Structure and Abundance of Fusarium Communities Inhabiting the Litter of Beech Forests in Central Europe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Fungal Isolation
2.3. Morphological Identification
2.4. DNA Extraction, Amplification and Phylogenetic Analysis
2.5. Pathogenicity Tests
3. Results
3.1. Fungal Isolation
3.2. Fungal Identification and Phylogenetic Analysis
3.3. Frequency of Isolation of Fusarium spp. and Related Genera from Beech Litter
3.4. Pathogenicity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bolte, A.; Czajkowski, T.; Kompa, T. The north-eastern distribution range of European beech—A review. Forestry 2007, 80, 413–429. [Google Scholar] [CrossRef]
- Paluch, J.; Kołodziej, Z.; Pach, M.; Jastrzębski, R. Spatial variability of close-to-primeval Fagus-Abies-Picea forests in the Western Carpathians (Central Europe): A step towards a generalized pattern. Eur. J. For. Res. 2015, 134, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Barna, M. Natural regeneration of Fagus sylvatica L.: A Review. Austrian J. For. Sci. 2011, 128, 71–91. [Google Scholar]
- Crist, T.O.; Friese, C.F. The Impact of Fungi on Soil Seeds: Implications for Plants and Granivores in a Semiarid Shrub-Steppe. Ecology 1993, 74, 2231–2239. [Google Scholar] [CrossRef]
- Walz, A.K.E.; Hindorf, H. Occurrence of Pythium ultimum and Fusarium arthsporioides on beech-nuts (Fagus sylvatica). J. Plant. Dis. Prot. 1989, 96, 633–635. [Google Scholar]
- Mittal, R.K.; Anderson, R.L.; Mathur, S.B. Micro-Organisms Associated with Tree Seeds, World Checklist 1990; Information Report PI-X-96E/F; National Forestry Institute: Petawawa, ON, Canada, 1990; 70p.
- Prochazkova, Z. Quality, and fungus contamination, of European beech (Fagus sylvatica) beechnuts collected from the forest floor and from nets spread on the floor. Zpravy Lesn. Vyzk. 2009, 54, 205–212. [Google Scholar]
- Król, E.; Machowicz-Stefaniak, Z.; Zimowska, B.; Abramczyk, B. Grzyby zasiedlające nasiona wybranych gatunków drzew leśnych. Sylwan 2015, 159, 135–141. [Google Scholar] [CrossRef]
- Perera, R.H.; Hyde, K.D.; Maharachchikumbura, S.S.N.; Jones, E.B.G.; McKenzie, E.H.C.; Stadler, M.; Lee, H.B.; Samarakoon, M.C.; Ekanayaka, A.H.; Camporesi, E.; et al. Fungi on wild seeds and fruits. Mycosphere 2020, 11, 2108–2480. [Google Scholar] [CrossRef]
- Korpel‘, Š. Zaciatocné fázy prirodzenej obnovy bukových porastov. In Pestovanie a Produkcia Buka; Zachar, D., Štefancík, L., Eds.; Príroda: Bratislava, Slovakia, 1978; pp. 109–141. [Google Scholar]
- Bílek, L.; Remeš, J.; Zahradník, D. Natural regeneration of senescent even-aged beech (Fagus sylvatica L.) stands under the conditions of Central Bohemia. J. For. Sci. 2009, 55, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Szewczyk, J.; Szwagrzyk, J. Spatial and temporal variability of natural regeneration in a temperate old-growth forest. Ann. For. Sci. 2010, 67, 202. [Google Scholar] [CrossRef]
- Jankowiak, R.; Stępniewska, H.; Szwagrzyk, J.; Bilański, P.; Gratzer, G. Characterization of Cylindrocarpon-like species associated with litter in the old-growth beech forests of Central Europe. For. Path. 2016, 46, 582–594. [Google Scholar] [CrossRef]
- Babadoost, M. Fusarium: Historical and Continued Importance. In Fusarium–Plant Diseases, Pathogen Diversity, Genetic Diversity, Resistance and Molecular Markers; Askun, T., Ed.; IntechOpen: London, UK, 2018; pp. 13–24. [Google Scholar] [CrossRef] [Green Version]
- Wingfield, M.J.; Hammerbacher, R.J.; Ganley, R.J.; Steenkamp, E.; Gordon, T.R.; Wingfield, B.D.; Coutinho, T.A. Pitch canker caused by Fusarium circinatum-a growing threat to pine plantations and forests worldwide. Australas Plant Path. 2008, 37, 319–334. [Google Scholar] [CrossRef]
- James, R.L.; Dumroese, R.K. Investigations of Fusarium diseases within Inland Pacific Northwest Forest Nurseries. In Guyon J.C. Comp. 2006. Proceedings of the 53 Western International Forest Disease Work Conference, Jackson, WY, USA, 26–29 August 2005; Jackson, W.Y., Ogden, U.T., Eds.; U.S. Department of Agriculture, Forest Service, Intermountain Region: Jackson, WY, USA, 2006; pp. 3–11. [Google Scholar]
- Dumroese, R.K.; James, R.L. Root diseases in bareroot and container nurseries of the Pacific Northwest: Epidemiology, management, and effects on outplanting performance. New For. 2005, 30, 185–202. [Google Scholar] [CrossRef]
- Montecchio, L. Damping-off of Beech Seedlings Caused by Fusarium avenaceum in Italy. Plant Dis. 2005, 89, 1014. [Google Scholar] [CrossRef] [PubMed]
- Lilja, A.; Poteri, M.; Petäistö, R.-L.; Rikala, R.; Kurkela, T.; Kasanen, R. Fungal diseases in forest nurseries in Finland. Silva. Fenn. 2010, 44, 525–545. [Google Scholar] [CrossRef] [Green Version]
- Peterson, M. Fusarium species-a British Columbia Perspective in Forest Seedling Production. In National Proceedings: Forest and Conservation Nursery Associations–2007; Dumroese, R.K., Riley, L.E., Technical Coordinators; Proceedings RMRS-P-57; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2008; pp. 109–125. Available online: http://www.fs.fed.us/rm/pubs/rmrs_p057.html (accessed on 23 September 2020).
- Martin-Pinto, P.; Pajares, J.A.; Pando, V.; Diez, J.J. Fungi isolated from diseased nursery seedlings in Spain. New For. 2006, 31, 41–56. [Google Scholar] [CrossRef]
- Menkis, A.; Vasiljauskas, R.; Taylor, A.F.S.; Stenström, E.; Stenlid, J.; Finlay, R. Fungi in decayed roots of conifer seedlings in forest nurseries, afforested clear-cuts and abandoned farmland. Plant Pathol. 2006, 55, 117–129. [Google Scholar] [CrossRef]
- Zakeri, A.; Hamzeharghani, H.; Banihashemi, Z.; Saadati, S.H. Pathogenic fungi associated with pre- and post-emergence seedling blight of pine and cypress in Fars Province, Iran. For. Path. 2011, 41, 438–443. [Google Scholar] [CrossRef]
- Lazreg, F.; Belabid, L.; Sanchez, J.; Gallego, E.; Bayaa, B. Pathogenicity of Fusarium spp. associated with diseases of Aleppo-pine seedlings in Algerian forest nurseries. J. For. Sci. 2014, 60, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Okorski, A.; Pszczółkowska, A.; Kokorska, A.; Fordoński, G. First Report of Fagus sylvatica infection by Fusarium avenaceum in Forest Container Nurseries in Northeastern Poland. Plant Dis. 2015, 99, 420. [Google Scholar] [CrossRef]
- Fajardo, M.A.; Leon, J.D.; Correa, G.A.; Morales, J.G. The Causal Agent of Damping-off Pinus patula (Schiede) and Pinus tecunumanii (Schwerdtf.). Floresta Ambient. 2019, 26, e20190050. [Google Scholar] [CrossRef]
- Kubíková, J. The surface mycoflora of ash roots. Trans. Brit. Mycol. Soc. 1963, 46, 107–114. [Google Scholar] [CrossRef]
- Halmschlager, E.; Kowalski, T. The mycobiota in nonmycorrhizal roots of healthy and declining oaks. Can. J. Bot. 2004, 82, 1446–1458. [Google Scholar] [CrossRef]
- Bartnik, C. Symptomy chorobowe i uszkodzenia w systemach korzeniowych zamierających dębów oraz grzyby im towarzyszące. In “Fitopatologia wczoraj, dziś i jutro”; Materiały z Sympozjum 75 lat Katedry Fitopatologii SGGW w Warszawie, 23–24 września; Majewski, T., Ed.; Exit: Warsaw, Poland, 1997; pp. 3–10. [Google Scholar]
