Effects of Induction Plasma Spheroidization on Properties of Yttria-Stabilized Zirconia Powders for Thermal Barrier Coating Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Characterization of the Agglomerated YSZ Powders
3.2. Characterization of the IPS-Treated YSZ Powders
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brindley, W.J.; Miller, R.A. TBCs for better engine efficiency. Adv. Mater. Process. 1989, 136, 29–33. [Google Scholar]
- Soechting, F.O. A design perspective on thermal barrier coatings. J. Therm. Spray Technol. 1999, 4, 505–511. [Google Scholar] [CrossRef]
- Volodymyr, K.; Zoia, D.; Andrii, K.; Bogdan, V.; Valentyna, V.; Olexandra, M. The Effect of Yttria Content on Microstructure, Strength, and Fracture Behavior of Yttria-Stabilized Zirconia. Materials 2022, 15, 5212. [Google Scholar] [CrossRef] [PubMed]
- Schulz, U.; Leyens, C.; Fritscher, K.; Peters, M. Some recent trends in research and technology of advanced thermal barrier coatings. Aerosp. Sci. Technol. 2003, 7, 73–80. [Google Scholar] [CrossRef]
- Thibblin, A.; Olofsson, U. A study of suspension plasma-sprayed insulated pistons evaluated in a heavy-duty diesel engine. Int. J. Engine Res. 2020, 21, 987–997. [Google Scholar] [CrossRef]
- Song, J.B.; Wang, L.S.; Dong, H.; Yao, J.T. Long lifespan thermal barrier coatings overview: Materials, manufacturing, failure mechanisms, and multiscale structural design. Ceram. Int. 2023, 49, 1–23. [Google Scholar] [CrossRef]
- Bakan, E.; Vaßen, R. Ceramic top coats of plasma-sprayed thermal barrier coatings: Materials, processes, and properties. J. Therm. Spray Technol. 2017, 26, 992–1010. [Google Scholar] [CrossRef]
- Rezanka, S.; Mack, D.E.; Mauer, G.; Sebold, D.; Guillon, O.; Vaßen, R. Investigation of the resistance of open-column-structured PS-PVD TBCs to erosive and high-temperature corrosive attack. Surf. Coat. Technol. 2017, 324, 222–235. [Google Scholar] [CrossRef]
- Hospach, A.; Mauer, G.; Vassen, R.; Stover, D. Collumnar-structured thermal barrier coatings (TBCs) by thin film low-pressure spraying (LPPS-TF). Therm. Spray Technol. 2011, 20, 116–120. [Google Scholar] [CrossRef]
- Ashofteh, A.; Seifollahpour, S. Role of nano-zones in enhancing the performance of YSZ coatings under thermal shock conditions. J. Am. Ceram. Soc. 2023, 107, 1201–1218. [Google Scholar] [CrossRef]
- Simone, B.; Stefania, M.; Giovanni, B.; Greta, C.; Edoardo, R.; Gerardo, M.F.; Salvatore, P.; Edoardo, B.; Luca, L. The effect of ceramic YSZ powder morphology on coating performance for industrial TBCs. Surf. Coat. Technol. 2024, 476, 130270. [Google Scholar]
- Clarke, D.R.; Oechsner, M.; Padture, N.P. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull. 2012, 37, 891–898. [Google Scholar] [CrossRef]
- Padture, N.P. Advanced structural ceramics in aerospace propulsion. Nat. Mater. 2016, 15, 804–809. [Google Scholar] [CrossRef] [PubMed]
- Vassen, R.; Jarligo, M.O.; Steinke, T.; Mack, D.E.; Stöver, D. Overview on advanced thermal barrier coatings. Surf. Coat. Technol. 2010, 205, 938–942. [Google Scholar] [CrossRef]
- Yang, L.X.; Yang, F.; Long, Y.; Zhao, Y.; Xiong, X.; Zhao, X.F.; Xiao, P. Evolution of residual stress in air plasma sprayed yttria stabilised zirconia thermal barrier coatings after isothermal treatment. Surf. Coat. Technol. 2014, 251, 98–105. [Google Scholar] [CrossRef]
- Padture, N.P.; Gell, M.; Jordan, E.H. Thermal barrier coating14s for gas-turbine engine applications. Science 2002, 296, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Volodymyr, K.; Zoia, D.; Bogdan, V.; Valentyna, V.; Taras, K.; Pavlo, L.; Volodymyr, V. The Effect of Sintering Temperature on the Phase Composition, Microstructure, and Mechanical Properties of Yttria-Stabilized Zirconia. Materials 2022, 15, 2707. [Google Scholar] [CrossRef]
- Jang, B.K.; Kim, S.; Oh, Y.S. Effect of Gd2O3 on the thermal conductivity of ZrO2–4mol.% Y2O3 ceramics fabricated by spark plasma sintering. Scr. Mater. 2013, 69, 165–170. [Google Scholar] [CrossRef]
- Barad, C.; Shekel, G.; Shandalov, M.; Hayun, H.; Kimmel, G.; Shamir, D.; Gelbstein, Y. Internal Nano Voids in Yttria-Stabilised Zirconia (YSZ) Powder. Materials 2017, 10, 1440. [Google Scholar] [CrossRef]
- Liu, Z.G.; Ouyang, J.H.; Zhou, Y. Influence of ytterbium- and samarium-oxides codoping on structure and thermal conductivity of zirconate ceramics. J. Eur. Ceram. Soc. 2009, 29, 647–652. [Google Scholar] [CrossRef]
- Hossein, M.S.; Jackson, C.; Zane, Y. A review on ICP powder plasma spheroidization process parameters. Int. J. Refract. Met. Hard Mater. 2021, 103, 105764. [Google Scholar]
- Liu, L.; Wang, Y.; Ma, Z. Preparation and thermophysical properties of Yb-doped Ba2DyAlO5 ceramics. Mater. Lett. 2015, 144, 33–35. [Google Scholar] [CrossRef]
- Ko, S.; Koo, S.; Cho, W.; Hwnag, K.; Kim, J. Synthesis of SiC nano-powder from organic precursors using RF inductively coupled thermal plasma. Ceram. Int. 2012, 38, 1959–1963. [Google Scholar] [CrossRef]
- Saifutdinova, A.A.; Saifutdinov, A.I.; Gainullina, S.V.; Timerkaev, B.A. Modeling the parameters of an atmospheric pressure dielectric barrier discharge controlled by the shape of the applied voltage. IEEE Trans. Plasma Sci. 2022, 50, 1144–1156. [Google Scholar] [CrossRef]
- Christian, B.; Ilya, T.; Jörg, H.; Pierre, B.J. Numerical modeling of an inductively coupled plasma torch using OpenFOAM. Comput. Fluids 2021, 216, 104807. [Google Scholar]
- Kim, K.; Choi, S.; Kim, J.; Cho, W.; Hwang, K.; Han, K. Synthesis and characterization of high-purity aluminum nitride nanopowder by RF induction thermal plasma. Ceram. Int. 2014, 40, 8117–8123. [Google Scholar] [CrossRef]
- Wang, D.X.; Hao, Z.H.; Wang, P.; Ma, R.L.; Shu, Y.C.; He, J.L. Preparation of spherical tungsten powder with uniform distribution of lanthania by plasma spheroidization. Int. J. Refract. Met. Hard Mater. 2023, 117, 106400. [Google Scholar] [CrossRef]
- Shi, T.J.; Bai, B.T.; Peng, H.R.; Yuan, K.; Han, R.F.; Zhou, Q.; Pang, X.X.; Zhang, X.; Yan, Z. Improved thermal shock resistance of GYYZO-YSZ double ceramic layer TBCs induced by induction plasma spheroidization. Surf. Coat. Technol. 2024, 477, 130372. [Google Scholar] [CrossRef]
- Tong, J.B.; Lu, X.; Liu, C.C.; Wang, L.N.; Qu, X.H. Fabrication of micro-fine spherical high Nb containing TiAl alloy powder based on reaction synthesis and RF plasma spheroidization. Powder Technol. 2015, 283, 9–15. [Google Scholar] [CrossRef]
- Chivavibul, P.; Watanabe, M.; Kuroda, S.; Kawakita, J.; Komatsu, M.; Sato, K.; Kitamura, J. Effects of particle strength of feedstock powders on properties of warm-sprayed WC-Co coatings. Therm. Spray Technol. 2011, 20, 1098–1109. [Google Scholar] [CrossRef]
- Praveen, K.; Shanmugavelayutham, G.; Rao, D.S.; Sivakumar, G. Thermal cycling performance assessment of double-layered lanthanum titanium aluminate thermal barrier coatings developed using plasma spheroidized powders. Surf. Coat. Technol. 2023, 465, 129588. [Google Scholar] [CrossRef]
- SHIMADZU Micro Compression Tester MCT-211 Series Introduction Manual, 347–05375E. 2012. Available online: https://www.shimadzu.com/an/sites/shimadzu.com.an/files/pim/pim_document_file/brochures/10345/c227-e020.pdf (accessed on 27 February 2024).
- Kang, Y.; Jian Feng, W. Compression behavior of ceramic powders by inductive plasma sphero process. Ceram. Int. 2021, 47, 28566–28574. [Google Scholar]
- JIS R1639-5; Test Methods of Properties of Fine Ceramic Granules Part 5: Compressive Strength of a Single Granule. Japanese Industrial Standards: Tokyo, Japan, 2007.
Parameters | Values |
---|---|
Inlet temperature | 300 °C |
Outlet temperature | 120 °C |
Atomizer rotary rate | 40 Hz |
Feed Pump rate | 30 rpm |
Series No. | Carrier Gas (Ar) (slpm) | H2 Flow (slpm) | Ar Flow (slpm) | Reactor Pressure (psia) | Powder Feed Rate (g/min) | Power (kW) |
---|---|---|---|---|---|---|
1# | 95 | 15 | 30 | 15 | 100 | 80 |
2# | 95 | 15 | 30 | 15 | 40 | 80 |
Content | Y2O3 (wt%) | Al2O3 (wt%) | SiO2 (wt%) | TiO2 (wt%) | Cl− (wt%) |
---|---|---|---|---|---|
Agglomerated YSZ powder | 7.32 | 0.042 | 0.038 | 0.012 | 0.036 |
IPS-treated YSZ powder (2#) | 7.28 | 0.019 | 0.018 | 0.006 | 0.010 |
Property | Apparent Density (g/cm3) | Flowability (s/50 g) | Particle Size Distribution (μm) | |
---|---|---|---|---|
Powder | ||||
Agglomerated YSZ powder | 1.26 | 62.74 | D10 = 36.0 D50 = 56.0 D90 = 84.4 | |
1# IPS-treated YSZ powder | 1.92 | 39.68 | D10 = 35.9 D50 = 51.6 D90 = 72.4 | |
2# IPS-treated YSZ powder | 3.18 | 21.46 | D10 = 35.3 D50 = 43.9 D90 = 55.2 |
Type of Powder | Strength Range (MPa) | Average Compressive Strength (MPa) |
---|---|---|
Agglomerated YSZ powders | 2~8 | 4.8 |
1# IPS-treated YSZ powders | 80~190 | 126.3 |
2# IPS-treated YSZ powders | 420~750 | 625.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, H.; Yu, Y.; Shi, T.; Bai, B.; Yan, Z.; Yuan, K. Effects of Induction Plasma Spheroidization on Properties of Yttria-Stabilized Zirconia Powders for Thermal Barrier Coating Applications. Materials 2024, 17, 1518. https://doi.org/10.3390/ma17071518
Peng H, Yu Y, Shi T, Bai B, Yan Z, Yuan K. Effects of Induction Plasma Spheroidization on Properties of Yttria-Stabilized Zirconia Powders for Thermal Barrier Coating Applications. Materials. 2024; 17(7):1518. https://doi.org/10.3390/ma17071518
Chicago/Turabian StylePeng, Haoran, Yueguang Yu, Tianjie Shi, Botian Bai, Zheng Yan, and Kang Yuan. 2024. "Effects of Induction Plasma Spheroidization on Properties of Yttria-Stabilized Zirconia Powders for Thermal Barrier Coating Applications" Materials 17, no. 7: 1518. https://doi.org/10.3390/ma17071518
APA StylePeng, H., Yu, Y., Shi, T., Bai, B., Yan, Z., & Yuan, K. (2024). Effects of Induction Plasma Spheroidization on Properties of Yttria-Stabilized Zirconia Powders for Thermal Barrier Coating Applications. Materials, 17(7), 1518. https://doi.org/10.3390/ma17071518