Driving Factors and Spatial Distribution of Aboveground Biomass in the Managed Forest in the Terai Region of Nepal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Measurements and AGB Estimates
- “v” is the volume per hectare (m3/ha);
- “ln” is the natural logarithm with base 2.71828;
- “DBH” is the diameter of trees at breast height (cm);
- “H” is the height of trees (m).
- Additionally, the coefficients a, b, and c are species-dependent.
2.3. LiDAR Data
2.4. Above-Ground Biomass Mapping
- denotes the coefficient of determination;
- denotes the measured value;
- denotes the model predicted value;
- denotes the average value;
- denotes the total number of samples;
- denotes the root mean square error;
- and MAE denotes the mean absolute error.
2.5. Climatic and Topographic Data
2.6. Statistical Model and Analysis
3. Results
3.1. Aboveground Biomass—ALS Based Map
3.2. Driving Factors of Aboveground Biomass
3.2.1. Variables Used in the RF Model
3.2.2. Relative Variables Importance in the RF Model
3.2.3. Partial Dependence Plots (Response Plots)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goodale, C.L.; Apps, M.J.; Birdsey, R.A.; Field, C.B.; Heath, L.S.; Houghton, R.A.; Jenkins, J.C.; Kohlmaier, G.H.; Kurz, W.; Liu, S. Forest carbon sinks in the northern hemisphere. Ecol. Appl. 2002, 12, 891–899. [Google Scholar] [CrossRef]
- Woodbury, P.B.; Smith, J.E.; Heath, L.S. Carbon sequestration in the U.S. forest sector from 1990 to 2010. For. Ecol. Manag. 2010, 241, 14–27. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Cusack, D.F.; Axsen, J.; Shwom, R.; Hartzell-Nichols, L.; White, S.; Mackey, K.R.M. An interdisciplinary assessment of climate engineering strategies. Front. Ecol. Environ. 2014, 12, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Kauranne, T.; Joshi, A.; Gautam, B.; Manandhar, U.; Nepal, S.; Peuhkurinen, J. LiDAR-assisted multi-source program (LAMP) for measuring above ground biomass and forest carbon. Remote Sens. 2017, 9, 154. [Google Scholar] [CrossRef]
- Urbazaev, M.; Thiel, C.; Cremer, F.; Dubayah, R.; Migliavacca, M.; Reichstein, M.; Schmullius, C. Estimation of forest aboveground biomass and uncertainties by integration of field measurements, airborne LiDAR, and SAR and optical satellite data in Mexico. Carbon Balance Manag. 2018, 13, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Achard, F.; Eva, H.D.; Mayaux, P.; Stibig, H.J.; Belward, A. Improved Estimates of Net Carbon Emissions from Land Cover Change in the Tropics for the 1990s. Glob. Biogeochem. Cycles 2004, 18, 1–11. [Google Scholar] [CrossRef]
- Hese, S.; Lucht, W.; Schmullius, C.; Barnsley, M.; Dubayah, R.; Knorr, D.; Neumann, K.; Riedel, T.; Schröter, K. Global Biomass Mapping for an Improved Understanding of the CO2 Balance-the Earth Observation Mission Carbon-3D. Remote Sens. Environ. 2005, 94, 94–104. [Google Scholar] [CrossRef]
- Houghton, R.A. Aboveground Forest Biomass and the Global Carbon Balance. Glob. Chang. Biol. 2005, 11, 945–958. [Google Scholar] [CrossRef]
- Frolking, S.; Palace, M.W.; Clark, D.B.; Chambers, J.Q.; Shugart, H.H.; Hurtt, G.C. Forest Disturbance and Recovery: A General Review in the Context of Spaceborne Remote Sensing of Impacts on Aboveground Biomass and Canopy Structure. J. Geophys. Res. Biogeosciences 2009, 114, G00E02. [Google Scholar] [CrossRef]
- LeToan, T.S.; Quegan, M.; Davidson, W.J.; Balzter, H.; Paillou, P.; Papathanassiou, K.; Plummer, S. The BIOMASS Mission: Mapping Global Forest Biomass to Better Understand the Terrestrial Carbon Cycle. Remote Sens. Environ. 2011, 115, 2850–2860. [Google Scholar] [CrossRef]
- Lu, D. The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens. 2006, 27, 1297–1328. [Google Scholar] [CrossRef]