- Chavarriaga, D.; Bodles, W.J.A.; Leifert, C.; Belbahri, L.; Woodward, S. Phytophthora cinnamomi and other fine root pathogens in north temperate pine forests. FEMS Microbiol. Lett. 2007, 276, 67–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwaśna, H.; Behnke-Borowczyk, J.; Gornowicz, R.; Łakomy, P. Effects of preparation of clear-cut forest sites on the soil mycobiota with consequences for Scots pine growth and health. For. Path. 2019, 49, e12494. [Google Scholar] [CrossRef]
- Newsham, K.K. Response of saprotrophic fungal communities to declining SO2 pollution in the natural environment. Pedobiologia 2003, 47, 77–84. [Google Scholar] [CrossRef]
- Shi, L.; Dossa, G.G.O.; Paudel, E.; Zang, H.; Xu, J.; Harrison, R.D. Changes in fungal communities across a forest disturbance gradient. Appl. Environ. Microbiol. 2019, 85, e00080-19. [Google Scholar] [CrossRef] [Green Version]
- Axelrood, P.E.; Chapman, W.K.; Seifert, K.A.; Trotter, D.B.; Shrimpton, G. Cylindrocarpon and Fusarium root colonization of Douglas-fir seedlings from British Columbia reforestation sites. Can. J. For. Res. 1998, 28, 1198–1206. [Google Scholar] [CrossRef]
- Yamazaki, M.; Iwamoto, S.; Seiwa, K. Distance- and density-dependent seedling mortality caused by several diseases in eight tree species co-occurring in a temperate forest. Plant Ecol. 2009, 201, 181–196. [Google Scholar] [CrossRef]
- Chehri, K.; Salleh, B.; Soleimani, M.J.; Reddy, K.R.N.; Zakaria, L. Occurrence of Fusarium spp. Associated with root tissues and rhizosphere soils of forest trees and assessment of their pathogenicity on Prunus amygdalus seedlings. Aust. J. Bot. 2010, 58, 679–686. [Google Scholar] [CrossRef]
- Mwanza, E.J.M.; Kellas, J.D. Identification of the fungi associated with damping-off in the regeneration of Eucalyptus obliqua and E. radiata in a central Victorian forest. Eur. J. For. Pathol. 1987, 17, 237–245. [Google Scholar] [CrossRef]
- Mazarotto, E.J.; Poitevin, C.G.; do Carmo, A.L.M.; dos Santos, A.F.; Tralamazza, S.M.; Pimentel, I.C. Pathogenic Fusarium species complexes associated to seeds of indigenous Brazilian forest tree Aspidosperma polyneuron. Eur. J. Plant Pathol. 2020, 158, 849–857. [Google Scholar] [CrossRef]
- Weidensaul, T.C.; Wood, F.A. Sources of Species of Fusarium in Northern Hardwood Forests. Phytopathology 1973, 63, 367–371. [Google Scholar] [CrossRef]
- Summerell, B.A.; Rugg, C.A.; Burgess, L.W. Mycogeography of Fusarium: Survey of Fusarium species associated with forest and woodland communities in north Queensland, Australia. Mycol. Res. 1993, 97, 1015–1019. [Google Scholar] [CrossRef]
- Kannangara, B.T.S.D.P.; Deshappriya, N. Microfungi associated with leaf litter decomposition of Michelia nilagirica and Semecarpus coriacea at Hakgala Montane Forest. J. Natn. Sci. Found. Sri Lanka 2005, 33, 81–91. [Google Scholar] [CrossRef]
- Sharma, G.; Pandey, R.R.; Singh, M.S. Microfungi associated with surface soil and decaying leaf litter of Quercus serrata in a subtropical natural oak forest and managed plantation in Northeastern India. Afr. J. Microbiol. Res. 2011, 5, 777–787. [Google Scholar] [CrossRef] [Green Version]
- Manshor, N.; Rosli, H.; Ismail, N.A.; Salleh, B.; Zakaria, L. Diversity of Fusarium Species from Highland Areas in Malaysia. Trop. Life Sci. Res. 2012, 23, 1–15. [Google Scholar]
- Allegrucci, N.; Bucsinszky, A.M.; Arturi, M.; Cabello, M.N. Comunities of anamorphic fungi on green leaves and leaf litter of native forests of Scutia buxifolia and Celtis tala: Composition, diversity, seasonability and substrate specificity. Rev. Iberoam. Micol. 2015, 32, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Rambey, R.; Sianturi, S.D. Decomposition rate of Rhizopora stylosa litter in Tanjung Rejo Village, Deli Serdang Regeney, North Sumatera Province. International Conference of Agriculture, Environment and Food Security. In IOP Conference Series: Earth and Environmental Science; IOP: London, UK, 2008; Volume 122, p. 012058. [Google Scholar] [CrossRef] [Green Version]
- Szwagrzyk, J.; Gratzer, G.; Stępniewska, H.; Szewczyk, J.; Veselinovic, B. High reproductive effort and low recruitment rates of European beech; is there a limit for the superior competitor? Pol. J. Ecol. 2015, 63, 243–257. [Google Scholar] [CrossRef]
- Nirenberg, H. Untersuchungen uber die morphologische und biologische Differenzierung in der Fusarium–Section Liseola. Mitt. Biol. Bundesanst. Land Forstwirtsch. 1976, 169, 1–117. [Google Scholar]
- Leslie, J.F.; Summerell, B.A. The Fusarium Laboratory Manual; Blackwell Publishing: Ames, IA, USA, 2006; pp. 1–388. [Google Scholar]
- Liu, Y.J.; Whelen, S.; Hall, B.D. Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerase II subunit. Mol. Biol. Evol. 1999, 16, 1799–1808. [Google Scholar] [CrossRef] [PubMed]
- Sung, G.H.; Sung, J.M.; Hywel-Jones, N.L.; Spatafora, J.W. A multi-gene phylogeny of Clavicipitaceae (Ascomycota, fungi): Identification of localized incongruence using a combinational bootstrap approach. Mol. Phylogenet. Evol. 2007, 44, 1204–1223. [Google Scholar] [CrossRef]
- O’Donnell, K.; Kistler, H.C.; Cigelnik, E.; Ploetz, R.C. Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Natl. Acad. Sci. USA 1998, 95, 2044–2049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geiser, D.M.; del Mar Jiménez-Gasco, M.; Kang, S.; Makalowska, I.; Veeraraghavan, N.; Ward, T.J.; Zhang, N.; Kuldau, G.A.; O’donnell, K. FUSARIUM-ID v. 1.0: A DNA Sequence Database for Identifying Fusarium. Eur. J. Plant Pathol. 2004, 110, 473–479. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Crous, P.W.; Wingfield, M.J.; Burgess, T.I.; Carnegie, A.J.; Hardy, G.S.; Smith, D.; Summerell, B.A.; Cano-Lira, J.F.; Guarro, J.; Houbraken, J.; et al. Fungal Planet description sheets: 625–715. Persoonia 2017, 39, 270–467. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, K.; McCormick, S.P.; Busman, M.; Proctor, R.H.; Ward, T.J.; Doehring, G.; Geiser, D.M.; Alberts, J.; Rheeder, J.P. Marasas et al. 1984 “Toxigenic Fusarium Species: Identity and Mycotoxicology” revisited. Mycologia 2018, 110, 1058–1080. [Google Scholar] [CrossRef]
- Sandoval-Denis, M.; Lombard, L.; Crous, P. Back to the roots: A reappraisal of Neocosmospora. Pers. Mol. Phylogeny Evol. Fungi 2019, 43, 90–185. [Google Scholar] [CrossRef]
- Lombard, L.; Sandoval-Denis, M.; Lamprecht, S.C.; Crous, P. Epitypification of Fusarium oxysporum–clearing the taxonomic chaos. Pers. Mol. Phylogeny Evol. Fungi 2019, 43, 1–47. [Google Scholar] [CrossRef] [Green Version]
- Torbati, M.; Arzanlou, M.; Sandoval-Denis, M.; Crous, P.W. Multigene phylogeny reveals new fungicolous species in the Fusarium tricinctum species complex and novel hosts in the genus Fusarium from Iran. Mycol. Prog. 2019, 18, 119–133. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7, improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acid. S. 1999, 41, 95–98. [Google Scholar] [CrossRef]
- Guindon, S.; Gascuel, O. A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst. Biol. 2003, 52, 696–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [Green Version]
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swofford, D.L. PAUP* 4.0: Phylogenetic Analysis Using Parsimony (*And Other Methods); Sinauer Associates: Sunderland, MA, USA, 2003. [Google Scholar]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rambaut, A.; Drummond, A.J. Tracer v1.4. 2007. Available online: http://beast.bio.ed.ac.uk/Tracer (accessed on 20 June 2020).
- Lombard, L.; Merwe, N.V.; Groenewald, J.; Crous, P. Generic concepts in Nectriaceae. Stud. Mycol. 2015, 80, 189–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mańka, M.; Łakomy, P.; Cieślak, R.; Szynkiewicz, A. Fungi inhabiting Fagus sylvatica seeds after harvest and after drying. Phytopathologia 2012, 65, 39–43. [Google Scholar]
- Salerno, M.I.; Lori, G.A. Association of seed−borne Fusarium species on Pinus ponderosa with germination and seedling viability in Argentina. For. Pathol. 2007, 37, 263–271. [Google Scholar] [CrossRef]
- Booth, C. The Genus Fusarium; Commonwealth Mycological Institute: Kew, Surrey, UK; The Eastern Press Limited London and Reading: London, UK, 1971; pp. 1–237. [Google Scholar]
- Summerell, B.A.; Leslie, J.F.; Liew, E.C.Y.; Laurence, M.H.; Bullock, S.; Petrovic, T.; Bentley, A.R.; Howard, C.G.; Peterson, S.A.; Walsh, J.L.; et al. Fusarium species associated with plants in Australia. Fungal Divers. 2011, 46, 1–27. [Google Scholar] [CrossRef]
- Szynkiewicz, A.; Kwaśna, H. The effects of fungi from acorns with symptoms of black rot and necrotic twigs of oak on Quercus seedlings. Phytopathol. Pol. 2004, 32, 49–59. [Google Scholar]
- Wit, M.; Sierota, Z.; Oszako, T.; Mirzwa−Mróz, E.; Wakuliński, W. Fusarium spp. na nadziemnych organach zamierających dębów–nowe zagrożenie? Sylwan 2015, 159, 403–410. [Google Scholar] [CrossRef]
- Domsch, K.H.; Gams, W.; Anderson, T.-H. Compendium of Soil Fungi; IHW-Verlag Press: Eching, Germany, 1993. [Google Scholar]
- Ivanová, H.; Hrehová, Ľ.; Pristaš, P. First confirmed report on Fusarium sporotrichioides on Pinus ponderosa var. jeffreyi in Slovakia. Plant Protect. Sci. 2016, 52, 250–253. [Google Scholar] [CrossRef] [Green Version]
- Anderson, R.L. New method for assessing contamination of slash and loblolly pine seeds by Fusarium moniliforme var. subglutinans. Plant Dis. 1986, 70, 452–453. [Google Scholar] [CrossRef]
- Jankowiak, R. Fungi occurring in acorn of Quercus robur L. infested by insects. Acta Sci. Pol. Silv. Colendar. Rat. Ind. Lignar. 2008, 7, 19–29. Available online: http://www.forestry.actapol.net/issue1/volume/2_1_2008.pdf (accessed on 20 February 2021).
- Jankowiak, R.; Stępniewska, H.; Bilański, P.; Taerum, S.J. Fungi as potential factor limiting natural regeneration of pedunculate oak (Quercus robur L.) in mixed-species forest stands in Poland. (unpublished; manuscript in preparation).
