Extractives of Stemwood and Sawmill Residues of Scots Pine (Pinus sylvestris L.) for Biorefining in Four Climatic Regions in Finland—Phenolic and Resin Acid Compounds
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Profile of Extractive Compounds
3.2. Phenolic and Resin Acid Compounds
3.2.1. Stemwood
3.2.2. Sawmill Residues
3.2.3. Comparison of HPLC and NMR Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Compound | Stand Type and Wood Type | Region | N | Mean | Minimum | Maximum | Std. Deviation |
---|---|---|---|---|---|---|---|
Pinosylvin | Final felling– | Lapland North | 20 | 0.021 | 0.007 | 0.039 | 0.010 |
sapwood | Lapland South | 19 | 0.025 | 0.008 | 0.057 | 0.013 | |
Middle Finland | 9 | 0.016 | 0.004 | 0.033 | 0.009 | ||
South Finland | 18 | 0.019 | 0.006 | 0.086 | 0.018 | ||
Final felling– | Lapland North | 20 | 2.347 | 1.104 | 4.615 | 1.066 | |
heartwood | Lapland South | 20 | 2.262 | 0.634 | 5.034 | 1.310 | |
Middle Finland | 10 | 2.843 | 1.691 | 4.846 | 0.977 | ||
South Finland | 19 | 2.928 | 0.711 | 6.650 | 1.475 | ||
Thinning– | Lapland North | 20 | 0.004 | 0.000 | 0.013 | 0.004 | |
sapwood | Lapland South | 20 | 0.005 | 0.001 | 0.009 | 0.002 | |
Middle Finland | 9 | 0.002 | 0.001 | 0.004 | 0.001 | ||
South Finland | 20 | 0.007 | 0.001 | 0.026 | 0.007 | ||
PSMME | Final felling– | Lapland North | 20 | 0.026 | 0.006 | 0.071 | 0.020 |
sapwood | Lapland South | 19 | 0.031 | 0.006 | 0.106 | 0.028 | |
Middle Finland | 9 | 0.017 | 0.009 | 0.035 | 0.008 | ||
South Finland | 18 | 0.025 | 0.006 | 0.120 | 0.026 | ||
Final felling– | Lapland North | 20 | 4.503 | 1.691 | 11.396 | 2.697 | |
heartwood | Lapland South | 20 | 5.114 | 1.971 | 10.498 | 2.477 | |
Middle Finland | 10 | 4.792 | 1.834 | 9.112 | 2.079 | ||
South Finland | 19 | 5.079 | 2.640 | 7.326 | 1.103 | ||
Thinning– | Lapland North | 20 | 0.003 | 0.000 | 0.014 | 0.004 | |
sapwood | Lapland South | 20 | 0.003 | 0.001 | 0.009 | 0.002 | |
Middle Finland | 9 | 0.001 | 0.000 | 0.002 | 0.001 | ||
South Finland | 20 | 0.003 | 0.000 | 0.011 | 0.003 | ||
Vanillic acid | Final felling– | Lapland North | 20 | 0.008 | 0.005 | 0.013 | 0.002 |
sapwood | Lapland South | 19 | 0.007 | 0.004 | 0.009 | 0.001 | |
Middle Finland | 9 | 0.006 | 0.004 | 0.010 | 0.002 | ||
South Finland | 18 | 0.005 | 0.003 | 0.007 | 0.001 | ||
Final felling– | Lapland North | 20 | 0.008 | 0.003 | 0.013 | 0.003 | |
heartwood | Lapland South | 20 | 0.007 | 0.003 | 0.012 | 0.003 | |
Middle Finland | 10 | 0.006 | 0.004 | 0.010 | 0.002 | ||
South Finland | 19 | 0.006 | 0.003 | 0.012 | 0.002 | ||
Thinning– | Lapland North | 20 | 0.010 | 0.005 | 0.032 | 0.006 | |
sapwood | Lapland South | 20. | 0.008 | 0.005 | 0.012 | 0.002 | |
Middle Finland | 9 | 0.007 | 0.005 | 0.009 | 0.001 | ||
South Finland | 20 | 0.007 | 0.003 | 0.015 | 0.003 | ||
PS- | Final felling– | Lapland North | 20 | 0.054 | 0.019 | 0.098 | 0.024 |
Glycoside | heartwood | Lapland South | 20 | 0.061 | 0.015 | 0.179 | 0.045 |
Middle Finland | 10 | 0.081 | 0.028 | 0.181 | 0.047 | ||
South Finland | 19 | 0.058 | 0.023 | 0.124 | 0.024 | ||
PSMME- | Final felling– | Lapland North | 20 | 0.072 | 0.013 | 0.269 | 0.058 |
Glycoside | heartwood | Lapland South | 20 | 0.105 | 0.034 | 0.375 | 0.085 |
Middle Finland | 10 | 0.088 | 0.015 | 0.202 | 0.062 | ||
South Finland | 19 | 0.096 | 0.040 | 0.190 | 0.045 | ||
Piceatannol | Final felling– | Lapland North | 20 | 0.007 | 0.001 | 0.022 | 0.006 |
heartwood | Lapland South | 20 | 0.005 | 0.001 | 0.014 | 0.004 | |
Middle Finland | 10 | 0.010 | 0.003 | 0.024 | 0.007 | ||
South Finland | 19 | 0.007 | 0.003 | 0.028 | 0.006 | ||
Eriodictyol | Final felling– | Lapland North | 20 | 0.134 | 0.044 | 0.526 | 0.104 |
heartwood | Lapland South | 20 | 0.111 | 0.042 | 0.190 | 0.041 | |
Middle Finland | 10 | 0.109 | 0.074 | 0.175 | 0.033 | ||
South Finland | 19 | 0.130 | 0.057 | 0.340 | 0.063 | ||
Lignan 1 | Final felling– | Lapland North | 20 | 0.096 | 0.055 | 0.162 | 0.028 |
heartwood | Lapland South | 20 | 0.102 | 0.055 | 0.173 | 0.029 | |
Middle Finland | 10 | 0.084 | 0.041 | 0.138 | 0.028 | ||
South Finland | 19 | 0.096 | 0.054 | 0.126 | 0.022 | ||
Lignan 2 | Final felling– | Lapland North | 20 | 0.088 | 0.023 | 0.344 | 0.070 |
