hydration of tricalcium silicate (C3S) at high temperature and high pressure. J. Mater. Sci. 2002, 37, 5355–5365. [Google Scholar] [CrossRef]
- Alhozaimy, A.; Jaafar, M.; Al-Negheimish, A.; Abdullah, A.; Taufiq-Yap, Y.; Noorzaei, J.; Alawad, O. Properties of high strength concrete using white and dune sands under normal and autoclaved curing. Constr. Build. Mater. 2012, 27, 218–222. [Google Scholar] [CrossRef]
- Wongkeo, W.; Thongsanitgarn, P.; Pimraksa, K.; Chaipanich, A. Compressive strength, flexural strength and thermal conductivity of autoclaved concrete block made using bottom ash as cement replacement materials. Mater. Des. 2012, 35, 434–439. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, Q. The effect of temperature on dissolution activity of fly ash and metakaolin in alkaline conditions. Cem. Concr. Compos. 2024, 146, 105363. [Google Scholar] [CrossRef]
- Sandeep, S.; Satyajit, P. Development of angular-shaped lightweight coarse aggregate with low calcium fly ash using autoclave curing—Experimental and microstructural study. J. Build. Eng. 2023, 79, 107860. [Google Scholar]
- ASTM C31/C31M-24b; Standard Practice for Making and Curing Concrete Test Specimens in the Field. American Society for Testing and Materials: West Conshohocken, PA, USA, 2024.
- Qu, F.; Li, W.; Guo, Y.; Zhang, S.; Zhou, J.; Wang, K. Chloride-binding capacity of cement-GGBFS-nanosilica composites under seawater chloride-rich environment. Constr. Build. Mater. 2022, 342, 127890. [Google Scholar] [CrossRef]
- Cai, Y.; Xuan, D.; Poon, C.S. Influence of availability of calcium on the hydration of tricalcium aluminate (C3A) in seawater mixed C3A-gypsum system. J. Am. Ceram. Soc. 2022, 105, 5895–5910. [Google Scholar] [CrossRef]
- Long, W.-J.; Zhang, X.; Feng, G.L.; Xie, J.; Xing, F.; Dong, B.; Zhang, J.; Khayat, K.H. Investigation on chloride binding capacity and stability of Friedel’s salt in graphene oxide reinforced cement paste. Cem. Concr. Compos. 2022, 132, 104603. [Google Scholar] [CrossRef]
- Zhou, J.; He, X. Experimental Study on Internal and External Salt Attack from Seawater and Sea-Sand to Mortars. KSCE J. Civ. Eng. 2021, 25, 2951–2961. [Google Scholar] [CrossRef]
- Tretteberg, A. The Mechanism of Chloride Penetration in Con Crete; SINTEF Report STF65 A77070, 1977-12-30; SINTEF: Trondheim, Norway, 1977. [Google Scholar]
- Qu, F.; Li, W.; Wang, K.; Tam Vivian, W.Y.; Zhang, S. Effects of seawater and undesalted sea sand on the hydration products, mechanical properties and microstructures of cement mortar. Constr. Build. Mater. 2021, 310, 125229. [Google Scholar] [CrossRef]
- Hossain, F.M.Z.; Shahjalal, M.; Islam, K.; Tiznobaik, M.; Alam, M.S. Mechanical properties of recycled aggregate concrete containing crumb rubber and polypropylene fiber. Constr. Build. Mater. 2019, 225, 983–996. [Google Scholar] [CrossRef]
- Singh, G.; Singh, N. Destructive and non-destructive strength performance of iron slag recycled aggregate concrete using regression and grey correlation analysis. Measurement 2025, 239, 115422. [Google Scholar] [CrossRef]
- Rahman, R.O.A.; Rakhimov, R.Z.; Rakhimova, N.R.; Ojovan, M.I. Cementitious Materials for Nuclear Waste Immobilization; Wiley: Hoboken, NJ, USA, 2014; p. 248. [Google Scholar]
- Rahman, R.O.A.; Ojovan, M.I. Sustainability of Life Cycle Management for Nuclear Cementation-Based Technologies; Woodhead Publishing: Sawston, UK, 2021. [Google Scholar]