- Zakaria, L.; Foong, M.K.; Hsuan, H.M.; Zakaria, M.; Salleh, B. Fusarium species isolated from Mangrove soil in Kampung Pantai Acheh, Balik Pulau, Pulau Pinang, Malaysia. Trop. Life Sci. Res. 2010, 21, 21–29. [Google Scholar]
- Zakaria, L.; Azaman, R.S. Fusarium species isolated from forest soil samples. Mal. J. Microbiol. 2011, 7, 171–174. [Google Scholar]
- Akare, S.M.; Tagade, W.Y.; Warghat, A.R.; Nargal, A.; Bhardwaj, A. Culturable fungal diversity associated with forest leaf litter from Bhandara District of Maharashtra, India. Biodiversitas 2016, 17, 349–358. [Google Scholar]
- Urbanová, M.; Šnajdr, J.; Baldrian, P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol. Biochem. 2015, 84, 53–64. [Google Scholar] [CrossRef]
- Dastogeer, K.M.G.; Tumpa, F.H.; Sultana, A.; Akter, M.A.; Chakraborty, A. Plant microbiome–an account of the factors that shape community composition and diversity. Curr. Plant Biol. 2020, 23, 100161. [Google Scholar] [CrossRef]
Taxon | Isolate 1 | Isolation Source | Site | GenBank Accession no. | |
---|---|---|---|---|---|
RPB2 | TEF1-α | ||||
Fusarium acuminatum | 36HS | Fagus sylvatica, germinants | Poland, Babia Góra | MZ078936 | MZ078975 |
Fusarium avenaceum | P49HS | Fagus sylvatica, germinants | Austria, Rothwald | MZ078937 | MZ078976 |
P40HS | Fagus sylvatica, germinants | Poland, Babia Góra | MZ078938 | MZ078977 | |
43HS | Fagus sylvatica, germinants | Poland, Zabierzowski Forest | MZ078939 | MZ078978 | |
P56HS | Fagus sylvatica, germinants | Poland, Zabierzowski Forest | MZ078940 | MZ078979 | |
3HS | Pinus sylvestris, seedlings | Poland, Babia Góra | MZ078941 | MZ078980 | |
P53HS | Fagus sylvatica, germinants | Austria, Rothwald | MZ078942 | MZ078981 | |
35HS | Fagus sylvatica, germinants | Poland, Babia Góra | MZ078943 | MZ078982 | |
17HS | Fagus sylvatica, germinants | Poland, Babia Góra | MZ078944 | MZ078983 | |
1HS | Pinus sylvestris, seedlings | Poland, Babia Góra | MZ078945 | MZ078984 | |
34HS | Fagus sylvatica, beechnuts | Poland, Babia Góra | MZ078946 | MZ078985 | |
37HS | Fagus sylvatica, germinants | Poland, Babia Góra | MZ078947 | MZ078986 | |
20HS | Fagus sylvatica, beechnuts | Poland, Babia Góra | MZ078948 | MZ078987 | |
53HS | Fagus sylvatica, germinants | Poland, Zabierzowski Forest | MZ078949 | MZ078988 | |
46HS | Fagus sylvatica, germinants | Poland, Zabierzowski Forest | MZ078950 | MZ078989 | |
P41HS | Fagus sylvatica, germinants | Poland, Babia Góra | MZ078951 | MZ078990 | |
Fusarium graminearum | 5HS | Pinus sylvestris, seedlings | Poland, Babia Góra | MZ078952 | MZ078991 |
Fusarium oxysporum | 23HS | Fagus sylvatica, beechnuts | Poland, Babia Góra | MZ078953 | MZ078992 |
Fusarium sambucinum | 14HS | Fagus sylvatica, beechnuts | Poland, Babia Góra | MZ078954 | MZ078993 |
47HS | Fagus sylvatica, germinants | Poland, Zabierzowski Forest | MZ078955 | MZ078994 | |
Fusarium sporotrichioides | 4HS | Pinus sylvestris, seedlings | Poland, Babia Góra | MZ078956 | MZ078995 |
42HS | Fagus sylvatica, germinants | Poland, Zabierzowski Forest | MZ078957 | MZ078996 | |
48HS | Fagus sylvatica, germinants | Poland, Zabierzowski Forest | MZ078958 | MZ078997 | |
Fusarium tricinctum | P55HS | Fagus sylvatica, beechnuts | Poland, Babia Góra | MZ078959 | MZ078998 |
Fusarium A | 8HS | Fagus sylvatica, beechnuts | Poland, Babia Góra | MZ078924 | MZ078963 |
7HS | Fagus sylvatica, germinants | Poland, Babia Góra | MZ078925 | MZ078964 | |
Fusarium B | 54HS | Fagus sylvatica, germinants | Poland, Zabierzowski Forest | MZ078926 | MZ078965 |
10HS | Fagus sylvatica, germinants | Poland, Babia Góra | MZ078927 | MZ078966 | |
31HS | Fagus sylvatica, germinants | Poland, Babia Góra | MZ078928 | MZ078967 | |
11HS | Fagus sylvatica, germinants | Poland, Babia Góra | MZ078929 | MZ078968 | |
18HS | Fagus sylvatica, germinants | Poland, Babia Góra | MZ078930 | MZ078969 | |
29HS | Fagus sylvatica, germinants | Poland, Babia Góra | MZ078931 | MZ078970 | |
30HS | Fagus sylvatica, beechnuts | Poland, Babia Góra | MZ078932 | MZ078971 | |
61HS | Fagus sylvatica, germinants | Austria, Rothwald | MZ078933 | MZ078972 | |
62HS | Fagus sylvatica, germinants | Austria, Rothwald | MZ078934 | MZ078973 | |
Fusarium C | 27HS | Fagus sylvatica, beechnuts | Poland, Babia Góra | MZ078935 | MZ078974 |
Neocosmospora solani | 25HS | Fagus sylvatica, beechnuts | Poland, Babia Góra | MZ078960 | MZ078999 |
26HS | Fagus sylvatica, beechnuts | Poland, Babia Góra | MZ078961 | MZ079000 | |
50HS | Fagus sylvatica, germinants | Poland, Babia Góra | MZ078962 | MZ079001 | |
Fusicolla sp. | 16HS | Fagus sylvatica, germinants | Poland, Babia Góra | - | MZ079002 |
Dataset 1 | Locus 2 | Substitution Model 3 | Number of Sites | Parsimony Statistics | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Total | Cons. 4 | Var. 5 | Phy.i. 6 | CI 7 | RI 8 | RC 9 | HI 10 | |||
Neocosmospora spp. | Combined RPB2+TEF1-α | GTR + I + G | 1396 | 909 | 181 | 306 | 0.504 | 0.638 | 0.322 | 0.496 |
Fusarium tricinctum SC | Combined RPB2+TEF1-α | GTR + I + G | 1407 | 1010 | 33 | 364 | 0.785 | 0.917 | 0.72 | 0.215 |
Fusarium sambucinum SC | Combined RPB2+TEF1-α | GTR + G | 1647 | 1109 | 15 | 523 | 0.804 | 0.929 | 0.747 | 0.196 |
Fusarium oxysporum SC | Combined RPB2+TEF1-α | HKY + G | 1497 | 1305 | 90 | 102 | 0.835 | 0.861 | 0.719 | 0.165 |
Taxon | Locations | |||
---|---|---|---|---|
Babia Góra | Rothwald | Zabierzowski Forest | ||
Experiment 1 In Situ (Beechnuts or Beech Germinants) | Experiment 2 in Laboratory (Pine Seedlings) | Experiment 1 In Situ (Beechnuts or Beech Germinants) | Experiment 1 In Situ (Beechnuts or Beech Germinants) | |
Fusarium acuminatum | 1.6 | |||
Fusarium avenaceum | 9.3 | 16.7 | 13.2 | 65.2 |
Fusarium graminearum | 1.4 | |||
Fusarium oxysporum | 1.6 | |||
Fusarium sambucinum | 0.5 | 0.2 | 2.9 | |
Fusarium sporotrichioides | 1.4 | 0.8 | 10.1 | |
Fusarium tricinctum | 0.3 | |||
Fusarium sp. A | 0.7 | |||
Fusarium sp. B | 4.3 | 2.1 | 5.8 | |
Fusarium sp. C | 0.1 | |||
Fusicolla sp. | 0.1 | |||
Neocosmospora solani | 0.2 | 0.8 | ||
Fusarioid species (Fusarium, Fusicolla and Neocosmospora), total | 18.9 | 19.6 | 16.8 | 79.7 |
Cylindrocarpon-like species (Ilyonectria and Neonectria), total 1 | 31.9 | 48.3 | 43.2 | 39.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stępniewska, H.; Jankowiak, R.; Bilański, P.; Hausner, G. Structure and Abundance of Fusarium Communities Inhabiting the Litter of Beech Forests in Central Europe. Forests 2021, 12, 811. https://doi.org/10.3390/f12060811
Stępniewska H, Jankowiak R, Bilański P, Hausner G. Structure and Abundance of Fusarium Communities Inhabiting the Litter of Beech Forests in Central Europe. Forests. 2021; 12(6):811. https://doi.org/10.3390/f12060811
Chicago/Turabian StyleStępniewska, Hanna, Robert Jankowiak, Piotr Bilański, and Georg Hausner. 2021. "Structure and Abundance of Fusarium Communities Inhabiting the Litter of Beech Forests in Central Europe" Forests 12, no. 6: 811. https://doi.org/10.3390/f12060811
APA StyleStępniewska, H., Jankowiak, R., Bilański, P., & Hausner, G. (2021). Structure and Abundance of Fusarium Communities Inhabiting the Litter of Beech Forests in Central Europe. Forests, 12(6), 811. https://doi.org/10.3390/f12060811