heartwood | Lapland South | 20 | 0.087 | 0.031 | 0.164 | 0.041 | |
Middle Finland | 10 | 0.061 | 0.018 | 0.111 | 0.024 | ||
South Finland | 19 | 0.065 | 0.021 | 0.203 | 0.041 | ||
Lignan 3 | Final felling– | Lapland North | 20 | 0.077 | 0.030 | 0.165 | 0.037 |
heartwood | Lapland South | 20 | 0.074 | 0.028 | 0.130 | 0.029 | |
Middle Finland | 10 | 0.075 | 0.043 | 0.136 | 0.025 | ||
South Finland | 19 | 0.065 | 0.034 | 0.125 | 0.020 | ||
Neolignan 1 | Final felling– | Lapland North | 20 | 0.335 | 0.058 | 1.398 | 0.301 |
heartwood | Lapland South | 20 | 0.325 | 0.097 | 0.711 | 0.145 | |
Middle Finland | 10 | 0.285 | 0.077 | 0.650 | 0.180 | ||
South Finland | 19 | 0.256 | 0.092 | 0.743 | 0.147 | ||
Neolignan 2 | Final felling– | Lapland North | 20 | 0.112 | 0.017 | 0.307 | 0.084 |
heartwood | Lapland South | 20 | 0.222 | 0.020 | 0.800 | 0.218 | |
Middle Finland | 10 | 0.097 | 0.021 | 0.185 | 0.057 | ||
South Finland | 19 | 0.199 | 0.008 | 0.920 | 0.221 |
References
- Bergström, D.; Matisons, M. Forest Refine, 2012–2014: Efficient Forest Biomass Supply Chain Management for Biorefineries: Synthesis Report; Swedish University of Agricultural Sciences, Department of Forest Biomaterials and Technology: Uppsala, Sweden, 2014. [Google Scholar]
- Holmbom, B. Extraction and Utilisation of Non-Structural Wood and Bark Components. In Biorefining of Forest Resources; Alén, R., Ed.; Paperi ja Puu Oy: Espoo, Finland, 2011; pp. 176–224. [Google Scholar]
- Alén, R. Structure and Chemical Composition of Different Feedstocks. In Biorefining of Forest Resources; Alén, R., Ed.; Paperi ja Puu Oy: Espoo, Finland, 2011; pp. 17–54. [Google Scholar]
- European Commission. Updated Bioeconomy Strategy: A Sustainable Bioeconomy for Europe: Strengthening the Connection between Economy, Society and the Environment; Publications Office of the European Union: Brussels, Belgium, 2018. [Google Scholar]
- The Ministry of Employment and the Economy. The Finnish Bioeconomy Strategy: Sustainable Growth for Bioeconomy; The Ministry of Employment and the Economy: Helsinki, Finland, 2014; p. 31.
- Antikainen, R.; Dalhammar, C.; Hildén, M.; Judl, J.; Jääskeläinen, T.; Kautto, P.; Koskela, S.; Kuisma, M.; Lazarevic, D.; Mäenpää, I.; et al. Renewal of forest based manufacturing towards a sustainable circular bioeconomy. Rep. Finn. Environ. Inst. 2017, 13, 123. [Google Scholar]
- Sjöström, E. Wood Chemistry, Fundamentals and Applications, 2nd ed.; Academic Press: New York, NY, USA, 1993; pp. 114–161. [Google Scholar]
- Hillis, W.E. Wood Extractives and Their Significance to the Pulp and Paper Industries; Academic Press: New York, NY, USA, 1962; p. 513. [Google Scholar]
- Hillis, W.E. Distribution, properties and formation of some wood extractives. Wood Sci. Tech. 1971, 5, 272–298. [Google Scholar] [CrossRef]
- Anderson, A.B. Recovery and utilization of tree extractives. Econ. Bot. 1955, 2, 108. [Google Scholar] [CrossRef]
- Umezawa, T. Chemistry of Extractives. In Wood and Cellulosic Chemistry, 2nd ed.; Hon, D.N.S., Shiraishi, N., Eds.; Marcel Dekker: New York, NY, USA, 2000; pp. 213–241. [Google Scholar]
- Metsämuuronen, S.; Sirén, H. Bioactive phenolic compounds, metabolism and properties: A review on valuable chemical compounds in Scots pine and Norway spruce. Phytochem. Rev. 2019, 18, 623–664. [Google Scholar] [CrossRef] [Green Version]
- Fries, E.; Ericsson, T.; Gref, R. High heritability of wood extractives in Pinus sylvestris progeny tests. Can. J. Res. 2000, 30, 1707–1713. [Google Scholar] [CrossRef]
- Hakkila, P.; Verkasalo, E. Structure and Properties of Wood and Woody Biomass. In Forest Resources and Sustainable Management, 2nd ed.; Kellomäki, S., Ed.; Paperi ja Puu Oy/Gummerus Oy: Jyväskylä, Finland, 2009; pp. 133–215. [Google Scholar]
- Willför, S.; Hemming, J.; Reunanen, M.; Holmbom, B. Phenolic and lipophilic extractives in Scots pine knots and stem wood. Holzforschung 2003, 57, 359–372. [Google Scholar] [CrossRef]
- Latva-Mäenpää, H. Bioactive and Protective Polyphenolics from Roots and Stumps of Conifer Trees (Norway spruce and Scots pine). Ph.D. Thesis, Chemistry Faculty of Science University of Helsinki, Helsinki, Finland.
- Royer, M.; Houde, R.; Viano, Y.; Stevanovic, T. Non-wood forest products based on extractives-a new opportunity for canadian forest industry Part 2: Softwood forest species. J. Food Res. 2013, 5, 164–189. [Google Scholar] [CrossRef] [Green Version]
- Conde, E.; Fang, W.; Hemming, J.; Willför, S.; Domínguez, H.; Parajó, J.C. Recovery of bioactive compounds from Pinus pinaster wood by consecutive extraction stages. Wood Sci. Tech. 2014, 48, 311–323. [Google Scholar] [CrossRef]
- Fernando, D.; Hafrén, J.; Gustafsson, J.; Daniel, G. Micromorphology and topochemistry of extractives in Scots pine and Norway spruce thermomechanical pulps: A cytochemical approach. J. Wood Sci. 2008, 54, 134–142. [Google Scholar] [CrossRef]
- Witzell, J.; Martin, J.A. Phenolic metabolites in the resistance of northern forest trees to pathogens-past experiences and future prospects. Can. J. Res. 2008, 38, 2711–2727. [Google Scholar] [CrossRef]
- Lee, S.K.; Lee, H.J.; Min, H.Y.; Park, E.J.; Lee, K.M.; Ahn, Y.H.; Cho, Y.J.; Pyee, J.H. Antibacterial and antifungal activity of pinosylvin a constituent of pine. Fitoterapia 2005, 76, 258–260. [Google Scholar] [CrossRef]
- Sherwood, P.; Bonello, P. Austrian pine phenolics are likely contributors to systemic induced resistance against Diplodia pinea. Tree Physiol. 2013, 33, 845–854. [Google Scholar] [CrossRef] [Green Version]
- Harju, A.M.; Venäläinen, M.; Anttonen, S.; Viitanen, H.; Kainulainen, P.; Saranpää, P.; Vapaavuori, E. Chemical factors affecting the brown-rot decay resistance of Scots pine heartwood. Trees 2003, 17, 263–268. [Google Scholar] [CrossRef]
- Van Ree, R.; Annevelink, B. Status Report Biorefinery; Wageningen University & Research, Agrotechnology & Food Science Group: Wageningen, The Netherlands, 2007. [Google Scholar]
- Gullon, P.; Romani, A.; Vila, C.; Garrote, G.; Parajó, C. Potential of hydrothermal treatments in lignocellulosic biorefineries. Biofuels Bioprod. Biorefin. 2012, 6, 219–232. [Google Scholar] [CrossRef]
- Näyhä, A.; Hämäläinen, S.; Pesonen, H.-L. Forest Biorefineries-A Serious Global Business Opportunity. In Biorefining of Forest Resources; Alén, R., Ed.; Paperi ja Puu Oy: Espoo, Finland, 2011; pp. 131–148. [Google Scholar]
- Hakkila, P. Geographical variation of some properties of pine and spruce pulpwood in Finland. Commun. Inst. For. Fenn. 1968, 8, 1–60. [Google Scholar]
- Hovelstad, H.; Leirset, I.; Ouaas, K.; Fiksdahl, A. Screening analyses of pinosylvin stilbenes, resin acids and lignans in Norwegian conifers. Molecules 2006, 11, 103–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stolter, C.; Ball, J.P.; Niemelä, P.; Julkunen-Tiitto, R. Herbivores and variation in the composition of specific phenolics of boreal coniferous trees: A search for patterns. Chemoecology 2010, 20, 229–242. [Google Scholar] [CrossRef]
- Jaakola, L.; Hohtola, A. Effect of latitude on flavonoid synthesis in plants. Plant Cell Environ. 2010, 8, 1239–1247. [Google Scholar]
- Martz, F.; Peltola, R.; Fontanay, S.; Duval, R.E.; Julkunen-Tiitto, R.; Stark, S. Effect of latitude and altitude on the terpenoid and soluble phenolic composition of juniper (Juniperus communis) needles and evaluation of their antibacterial activity in the boreal zone. J. Agric. Food Chem. 2009, 20, 9575–9584. [Google Scholar] [CrossRef]
- Stark, S.; Julkunen-Tiitto, R.; Holappa, E.; Mikkola, K.; Nikula, A. Concentrations of foliar quercetin in natural populations of white birch (Betula pubescens) increase with latitude. J. Chem. Ecol. 2008, 34, 1382–1391. [Google Scholar] [CrossRef]
- Dixon, R.; Paiva, N. Stress-induced phenyl propanoid metabolism. Plant. Cell 1995, 7, 1085–1097. [Google Scholar] [CrossRef] [PubMed]
- Bergström, B.; Gustafsson, G.; Gref, R.; Ericsson, A. Seasonal changes of Pinosylvin distribution in the sapwood/heartwood boundary of Pinus sylvestris. Trees Struct. Funct. 1999, 14, 65–71. [Google Scholar] [CrossRef]
- Venäläinen, M.; Harju, A.M.; Saranpää, P.; Kainulainen, P.; Tiitta, M.; Velling, P. The concentration of phenolics in brown-rot decay resistant and susceptible Scots pine heartwood. Wood. Sci. Tech. 2004, 38, 109–118. [Google Scholar] [CrossRef]
- Harju, A.; Venäläinen, M.; Laakso, T.; Saranpää, P. Wounding response in xylem of Scots pine seedlings shows wide genetic variation and connection with the constitutive defence of heartwood. Tree Physiol. 2008, 29, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Cheynier, V.; Comte, G.; Davies, K.M.; Lattanzio, V.; Martens, S. Plant phenolics: Recent advances in their biosynthesis, genetics, and ecophysiology. Plant. Physiol. Biochem. 2013, 72, 1–20. [Google Scholar] [CrossRef]
- Roitto, M.; Siwale, W.; Tanner, J.; Ilvesniemi, H.; Julkunen-Tiitto, R.; Verkasalo, E. Characterization of Extractives in Tree Biomass and By-products of Plywood and Saw Mills from Finnish Birch in Different Climatic Regions for Value-added Chemical Products. In Proceedings of the 5th International Scientific Conference on Hardwood Processing 2015, Québec City, QC, Canada, 15–17 September 2015. [Google Scholar]
- Tapio. Metsänhoitosuositukset Recommendations of Silviculture in Finland. Available online: https://metsanhoitosuositukset.fi/ (accessed on 16 November 2020).
- Cajander, A.K. Forest types and their significance. Acta Fenn. 1949, 56, 1–71. [Google Scholar] [CrossRef] [Green Version]
- Nybakken, L.; Hörkkä, R.; Julkunen-Tiitto, R. Combined enhancements of temperature and UV-B influence growth and phenolics in clones of the sexually dimorphic Salix myrsinifolia. Physiol. Plant. 2012, 145, 551–564. [Google Scholar]
- Nisula, L. Wood Extractives in Conifers: A Study of Stemwood and Knots of Industrially Important Species; Åbo Akademi University Press: Turku, Finland, 2018. [Google Scholar]
- Saranpää, P.; Nyberg, H. Lipids and sterols of Pinus sylvestris L. sapwood and heartwood. Trees 1987, 1, 82–87. [Google Scholar] [CrossRef]
- Piispanen, R.; Saranpää, P. Neutral lipids and phospholipids in Scots pine (Pinus sylvestris) sapwood and heartwood. Tree Physiol. 2002, 22, 661–666. [Google Scholar] [CrossRef] [Green Version]
- Piispanen, R.; Willför, S.; Saranpää, P.; Holmbom, B. Variation of lignans in Norway spruce (Picea abies [L.] Karst.) knotwood: Within-stem variation and the effect of fertilisation at two experimental sites in Finland. Trees 2008, 22, 317–328. [Google Scholar] [CrossRef]
- Belt, T.; Keplinger, T.; Hänninen, T.; Rautkari, L. Cellular level distributions of Scots pine heartwood and knot heartwood extractives revealed by Raman spectroscopy imaging. Ind. Crop. Prod. 2017, 108, 327–335. [Google Scholar] [CrossRef]
- Bergström, B. Chemical and structural changes during heartwood formation in Pinus sylvestris. Forestry 2003, 76, 45–53. [Google Scholar] [CrossRef]
- Ekeberg, D.; Flaete, P.; Eikenes, M.; Fongen, M.; Andersen, C.F.N. Qualitative and quantitative determination of extractives in heartwood of Scots pine (Pinus sylvestris L.) by gas chromatography. Chromatography 2006, 1109, 267–272. [Google Scholar] [CrossRef]
- Routa, J.; Brännström, H.; Anttila, P.; Mäkinen, M.; Jänis, J.; Asikainen, A. Wood Extractives of Finnish Pine, Spruce and Birch–Availability and Optimal Sources of Compounds; Natural Resources and Bioeconomy Studies 73/2017; Luke Natural Resources Institute Finland: Helsinki, Finland, 2017; p. 55. [Google Scholar]
- Antonova, G.F.; Varaksina, T.N.; Zheleznichenko, T.V.; Stasova, V.V. Changes in phenolic acids during maturation and lignification of Scots pine xylem. Russ. J. Dev. Biol. 2012, 43, 199–208. [Google Scholar] [CrossRef]
- Szwajkowska-Michałek, L.; Przybylska-Balcerek, A.; Rogoziński, T.; Stuper-Szablewska, K. Phenolic Compounds in Trees and Shrubs of Central Europe. Appl. Sci. 2020, 10, 6907. [Google Scholar] [CrossRef]
- Liu, Y.; Qian, C.; Ding, S.; Shang, X.; Yang, W.; Fang, S. Effect of light regime and provenance on leaf characteristics, growth and flavonoid accumulation in Cyclocarya paliurus (Batal) Iljinskaja coppices. Bot. Stud. 2016, 57, 28. [Google Scholar] [CrossRef] [Green Version]
- Lopes, C.L.; Pereira, E.; Soković, M.; Carvalho, A.M.; Barata, A.M.; Lopes, V.; Rocha, F.; Calhelha, R.C.; Barros, L.; Ferreira, I.C.F.R.; et al. Phenolic composition and bioactivity of Lavandula pedunculata (Mill.) Cav. samples from different geographical origin. Molecules 2018, 23, 1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holmbom, B.; Stenius, P. Analytical Methods. In Forest Products Chemistry; Gullichsen, J., Paulapuro, H., Eds.; Paperi ja Puu Oy: Espoo, Finland, 2011; pp. 105–169. [Google Scholar]
- Erdtman, H.; Rennerfelt, E. The pinosylvin-phenolic content of pine heartwood; its determination and its antiseptic action towards wood-destroying fungi. Sven. Papp. 1944, 47, 45–56. [Google Scholar]
- Fang, W.; Hemming, J.; Reunanen, M.; Eklund, P.; Conde Pineiro, E.; Poljanšek, I.; Oven, P.; Willför, S. Evaluation of selective extraction methods for recovery of polyphenols from pine. Holzforschung 2013, 67, 843–851. [Google Scholar] [CrossRef]
- Ferreira-Santos, P.; Zanuso, E.; Genisheva, Z.; Rocha, C.M.R.; Teixeira, J.A. Green and sustainable valorization of bioactive phenolic compounds from pinus by-products. Molecules 2020, 25, 2931. [Google Scholar] [CrossRef] [PubMed]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, G.R.; Biscaia, S.; Mahendra, V.S.; Mateus, A. High value materials from the forests. Adv. Mater. Phys. Chem. 2016, 6, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Daugaard, T.J.; Smith, R.; Mba-Wright, M.; Brown, R.C. Recovery of resin acids from fast pyrolysis of pine. J. Anal. Appl. Pyrol. 2019, 138, 132–136. [Google Scholar] [CrossRef]
- Norlin, L.H. Tall Oil. In Ullman’s Encyclopedia of Industrial Chemistry; Elvers, T., Ed.; Wiley: Weinheim, Germany, 2011; Volume 35, pp. 583–596. [Google Scholar]
- Drew, J.; Propst, M. Tall Oil: A Book on the Processing and Use of Tall Oil; For Chemists, Engineers, Managers and Producers; Pulp Chemicals Association: New York, NY, USA, 1981. [Google Scholar]
- Turner, J.M. Forest Chemicals Review International Yearbook 2017; Forest Chemicals Review: Alicante, Spain, 2019. [Google Scholar]
- Stern, T.; Ledl, C.; Haydn, A.; Koch, S.; Hakala, J.; Hytönen, E.; Schwarzbauer, P. Methods to integrate market orientation in technological development: The case of new technologies to produce bioactive substances from wood. Forest Prod. J. 2015, 65, 139–147. [Google Scholar] [CrossRef]
Phenolic Compounds | Aliphatic Compounds | Other Compounds |
---|---|---|
Simple phenols Stilbenes Lignans Isoflavones Flavonoids Condensed tannins Hydrolysable tannins | Terpenes and terpenoids (including resin acids and steroids) Esters of fatty acids (fats and waxes) Fatty acids Alkanes | Sugars Cyclitols Tropolones Amino acids Alkaloids Coumarins Quinones |
Region | Stand Type | Height above Sea Level (m) | Annual Precipitation 1981–2010 (mm) | Effective Thermal Sum 1981–2010 (d.d > +5 °C) |
---|---|---|---|---|
Lapland North | Final felling | 221 (150–320) | 537 (527–581) | 792 (537–1101) |
Thinning | 205 (150–265) | 802 (590–1101) | ||
Lapland South | Final felling | 173 (140–190) | 587 (556–618) | 893 (665–1135) |
Thinning | 173 (140–200) | 897 (682–1135) | ||
Middle Finland | Final felling | 120 (120–131) | 647 (630–664) | 1233 (935–1457) |
Thinning | 142 (127–156) | 1228 (927–1457) | ||
South Finland | Final felling | 88 (81–97) | 621 (604–653) | 1324 (998–1564) |
Thinning | 107 (85–162) | 1332 (1027–1564) | ||
Lapland North | Final felling– sawmill residues | 260 (219–304) | 550 (500–600) | 742 (669–799) |
Lapland South | Final felling– sawmill residues | 175 (63–275) | 585 (556–618) | 847 (750–989) |
Middle & South Finland | Final felling– sawmill residues | 95 (80–110) | 621 (596–645) | 1324 (998–1564) |
Variable | Stand Type and Region | N | Mean | Minimum | Maximum | Std. Deviation |
---|---|---|---|---|---|---|
Age (y) | Final felling LN | 20 | 100.0 | 77 | 141 | 23.1 |
Final felling LS | 20 | 100.7 | 71 | 155 | 31.9 | |
Final felling MF | 10 | 80.9 | 54 | 123 | 21.5 | |
Final felling SF | 20 | 83.6 | 51 | 116 | 16.7 | |
Thinning LN | 20 | 64.2 | 28 | 93 | 23.7 | |
Thinning LS | 20 | 52.6 | 36 | 71 | 12.3 | |
Thinning MF | 10 | 29.4 | 26 | 32 | 1.8 | |
Thinning SF | 20 | 36.8 | 20 | 76 | 18.2 | |
Height (m) | Final felling LN | 20 | 16.7 | 11.9 | 20.5 | 2.5 |
Final felling LS | 20 | 17.6 | 14.5 | 21.6 | 2.2 | |
Final felling MF | 10 | 22.1 | 18.7 | 25.2 | 2.0 | |
Final felling SF | 20 | 22.1 | 16.8 | 29.2 | 4.2 | |
Thinning LN | 20 | 10.6 | 8.4 | 12.8 | 1.2 | |
Thinning LS | 20 | 11.1 | 8.8 | 12.6 | 1.0 | |
Thinning MF | 10 | 11.6 | 9.3 | 13.4 | 1.5 | |
Thinning SF | 20 | 13.2 | 9.7 | 20.2 | 3.0 | |
Diameter at breast | Final felling LN | 20 | 228.9 | 212 | 254 | 11.9 |
height, d1.3 (mm) | Final felling LS | 20 | 227.1 | 210 | 258 | 14.4 |
Final felling MF | 10 | 265.9 | 204 | 336 | 41.8 | |
Final felling SF | 20 | 242.5 | 181 | 356 | 47.0 | |
Thinning LN | 20 | 110.8 | 94 | 139 | 11.4 | |
Thinning LS | 20 | 113.9 | 91 | 140 | 12.9 | |
Thinning MF | 10 | 129.4 | 96 | 168 | 24.7 | |
Thinning SF | 20 | 144.4 | 99 | 209 | 33.1 | |
Basic density (gcm−3) | Final felling LN | 20 | 400.3 | 345.8 | 460.3 | 30.8 |
Final felling LS | 20 | 410.0 | 365.3 | 482.3 | 31.9 | |
Final felling MF | 10 | 441.2 | 401.0 | 489.8 | 36.2 | |
Final felling SF | 20 | 449.7 | 398.5 | 514.8 | 31.9 | |
Thinning LN | 20 | 411.1 | 342.4 | 548.9 | 54.8 | |
Thinning LS | 20 | 386.6 | 337.5 | 443.5 | 26.5 | |
Thinning MF | 10 | 373.6 | 354.0 | 436.1 | 24.3 | |
Thinning SF | 20 | 383.2 | 303.8 | 494.3 | 52.0 | |
Moisture content (%) | Final felling LN | 20 | 80.2 | 64.8 | 103.5 | 12.9 |
Final felling LS | 20 | 78.9 | 58.6 | 107.2 | 11.4 | |
Final felling MF | 10 | 76.5 | 44.3 | 104.0 | 16.8 | |
Final felling SF | 20 | 65.0 | 49.1 | 89.4 | 9.4 | |
Thinning LN | 20 | 118.0 | 78.2 | 164.9 | 23.9 | |
Thinning LS | 20 | 129.6 | 98.1 | 165.4 | 18.0 | |
Thinning MF | 10 | 139.5 | 106.6 | 156.4 | 17.4 | |
Thinning SF | 20 | 116.2 | 73.1 | 174.8 | 29.3 | |
Heartwood proportion (%) | Final felling LN | 20 | 30.8 | 9.2 | 44.9 | 10.0 |
Final felling LS | 20 | 30.7 | 14.2 | 53.3 | 10.8 | |
Final felling MF | 10 | 26.7 | 10.2 | 26.7 | 17.4 | |
Final felling SF | 20 | 34.0 | 20.2 | 58.1 | 10.0 | |
Thinning LN | 20 | 11.7 | 4.2 | 27.1 | 6.5 | |
Thinning LS | 20 | 10.3 | 2.8 | 20.1 | 5.1 | |
Thinning MF | 10 | 10.3 | 5.4 | 19.0 | 4.6 | |
Thinning SF | 20 | 17.7 | 5.1 | 40.6 | 9.0 | |
Ring width (mm) | Final felling LN | 20 | 1.37 | 0.99 | 1.70 | 0.17 |
Final felling LS | 20 | 1.34 | 0.70 | 1.74 | 0.36 | |
Final felling MF | 10 | 1.90 | 1.27 | 2.60 | 0.53 | |
Final felling SF | 20 | 1.51 | 0.90 | 2.33 | 0.48 | |
Thinning LN | 20 | 1.61 | 0.65 | 3.31 | 0.90 | |
Thinning LS | 20 | 1.67 | 0.94 | 2.40 | 0.56 | |
Thinning MF | 10 | 2.70 | 1.86 | 4.04 | 0.66 | |
Thinning SF | 20 | 2.70 | 1.07 | 4.26 | 1.06 | |
Latewood proportion (%) | Final felling LN | 20 | 30.1 | 21.8 | 37.6 | 4.6 |
Final felling LS | 20 | 32.9 | 23.0 | 39.4 | 3.9 | |
Final felling MF | 10 | 32.8 | 26.5 | 37.4 | 3.6 | |
Final felling SF | 20 | 34.0 | 27.3 | 41.5 | 4.2 | |
Thinning LN | 20 | 29.6 | 23.7 | 38.2 | 3.8 | |
Thinning LS | 20 | 31.3 | 26.4 | 40.7 | 3.2 | |
Thinning MF | 10 | 37.4 | 32.4 | 42.0 | 3.2 | |
Thinning SF | 20 | 32.6 | 26.0 | 41.4 | 4.5 |
Sawmill | Region | Location | Forest Site Type | Tree Age, Years |
---|---|---|---|---|
Jutos Timber AB, | LN | Norrbotten, Puljukka | VT | 124 |
Pajala (Sweden) | LN LN | Norrbotten, Lumipalo Norrbotten, Kursunkangas | VT CT | 109 130 |
Veljekset Vaara Oy | LS | Simo, Yli-Kärppä | VT | 90 |
Tervola (Finland) | LS | Rovaniemi, Marivaara | VT | 126 |
LS | Sodankylä, Pärivaara | VT | 196 | |
LS | Pello, Martinjärvi | MT | 104 | |
Lopen Rakennuspuu Oy | MF | Pälkäne, Rautajärvi | MT | 150 |
Loppi (Finland) | MF | Pälkäne, Rautajärvi | MT- | 120 |
SF | Urjala, Nenosenkylä | OMT | 110 | |
SF | Mäntsälä | VT | 120 |
Compound | Stand Type and Wood Type | N | Mean | Minimum | Maximum | Std. Deviation |
---|---|---|---|---|---|---|
Pinosylvin | Final felling sapwood | 66 | 0.021 | 0.004 | 0.086 | 0.014 |
Final felling–heartwood | 69 | 2.554 | 0.634 | 6.650 | 1.260 | |
Thinning–sapwood | 69 | 0.005 | 0.001 | 0.026 | 0.005 | |
Total | 204 | 0.872 | 0.001 | 6.650 | 1.409 | |
PSMME | Final felling–sapwoo | 66 | 0.026 | 0.006 | 0.120 | 0.023 |
Final felling–heartwood | 69 | 4.881 | 1.691 | 11.396 | 2.170 | |
Thinning–sapwood | 69 | 0.003 | 0.000 | 0.014 | 0.003 | |
Total | 204 | 1.660 | 0.000 | 11.396 | 2.628 | |
Vanillic acid | Final felling–sapwood | 66 | 0.006 | 0.003 | 0.013 | 0.002 |
Final felling–heartwood | 69 | 0.007 | 0.003 | 0.013 | 0.003 | |
Thinning–sapwood | 69 | 0.008 | 0.003 | 0.032 | 0.004 | |
Total | 204 | 0.007 | 0.003 | 0.032 | 0.003 | |
PS Glycoside | Final felling–heartwood | 69 | 0.061 | 0.015 | 0.181 | 0.035 |
PSMME-Glycoside | Final felling–heartwood | 69 | 0.091 | 0.013 | 0.375 | 0.065 |
Piceatannol | Final felling–heartwood | 69 | 0.007 | 0.001 | 0.028 | 0.006 |
Eriodictyol | Final felling–heartwood | 69 | 0.123 | 0.042 | 0.526 | 0.069 |
Lignan 1 | Final felling–heartwood | 69 | 0.096 | 0.041 | 0.173 | 0.027 |
Lignan 2 | Final felling–heartwood | 69 | 0.077 | 0.018 | 0.344 | 0.050 |
Lignan 3 | Final felling–heartwood | 69 | 0.073 | 0.028 | 0.165 | 0.029 |
Neolignan 1 | Final felling–heartwood | 69 | 0.303 | 0.058 | 1.398 | 0.206 |
Neolignan 2 | Final felling–heartwood | 69 | 0.166 | 0.008 | 0.920 | 0.177 |
Total Variance Explained | PC I | PC II | PC III | PC IV |
---|---|---|---|---|
Initial Eigenvalue | 4.51 | 2.10 | 1.41 | 1.07 |
% of variance | 37.55 | 17.47 | 11.73 | 8.91 |
Rotation SSL | 3.54 | 2.31 | 1.87 | 1.36 |
% of variance SSL | 29.48 | 19.28 | 15.60 | 11.30 |
Rotated component matrix | ||||
Lignan 2 | 0.902 | - | - | - |
Neolignan 1 | 0.875 | - | - | - |
PSMME Glycoside | 0.749 | 0.316 | 0.357 | - |
Neolignan 2 | 0.729 | - | - | - |
PSMME | 0.682 | 0.572 | - | - |
Vanillic acid | - | −0.821 | - | - |
Pinosylvin | - | 0.696 | - | - |
Lignan 1 | - | −0.686 | - | - |
Piceatannol | - | - | 0.868 | - |
PS Glycoside | 0.409 | - | 0.822 | - |
Eriodictyol | - | - | - | 0.873 |
Lignan 3 | - | −0.340 | 0.466 | 0.589 |
Pinosylvin | PSMME | Vanillic_Acid | Psglycoside | PSMMEgly | Piceatannol | Eriodictyol | Lignan 1 | Lignan 2 | Lignan 3 | Neolignan 1 | |
---|---|---|---|---|---|---|---|---|---|---|---|
PSMME | 0.689 ** | ||||||||||
Vanillic acid | −0.456 ** | −0.504 ** | |||||||||
Psglycoside | 0.342 ** | 0.527 ** | −0.338 ** | ||||||||
PSMMEgly | 0.323 ** | 0.777 ** | −0.391 ** | 0.719 ** | |||||||
Piceatannol | 0.254 * | 0.130 | −0.171 | 0.622 ** | 0.148 | ||||||
Eriodictyol | 0.267 * | 0.389 ** | −0.059 | 0.154 | 0.249 * | −0.063 | |||||
Lignan 1 | −0.288 * | −0.184 | 0.392 ** | −0.131 | −0.140 | −0.078 | −0.071 | ||||
Lignan 2 | 0.170 | 0.518 ** | 0.028 | 0.328 ** | 0.550 ** | −0.082 | 0.152 | 0.221 | |||
Lignan 3 | 0.032 | 0.232 | 0.212 | 0.486 ** | 0.377 ** | 0.108 | 0.263 * | 0.125 | 0.263 * | ||
Neolignan 1 | 0.218 | 0.541 ** | −0.053 | 0.333 ** | 0.539 ** | −0.072 | 0.176 | 0.150 | 0.878 ** | 0.289 * | |
Neolignan 2 | 0.161 | 0.607 ** | −0.209 | 0.412 ** | 0.728 ** | −0.021 | 0.165 | 0.068 | 0.482 ** | 0.309 ** | 0.422 ** |
Compound | Stand Type | Disc Age 1 | d1.3 | Tree Length | Ring Width | Density | Heartwood Proportion | Latewood Proportion |
---|---|---|---|---|---|---|---|---|
Pinosylvin | Final felling N = 66 | 0.344 ** | −0.016 | −0.120 | −0.264 * | −0.188 | 0.332 ** | −0.113 |
Thinning N = 69 | −0.355 ** | 0.170 | −0.119 | 0.426 ** | −0.462 ** | −0.223 | −0.187 | |
Total N = 135 | 0.599 ** | 0.576 ** | 0.434 ** | 0.210 * | 0.056 | 0.559 ** | −0.076 | |
PSMME | Final felling N = 66 | 0.284 * | 0.023 | −0.064 | −0.192 | −0.111 | 0.342 ** | 0.080 |
Thinning N = 69 | −0.188 | 0.047 | −0.163 | 0.215 | −0.288 * | −0.203 | −0.280 * | |
Total N = 135 | 0.566 ** | 0.524 ** | 0.412 ** | −0.248 ** | 0.127 | 0.553 ** | 0.037 | |
Vanillic acid | Final felling N = 66 | 0.072 | −0.186 | −0.545 ** | −0.171 | −0.387 ** | 0.124 | −0.310 * |
Thinning N = 69 | 0.059 | −0.145 | −0.155 | −0.163 | 0.201 | −0.118 | −0.199 | |
Total N = 135 | −0.175 * | −0.303 ** | −0.392 ** | −0.050 | −0.083 | −0.195 * | −0.230 ** |
Compound | Disc Age 1 | d1.3 | Tree Length | Ring Width | Density | Heartwood Proportion | Latewood Proportion |
---|---|---|---|---|---|---|---|
Pinosylvin | 0.214 | 0.380 ** | 0.431 ** | 0.074 | 0.308 * | 0.198 | 0.415 ** |
PSMME | 0.504 ** | 0.169 | 0.143 | −0.294 * | 0.224 | 0.158 | 0.227 |
Vanillic acid | −0.187 | −0.394 ** | −0.426 ** | −0.083 | −0.430 ** | 0.109 | −0.404 ** |
PS Glycoside | 0.339 ** | 0.096 | 0.176 | −0.158 | 0.237 | −0.036 | 0.205 |
PSMME Glycoside | 0.574 ** | 0.014 | 0.073 | −0.421 ** | 0.189 | 0.080 | 0.172 |
Piceatannol | 0.063 | 0.193 | 0.275 * | 0.047 | 0.196 | 0.008 | 0.128 |
Eriodictyol | 0.128 | 0.024 | 0.035 | −0.046 | 0.186 | 0.086 | 0.258 * |
Lignan 1 | −0.077 | −0.227 | −0.222 | −0.145 | −0.136 | 0.315 ** | −0.138 |
Lignan 2 | 0.204 | −0.088 | −0.197 | −0.238 * | −0.064 | 0.075 | −0.207 |
Lignan 3 | 0.229 | −0.090 | −0.169 | −0.181 | −0.040 | 0.028 | 0.001 |
Neolignan 1 | 0.123 | −0.052 | −0.155 | −0.121 | −0.033 | −0.045 | −0.154 |
Neolignan 2 | 0.702 ** | −0.060 | −0.005 | −0.575 ** | 0.157 | 0.276 * | 0.048 |
Dependent Variables | Independent Variables | Model Fit Statistics | ||||||
---|---|---|---|---|---|---|---|---|
Effective Thermal Sum | Density | Heartwood Proportion | Tree Length | Ring Width | Disc Age 1 | R2 | F-Value | |
HPLC–heartwood | ||||||||
Pinosylvin | −0.119 | 0.266 | 0.124 | 0.179 | 0.542 * | 0.516 * | 0.304 | 4.521 ** |
PSMME | 0.044 | 0.149 | −0.044 | −0.092 | 0.334 | 0.769 ** | 0.305 | 4.535 ** |
Vanillic acid | −0.036 | −0.298 * | 0.239* | −0.116 | −0.525 * | −0.639 ** | 0.379 | 6.305 ** |
PS Glycoside | 0.063 | 0.114 | −0.220 | 0.002 | 0.281 | 0.636 ** | 0.214 | 2.806 * |
PSMME Glycoside | 0.263 | −0.044 | −0.214 | −0.115 | 0.084 | 0.772 ** | 0.395 | 6.741 ** |
Piceatannol | −0.062 | 0.088 | −0.057 | 0.253 | 0.088 | 0.116 | 0.087 | 0.988 |
Eriodictyol | −0.149 | 0.379 * | 0.131 | −0.195 | 0.352 | 0.277 | 0.093 | 1.058 |
Lignan 1 | 0.056 | −0.010 | 0.466 ** | −0.192 | −0.460 * | −0.611 ** | 0.299 | 4.411 ** |
Lignan 2 | −0.188 | 0.084 | 0.053 | −0.125 | −0.029 | 0.132 | 0.102 | 1.174 |
Lignan 3 | 0.023 | 0.052 | −0.028 | −0.291 | 0.223 | 0.428 | 0.101 | 1.156 |
Neolignan 1 | −0.131 | 0.099 | −0.059 | −0.151 | 0.118 | 0.218 | 0.058 | 0.639 |
Neolignan 2 | 0.408 ** | −0.080 | −0.028 | −0.293 * | 0.006 | 0.796 ** | 0.567 | 13.555 ** |
HPLC–sapwood | ||||||||
Pinosylvin | 0.099 | −0.243 | 0.197 | −0.137 | 0.081 | 0.406 | 0.153 | 2.954 ** |
PSMME | 0.068 | −0.092 | 0.274 | −0.177 | 0.169 | 0.346 | 0.091 | 2.084 |
Vanillic acid | −0.408 ** | 0.096 | 0.238 ** | −0.428 ** | 0.246 | 0.121 | 0.376 | 7.525 ** |
NMR–heartwood | ||||||||
Dehydroabietic acid | −0.157 | 0.131 | 0.034 | −0.193 | 0.687 ** | 0.365 | 0.142 | 1.739 |
Abietic acid | −0.108 | 0.282 | 0.050 | −0.174 | 0.658 ** | 0.645 ** | 0.165 | 2.075 |
Isopimaric acid | −0.248 | 0.219 | 0.038 | −0.038 | 0.379 | 0.322 | 0.070 | 0.790 |
Pimaric acid | −0.226 | 0.314 | −0.006 | −0.268 | 0.736 ** | 0.557 * | 0.158 | 1.964 |
Levopimaric acid | −0.226 | 0.350 | −0.127 | −0.253 | 0.771 ** | 0.506 | 0.206 | 2.730 * |
Pinosylvin | −0.108 | 0.253 | 0.078 | 0.173 | 0.508 * | 0.485 * | 0.265 | 3.783 ** |
PSMME | 0.032 | 0.140 | −0.082 | −0.084 | 0.317 | 0.752 ** | 0.287 | 4.223 ** |
Compound | Region | N | Mean | Minimum | Maximum | Std. Deviation |
---|---|---|---|---|---|---|
Pinosylvin | Lapland North | 3 | 0.629 | 0.569 | 0.681 | 0.057 |
Lapland South | 4 | 0.435 | 0.393 | 0.511 | 0.053 | |
Middle & South Finland | 4 | 0.767 | 0.594 | 1.082 | 0.188 | |
Total | 11 | 0.609 | 0.393 | 1.082 | 0.194 | |
PSMME | Lapland North | 3 | 1.167 | 1.267 | 2.027 | 0.381 |
Lapland South | 4 | 0.986 | 0.916 | 1.030 | 0.049 | |
Middle & South Finland | 4 | 1.462 | 1.025 | 2.216 | 0.578 | |
Total | 11 | 1.335 | 0.916 | 2.216 | 0.458 | |
Vanillic acid | Lapland North | 3 | 0.010 | 0.007 | 0.015 | 0.004 |
Lapland South | 4 | 0.011 | 0.008 | 0.016 | 0.004 | |
Middle & South Finland | 4 | 0.010 | 0.005 | 0.014 | 0.004 | |
Total | 11 | 0.010 | 0.005 | 0.016 | 0.003 | |
PS Glycoside | Lapland North | 3 | 0.021 | 0.014 | 0.027 | 0.007 |
Lapland South | 4 | 0.015 | 0.012 | 0.017 | 0.002 | |
Middle & South Finland | 4 | 0.021 | 0.016 | 0.032 | 0.006 | |
Total | 11 | 0.019 | 0.012 | 0.032 | 0.006 | |
PSMME-Glycoside | Lapland North | 3 | 0.048 | 0.027 | 0.065 | 0.020 |
Lapland South | 4 | 0.026 | 0.022 | 0.031 | 0.003 | |
Middle & South Finland | 4 | 0.026 | 0.013 | 0.047 | 0.017 | |
Total | 11 | 0.032 | 0.013 | 0.065 | 0.016 | |
Eriodictyol | Lapland North | 3 | 0.032 | 0.030 | 0.035 | 0.002 |
Lapland South | 4 | 0.034 | 0.024 | 0.050 | 0.011 | |
Middle & South Finland | 4 | 0.046 | 0.026 | 0.084 | 0.027 | |
Total | 11 | 0.038 | 0.024 | 0.084 | 0.017 | |
Lignan 1 | Lapland North | 3 | 0.013 | 0.011 | 0.015 | 0.002 |
Lapland South | 4 | 0.024 | 0.017 | 0.029 | 0.005 | |
Middle & South Finland | 4 | 0.015 | 0.008 | 0.022 | 0.004 | |
Total | 11 | 0.018 | 0.008 | 0.029 | 0.007 | |
Lignan 2 | Lapland North | 3 | 0.013 | 0.010 | 0.016 | 0.003 |
Lapland South | 4 | 0.007 | 0.005 | 0.009 | 0.002 | |
Middle & South Finland | 4 | 0.007 | 0.005 | 0.009 | 0.002 | |
Total | 11 | 0.009 | 0.005 | 0.016 | 0.003 | |
Lignan 3 | Lapland North | 3 | 0.017 | 0.013 | 0.023 | 0.006 |
Lapland South | 4 | 0.016 | 0.011 | 0.020 | 0.005 | |
Middle & South Finland | 4 | 0.013 | 0.010 | 0.016 | 0.003 | |
Total | 11 | 0.015 | 0.010 | 0.023 | 0.004 | |
Neolignan 1 | Lapland North | 3 | 0.020 | 0.018 | 0.022 | 0.002 |
Lapland South | 4 | 0.016 | 0.014 | 0.018 | 0.002 | |
Middle & South Finland | 4 | 0.013 | 0.008 | 0.022 | 0.008 | |
Total | 11 | 0.016 | 0.008 | 0.022 | 0.005 | |
Neolignan 2 | Lapland North | 3 | 0.014 | 0.012 | 0.015 | 0.002 |
Lapland South | 4 | 0.011 | 0.008 | 0.014 | 0.003 | |
Middle & South Finland | 4 | 0.020 | 0.011 | 0.037 | 0.011 | |
Total | 11 | 0.015 | 0.008 | 0.037 | 0.008 |
NMR | ||||||||
---|---|---|---|---|---|---|---|---|
Dehydroabietic Acid | Abietic Acid | Isopimaric Acid | Pimaric Acid | Levopimaric Acid | Pinosylvin | PSMME | ||
HPLC | Pinosylvin | 0.204 | 0.519 ** | 0.338 ** | 0.345 ** | 0.307 * | 0.986 ** | 0.688 ** |
PSMME | 0.290 * | 0.653 ** | 0.516 ** | 0.523 ** | 0.384 ** | 0.647 ** | 0.985 ** | |
Vanillic acid | −0.257 * | −0.551 ** | −0.442 ** | −0.427 ** | −0.437 ** | −0.461 ** | −0.519 ** | |
PS Glycoside | 0.070 | 0.226 | 0.206 | 0.248 * | 0.255 * | 0.318 ** | 0.532 ** | |
PSMME Glycoside | 0.043 | 0.360 ** | 0.280 * | 0.234 | 0.130 | 0.284 * | 0.767 ** | |
Piceatannol | 0.167 | 0.180 | 0.214 | 0.266 * | 0.372 ** | 0.249 * | 0.137 | |
Eriodictyol | −0.020 | 0.152 | 0.072 | 0.091 | 0.035 | 0.247 * | 0.382 ** | |
Lignan 1 | −0.296 * | −0.286 * | −0.217 | −0.240 * | −0.257 * | −0.304 * | −0.211 | |
Lignan 2 | 0.208 | 0.211 | 0.194 | 0.299 * | 0.192 | 0.115 | 0.484 ** | |
Lignan 3 | −0.239 * | −0.145 | −0.148 | −0.131 | −0.142 | 0.014 | 0.233 | |
Neolignan 1 | 0.220 | 0.233 | 0.242 * | 0.351 ** | 0.271 * | 0.156 | 0.498 ** | |
Neolignan 2 | −0.064 | 0.203 | 0.125 | 0.111 | −0.019 | 0.106 | 0.571 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verkasalo, E.; Möttönen, V.; Roitto, M.; Vepsäläinen, J.; Kumar, A.; Ilvesniemi, H.; Siwale, W.; Julkunen-Tiitto, R.; Raatikainen, O.; Sikanen, L. Extractives of Stemwood and Sawmill Residues of Scots Pine (Pinus sylvestris L.) for Biorefining in Four Climatic Regions in Finland—Phenolic and Resin Acid Compounds. Forests 2021, 12, 192. https://doi.org/10.3390/f12020192
Verkasalo E, Möttönen V, Roitto M, Vepsäläinen J, Kumar A, Ilvesniemi H, Siwale W, Julkunen-Tiitto R, Raatikainen O, Sikanen L. Extractives of Stemwood and Sawmill Residues of Scots Pine (Pinus sylvestris L.) for Biorefining in Four Climatic Regions in Finland—Phenolic and Resin Acid Compounds. Forests. 2021; 12(2):192. https://doi.org/10.3390/f12020192
Chicago/Turabian StyleVerkasalo, Erkki, Veikko Möttönen, Marja Roitto, Jouko Vepsäläinen, Anuj Kumar, Hannu Ilvesniemi, Workson Siwale, Riitta Julkunen-Tiitto, Olavi Raatikainen, and Lauri Sikanen. 2021. "Extractives of Stemwood and Sawmill Residues of Scots Pine (Pinus sylvestris L.) for Biorefining in Four Climatic Regions in Finland—Phenolic and Resin Acid Compounds" Forests 12, no. 2: 192. https://doi.org/10.3390/f12020192
APA StyleVerkasalo, E., Möttönen, V., Roitto, M., Vepsäläinen, J., Kumar, A., Ilvesniemi, H., Siwale, W., Julkunen-Tiitto, R., Raatikainen, O., & Sikanen, L. (2021). Extractives of Stemwood and Sawmill Residues of Scots Pine (Pinus sylvestris L.) for Biorefining in Four Climatic Regions in Finland—Phenolic and Resin Acid Compounds. Forests, 12(2), 192. https://doi.org/10.3390/f12020192