- Vashum, K.T.; Jayakumar, S. Methods to Estimate Above-Ground Biomass and Carbon Stock in Natural Forests—A Review. Ecosyst. Ecography 2012, 2, 1–7. [Google Scholar] [CrossRef]
- Du, L.; Zhou, T.; Zou, Z.; Zhao, X.; Huang, K.; Wu, H. Mapping forest biomass using remote sensing and national forest inventory in China. Forests 2014, 5, 1267–1283. [Google Scholar] [CrossRef]
- Tang, X.; Fehrmann, L.; Guan, F.; Forrester, D.; Guisasola, R.; Kleinn, C. Inventory based estimation of forest biomass in Shitai County, China: A comparison of five methods. Ann. For. Res. 2016, 59, 269–280. [Google Scholar] [CrossRef]
- Dang, A.T.N.; Nandy, S.; Srinet, R.; Luong, N.V.; Ghosh, S.; Senthil Kumar, A. Forest aboveground biomass estimation using machine learning regression algorithm in Yok Don National Park, Vietnam. Ecol. Inform. 2019, 50, 24–32. [Google Scholar] [CrossRef]
- Mura, M.; McRoberts, R.E.; Chirici, G.; Marchetti, M. Estimating and mapping forest structural diversity using airborne laser scanning data. Remote Sens. Environ. 2015, 170, 133–142. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran, E. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int. J. Digit. Earth 2014, 9, 63–105. [Google Scholar] [CrossRef]
- Sačkov, I.; Santopuoli, G.; Bucha, T.; Lasserre, B.; Marchetti, M. Forest inventory attribute prediction using lightweight aerial scanner data in a selected type of multilayered deciduous forest. Forests 2016, 7, 12. [Google Scholar] [CrossRef]
- Lim, K.S.; Treitz, P.M. Estimation of above ground forest biomass from airborne discrete return laser scanner data using canopy-based quantile estimators. Scand. J. For. Res. 2004, 19, 558–570. [Google Scholar] [CrossRef]
- Hyyppä, J.; Hyyppä, H.; Xiaowei, Y.; Kaartinen, H.; Kukko, A.; Holopainen, M. Topographic Laser Ranging and Scanning: Principles and Processing; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2009; pp. 335–370. [Google Scholar]
- Zhao, K.; Popescu, S. Lidar-based mapping of leaf area index and its use for validating GLOBCARBON satellite LAI product in a temperate forest of the southern USA. Remote Sens. Environ. 2009, 113, 1628–1645. [Google Scholar] [CrossRef]
- Birdsey, R.; Angeles-Perez, G.; Kurz, W.A.; Lister, A.; Olguin, M.; Pan, Y.; Wayson, C.; Wilson, B.; Johnson, K. Approaches to monitoring changes in carbon stocks for REDD+. Carbon Manag. 2013, 4, 519–537. [Google Scholar] [CrossRef]
- Subedi, M.; Matthews, R.; Pogson, M.; Abegaz, A.; Balana, B.; Oyesiku-blakemore, J.; Smith, J. ScienceDirect Can biogas digesters help to reduce deforestation in Africa ? Biomass Bioenergy 2014, 70, 87–98. [Google Scholar] [CrossRef]
- Law, B.E.; Turner, D.; Campbell, J.; Sun, O.J.; Van Tuyl, S.; Ritts, W.D.; Cohen, W.B. Disturbance and climate effects on carbon stocks and fluxes across Western Oregon USA. Glob. Chang. Biol. 2004, 10, 1429–1444. [Google Scholar] [CrossRef]
- Gough, C.M.; Vogel, C.S.; Harrold, K.H.; George, K.; Curtis, P.S. The legacy of harvest and fire on ecosystem carbon storage in a north temperate forest. Glob. Chang. Biol. 2007, 13, 1935–1949. [Google Scholar] [CrossRef]
- Hudiburg, T.; Law, B.; Turner, D.P.; Campbell, J.; Donato, D.; Duane, M. Carbon dynamics of Oregon and Northern California forests and potential land-based carbon storage. Ecol. Appl. 2009, 19, 163–180. [Google Scholar] [CrossRef] [PubMed]
- Hanberry, B.B.; He, H.S. Effects of historical and current disturbance on forest biomass in Minnesota. Landsc. Ecol. 2015, 30, 1473–1482. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, F.; Liu, S.; Liu, Y.; Li, C. Forest Ecology and Management Variations of carbon stock with forest types in subalpine region of southwestern China. For. Ecol. Manag. 2013, 300, 88–95. [Google Scholar] [CrossRef]
- Clark, K.L.; Gholz, H.L.; Castro, M.S. Carbon dynamics along a chronosequence of slash pine plantations in North Florida. Ecol. Appl. 2004, 14, 1154–1171. [Google Scholar] [CrossRef]
- Orihuela-Belmonte, D.E.; de Jong, B.H.J.; Mendoza-Vega, J.; van der Wal, J.; Paz-Pellat, F.; Soto-Pinto, L.; Flamenco-Sandoval, A. Carbon stocks and accumulation rates in tropical secondary forests at the scale of community, landscape and forest type. Agric. Ecosyst. Environ. 2013, 171, 72–84. [Google Scholar] [CrossRef]
- Yang, Y.; Watanabe, M.; Li, F.; Zhang, J.; Zhang, W.; Zhai, J. Factors affecting forest growth and possible effects of climate change in the Taihang Mountains, Northern China. Forestry 2006, 79, 135–147. [Google Scholar] [CrossRef]
- Ajaz Ahmed, M.A.; Abd-Elrahman, A.; Escobedo, F.J.; Cropper, W.P., Jr.; Martin, T.A.; Timilsina, N. Spatially-explicit modeling of multi-scale drivers of aboveground forest biomass and water yield in watersheds of the Southeastern United States. J. Environ. Manag. 2017, 199, 158–171. [Google Scholar] [CrossRef] [PubMed]
- Alves, L.F.; Vieira, S.A.; Scaranello, M.A.; Camargo, P.B.; Santos, F.A.M.; Joly, C.A.; Martinelli, L.A. Forest Ecology and Management Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). For. Ecol. Manag. 2010, 260, 679–691. [Google Scholar] [CrossRef]
- Asner, G.P.; Flint Hughes, R.; Varga, T.A.; Knapp, D.E.; Kennedy-Bowdoin, T. Environmental and biotic controls over aboveground biomass throughout a tropical rain forest. Ecosystems 2009, 12, 261–278. [Google Scholar] [CrossRef]
- Saud, J.; Lynch, P.; Cram, T.; Guldin, D. An Annual basal area growth model with multiplicative climate modifier fitted to longitudi-nal data for shortleaf pine. Forestry 2019, 92, 538–553. [Google Scholar] [CrossRef]
- Yan, Y.; Wu, F.; Wang, B. Estimating spatiotemporal patterns of aboveground biomass using Landsat TM and MODIS images in the Mu Us Sandy Land, China. Agric. For. Meteorol. 2015, 200, 119–128. [Google Scholar] [CrossRef]
- Tadese, S.; Soromessa, T.; Aneseye, A.B.; Gebeyehu, G. The impact of land cover change on the carbon stock of moist afromontane forests in the Majang Forest Biosphere Reserve. Carbon Balance Manag. 2023, 18, 24. [Google Scholar] [CrossRef] [PubMed]
- Hofhansl, F.; Chacón-Madrigal, E.; Fuchslueger, L.; Jenking, D.; Morera-Beita, A.; Plutzar, C. Climatic and edaphic controls over tropical forest diversity and vegetation carbon storage. Sci. Rep. 2020, 10, 5066. [Google Scholar] [CrossRef]
- RequenaSuarez, D.; Rozendaal, D.M.A.; De Sy, V.; Gibbs, D.A.; Harris, N.L.; Sexton, J.O. Variation in aboveground biomass in forests and woodlands in Tanzania along gradients in environmental conditions and human use. Environ. Res. Lett. 2021, 16, 044014. [Google Scholar] [CrossRef]
- Powell, S.L.; Cohen, W.B.; Healey, S.P.; Kennedy, R.E.; Moisen, G.G.; Pierce, K.B. Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches. Remote Sens. Environ. 2010, 114, 1053–1068. [Google Scholar] [CrossRef]
- VanderLaan, C.; Verweij, P.A.; Quiñones, M.J.; Faaij, A.P.C. Analysis of biophysical and anthropogenic variables and their relation to the regional spatial variation of aboveground biomass illustrated for North and East Kalimantan, Borneo. Carbon Bal. Manag. 2014, 9, 8. [Google Scholar] [CrossRef] [PubMed]
- Rajput, B.S.; Bhardwaj, D.R.; Pala, N.A. Factors influencing biomass and carbon storage potential of different land use systems along an elevational gradient in temperate northwestern Himalaya. Agrofor. Syst. 2017, 91, 479–486. [Google Scholar] [CrossRef]
- Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509–523. [Google Scholar] [CrossRef]
- DFRS. State of Nepal’s Forests; Department of Forest Research and Survey: Kathmandu, Nepal, 2015; ISBN 9789937889636. [Google Scholar]
- Kandel, P.N. Estimation of Above Ground Forest Biomass and Carbon Stock by Integrating Lidar, Satellite Image and Field Measurement in Nepal. J. Nat. Hist. Mus. 2015, 28, 160–170. [Google Scholar] [CrossRef]
- Murthy, M.S.R.; Wesselmann, S.; Hammad, G. Multi-Scale Forest Biomass Assessment and Monitoring in the Hindu Kush Himalayan Region: A Geospatial Perspective. Icimod 2008, 322, 202. [Google Scholar]
- Rana, P.; Popescu, S.; Tolvanen, A.; Gautam, B.; Srinivasan, S.; Tokola, T. Estimation of tropical forest aboveground biomass in Nepal using multiple remotely sensed data and deep learning. Int. J. Remote Sens. 2023, 44, 5147–5171. [Google Scholar] [CrossRef]
- Estornell, J.; Ruiz, L.A.; Velázquez-Martí, B.; Fernández-Sarría, A. Estimation of shrub biomass by airborne LiDAR data in small forest stands. Ecol. Manag. 2011, 262, 1697–1703. [Google Scholar] [CrossRef]
- Lefsky, M.A.; Cohen, W.B.; Harding, D.J.; Parker, G.G.; Acker, S.A.; Gower, S.T.; Service, F.; Way, S.W.J.; Goddard, N.; Flight, S. Lidar remote sensing of above-ground biomass in three biomes. Glob. Ecol. Biogeogr. 2002, 11, 393–399. [Google Scholar] [CrossRef]
- Li, Y.; Andersen, H.; Mcgaughey, R. A Comparison of Statistical Methods for Estimating Forest Biomass from Light Detection and Ranging Data. J. Appl. For. 2008, 23, 223–231. [Google Scholar] [CrossRef]
- Asner, G.P.; Mascaro, J. Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR metric. Remote Sens. Environ. 2014, 140, 614–624. [Google Scholar] [CrossRef]
- Asner, G.P.; Powell, G.V.N.; Mascaro, J.; Knapp, D.E.; Clark, J.K.; Jacobson, J.K.; Bowdoin, T.; Balaji, A.; Paez-Acosta, G.; Victoria, E.; et al. High-resolution forest carbon stocks and emissions in the Amazon. Proc. Natl. Acad. Sci. USA 2010, 107, 16738–16742. [Google Scholar] [CrossRef] [PubMed]
- Kc, Y.B.; Liu, Q.; Saud, P.; Gaire, D.; Adhikari, H. Estimation of Above-Ground Forest Biomass in Nepal by the Use of Airborne LiDAR, and Forest Inventory Data. Land 2024, 13, 213. [Google Scholar] [CrossRef]
- FRA/DFRS. Forest Resource Assessment Nepal Project/Department of Forest Research and Survey; FRA/DFRS: Babarmahal, Kathmandu, 2014. [Google Scholar]
- Sharma, E.R.; Pukkala, T. Volume Equations and Biomass Prediction of Forest Trees in Nepal; ResearchGate: Berlin, Germany, 1990. [Google Scholar]
- Jackson, J.K. Afforestation, Manual of Forest, in Nepal, 2nd ed.; Research and Survey Center: Kathmandu, Nepal, 1994; Volume I. [Google Scholar]
- Roussel, J.R.; Auty, D.; Coops, N.C.; Tompalski, P.; Goodbody, T.R.H.; Meador, A.S.; Bourdon, J.F.; de Boissieu, F.; Achim, A. lidR: An R package for analysis of Airborne Laser Scanning (ALS) data. Remote Sens. Environ. 2020, 251, 112061. [Google Scholar] [CrossRef]
- Fawagreh, K.; Gaber, M.M.; Elyan, E. Systems Science & Control Engineering: An Open Access Random forests: From early developments to recent advancements. Syst. Sci. Control. Eng. Open Access J. 2014, 2583, 602–609. [Google Scholar] [CrossRef]
- Freeman, A.E.; Frescino, T.; Moisen, G.G. ModelMap: An R Package for Model Creation and Map Production; R Package Version 4; R Foundation for Statistical Computing: Vienna, Austria, 2023; pp. 6–12. [Google Scholar]
- Pandit, S.; Tsuyuki, S.; Dube, T. Estimating above-ground biomass in sub-tropical buffer zone community forests, Nepal, using Sentinel 2 data. Remote Sens. 2018, 10, 601. [Google Scholar] [CrossRef]
- Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- R Core Team R. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. Available online: www.R-project.org (accessed on 5 September 2023).
- Vafaei, S.; Soosani, J.; Adeli, K.; Fadaei, H.; Naghavi, H.; Pham, T.D.; Bui, D.T. Improving accuracy estimation of Forest Aboveground Biomass based on incorporation of ALOS-2 PALSAR-2 and Sentinel-2A imagery and machine learning: A case study of the Hyrcanian forest area (Iran). Remote Sens. 2018, 10, 172. [Google Scholar] [CrossRef]
- Jiang, X.; