Next Article in Journal
Assessment of Solar Energy Generation Toward Net-Zero Energy Buildings
Next Article in Special Issue
MSEANet: Multi-Scale Selective Edge Aware Network for Polyp Segmentation
Previous Article in Journal
A Comprehensive Review of Autonomous Driving Algorithms: Tackling Adverse Weather Conditions, Unpredictable Traffic Violations, Blind Spot Monitoring, and Emergency Maneuvers
Previous Article in Special Issue
Enhancing Heart Disease Prediction through Ensemble Learning Techniques with Hyperparameter Optimization
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Sleep Apnea Classification Using the Mean Euler–Poincaré Characteristic and AI Techniques

by
Moises Ramos-Martinez
1,
Felipe D. J. Sorcia-Vázquez
1,
Gerardo Ortiz-Torres
1,
Mario Martínez García
1,
Mayra G. Mena-Enriquez
2,
Estela Sarmiento-Bustos
3,
Juan Carlos Mixteco-Sánchez
4,
Erasmo Misael Rentería-Vargas
1,
Jesús E. Valdez-Resendiz
5,* and
Jesse Yoe Rumbo-Morales
1
1
Departamento de Ciencias Computacionales e Ingenierías, Universidad de Guadalajara, Carretera Guadalajara-Ameca Km.45.5, Ameca 46600, Jalisco, Mexico
2
Biomedical Sciences Department, University of Guadalajara, Tonalá 45425, Jalisco, Mexico
3
División Académica de Mecánica Industrial, Universidad Tecnológica Emiliano Zapata del Estado de Morelos, Av. Universidad Tecnológica No. 1, Col. Palo Escrito, Emiliano Zapata 62760, Morelos, Mexico
4
Natural and Exact Sciences Department, University of Guadalajara, Ameca 46600, Jalisco, Mexico
5
School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64700, Nuevo Leon, Mexico
*
Author to whom correspondence should be addressed.
Algorithms 2024, 17(11), 527; https://doi.org/10.3390/a17110527
Submission received: 10 October 2024 / Revised: 8 November 2024 / Accepted: 13 November 2024 / Published: 15 November 2024
(This article belongs to the Special Issue Artificial Intelligence Algorithms for Medicine (2nd Edition))

Abstract

Sleep apnea is a sleep disorder that disrupts breathing during sleep. This study aims to classify sleep apnea using a machine learning approach and a Euler–Poincaré characteristic (EPC) model derived from electrocardiogram (ECG) signals. An ensemble K-nearest neighbors classifier and a feedforward neural network were implemented using the EPC model as inputs. ECG signals were preprocessed with a polynomial-based scheme to reduce noise, and the processed signals were transformed into a non-Gaussian physiological random field (NGPRF) for EPC model extraction from excursion sets. The classifiers were then applied to the EPC model inputs. Using the Apnea-ECG dataset, the proposed method achieved an accuracy of 98.5%, sensitivity of 94.5%, and specificity of 100%. Combining machine learning methods and geometrical features can effectively diagnose sleep apnea from single-lead ECG signals. The EPC model enhances clinical decision-making for evaluating this disease.
Keywords: sleep apnea; Euler characteristic; machine learning; random field sleep apnea; Euler characteristic; machine learning; random field

Share and Cite

MDPI and ACS Style

Ramos-Martinez, M.; Sorcia-Vázquez, F.D.J.; Ortiz-Torres, G.; Martínez García, M.; Mena-Enriquez, M.G.; Sarmiento-Bustos, E.; Mixteco-Sánchez, J.C.; Rentería-Vargas, E.M.; Valdez-Resendiz, J.E.; Rumbo-Morales, J.Y. Sleep Apnea Classification Using the Mean Euler–Poincaré Characteristic and AI Techniques. Algorithms 2024, 17, 527. https://doi.org/10.3390/a17110527

AMA Style

Ramos-Martinez M, Sorcia-Vázquez FDJ, Ortiz-Torres G, Martínez García M, Mena-Enriquez MG, Sarmiento-Bustos E, Mixteco-Sánchez JC, Rentería-Vargas EM, Valdez-Resendiz JE, Rumbo-Morales JY. Sleep Apnea Classification Using the Mean Euler–Poincaré Characteristic and AI Techniques. Algorithms. 2024; 17(11):527. https://doi.org/10.3390/a17110527

Chicago/Turabian Style

Ramos-Martinez, Moises, Felipe D. J. Sorcia-Vázquez, Gerardo Ortiz-Torres, Mario Martínez García, Mayra G. Mena-Enriquez, Estela Sarmiento-Bustos, Juan Carlos Mixteco-Sánchez, Erasmo Misael Rentería-Vargas, Jesús E. Valdez-Resendiz, and Jesse Yoe Rumbo-Morales. 2024. "Sleep Apnea Classification Using the Mean Euler–Poincaré Characteristic and AI Techniques" Algorithms 17, no. 11: 527. https://doi.org/10.3390/a17110527

APA Style

Ramos-Martinez, M., Sorcia-Vázquez, F. D. J., Ortiz-Torres, G., Martínez García, M., Mena-Enriquez, M. G., Sarmiento-Bustos, E., Mixteco-Sánchez, J. C., Rentería-Vargas, E. M., Valdez-Resendiz, J. E., & Rumbo-Morales, J. Y. (2024). Sleep Apnea Classification Using the Mean Euler–Poincaré Characteristic and AI Techniques. Algorithms, 17(11), 527. https://doi.org/10.3390/a17110527

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop