Open AccessReview
Review of Oxides Prepared by a Short Process Using Rare-Earth Chlorides
by
Jing Wei, Xue Bian, Xinmiao Zhu, Hao Huang, Chunlin Ye, Shuchen Sun, Liqin Zhong and Ganfeng Tu
Materials 2025, 18(20), 4669; https://doi.org/10.3390/ma18204669 (registering DOI) - 11 Oct 2025
Abstract
Direct thermal decomposition of rare-earth chlorides into rare-earth oxides (REOs) in a single step presents a short-process, wastewater-free, and environmentally friendly alternative to the conventional precipitation–calcination method, which produces large amounts of saline wastewater. While earlier reviews have primarily focused on summarizing reaction
[...] Read more.
Direct thermal decomposition of rare-earth chlorides into rare-earth oxides (REOs) in a single step presents a short-process, wastewater-free, and environmentally friendly alternative to the conventional precipitation–calcination method, which produces large amounts of saline wastewater. While earlier reviews have primarily focused on summarizing reaction conditions and thermodynamic parameters, they have seldom discussed the critical variations in pyrolysis behavior across different rare-earth elements. This review highlights a novel classification of rare-earth chlorides into fixed-valence and variable-valence groups, revealing how their respective oxidation states govern thermodynamic stability, reaction pathways, and chlorine release behavior. Furthermore, a systematic comparison is provided on the effects of additives, temperature, and gas partial pressure on product purity, particle size, and microstructure, with particular attention to the mechanisms underlying oxychloride intermediate formation. Beyond fundamental reaction principles, this work uniquely evaluates the design and performance of existing pyrolysis reactors, outlining both opportunities and challenges in scaling up direct rare-earth chloride (RECl
x) pyrolysis for industrial REO production. By integrating mechanistic insights with reactor engineering considerations, this review offers advancements over previous descriptive summaries and proposes a strategic pathway toward sustainable rare-earth processing.
Full article
►▼
Show Figures