Chemical Composition | SiO2 | CaO | Al2O3 | Fe2O3 | MgO | K2O | Na2O | SO3 |
---|---|---|---|---|---|---|---|---|
Content in fly ash /% | 53.80 | 3.16 | 24.60 | 9.32 | 1.52 | 0.82 | 0.28 | 0 |
Content in cement /% | 21.90 | 59.31 | 6.26 | 3.79 | 1.63 | 0 | 0 | 2.41 |
Specimen Number | Water/g | Cement/g | Fly Ash/g | Water Reducing Agent/g | Cl− Content/% | Maintenance Environment |
---|---|---|---|---|---|---|
F0C0 | 200 | 500 | 0 | 1 | 0 | 20 °C curing (Standard curing) 50 °C curing (High temperature curing) |
F15C0 | 200 | 425 | 75 | 1 | 0 | |
F25C0 | 200 | 375 | 125 | 1 | 0 | |
F0C0 | 200 | 500 | 0 | 1 | 0.5 | |
F15C0.5 | 200 | 425 | 75 | 1 | 0.5 | |
F25C0.5 | 200 | 375 | 125 | 1 | 0.5 | |
F0C0.5 | 200 | 500 | 0 | 1 | 1.3 | |
F15C1.3 | 200 | 425 | 75 | 1 | 1.3 | |
F25C1.3 | 200 | 375 | 125 | 1 | 1.3 |
CH Content | Chloride Ion | Fly Ash | Curing Age |
---|---|---|---|
2.412 | 0.488 | 0.831 | 0.699 |
2.308 | 0.889 | 0.800 | 0.677 |
2.361 | 0.339 | 0.816 | 0.688 |
3.462 | 0.739 | 0.398 | 1.000 |
2.506 | 0.964 | 0.861 | 0.719 |
2.361 | 0.908 | 0.481 | 0.688 |
2.945 | 0.889 | 1.000 | 0.472 |
3.293 | 0.782 | 0.867 | 0.486 |
3.562 | 0.716 | 0.786 | 0.958 |
CH Content | Chloride Ion | Fly Ash | Curing Age |
---|---|---|---|
2.822 | 0.438 | 0.937 | 0.761 |
2.747 | 1.000 | 0.908 | 0.742 |
2.775 | 0.339 | 0.918 | 0.749 |
3.330 | 0.788 | 0.397 | 0.926 |
3.127 | 0.851 | 0.961 | 0.853 |
2.775 | 0.987 | 0.497 | 0.749 |
2.477 | 0.916 | 0.816 | 0.513 |
2.648 | 0.987 | 0.872 | 0.557 |
3.330 | 0.788 | 0.882 | 0.926 |
C-S-H Content | Chloride Ion | Fly Ash | Curing Age |
---|---|---|---|
1.220 | 0.406 | 0.860 | 0.689 |
1.327 | 0.890 | 0.967 | 0.756 |
1.513 | 0.333 | 0.842 | 0.908 |
1.22 | 0.995 | 0.406 | 0.689 |
1.356 | 0.864 | 1.000 | 0.776 |
1.377 | 0.845 | 0.486 | 0.791 |
1.064 | 0.839 | 0.741 | 0.483 |
1.297 | 0.920 | 0.934 | 0.482 |
1.377 | 0.845 | 0.975 | 0.791 |
C-S-H Content | Chloride Ion | Fly Ash | Curing Age |
---|---|---|---|
1.358 | 0.410 | 0.931 | 0.743 |
1.403 | 0.903 | 0.975 | 0.771 |
1.502 | 0.336 | 0.940 | 0.839 |
1.403 | 0.903 | 0.402 | 0.771 |
1.517 | 0.814 | 0.926 | 0.850 |
1.542 | 0.797 | 0.528 | 0.870 |
0.961 | 0.742 | 0.669 | 0.549 |
1.305 | 0.997 | 0.885 | 0.518 |
1.442 | 0.871 | 1.000 | 0.796 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, W.; Fang, Z.; Zhang, S.; Fan, Y.; Shah, S.P.; Zheng, J. Effect of Chlorine Salt Content on the Microstructural Development of C-S-H Gels and Ca(OH)2 at Different Curing Temperatures. Materials 2024, 17, 4460. https://doi.org/10.3390/ma17184460
Qi W, Fang Z, Zhang S, Fan Y, Shah SP, Zheng J. Effect of Chlorine Salt Content on the Microstructural Development of C-S-H Gels and Ca(OH)2 at Different Curing Temperatures. Materials. 2024; 17(18):4460. https://doi.org/10.3390/ma17184460
Chicago/Turabian StyleQi, Wenjie, Zhisheng Fang, Shiyi Zhang, Yingfang Fan, Surendra P. Shah, and Junjie Zheng. 2024. "Effect of Chlorine Salt Content on the Microstructural Development of C-S-H Gels and Ca(OH)2 at Different Curing Temperatures" Materials 17, no. 18: 4460. https://doi.org/10.3390/ma17184460
APA StyleQi, W., Fang, Z., Zhang, S., Fan, Y., Shah, S. P., & Zheng, J. (2024). Effect of Chlorine Salt Content on the Microstructural Development of C-S-H Gels and Ca(OH)2 at Different Curing Temperatures. Materials, 17(18), 4460. https://doi.org/10.3390/ma17184460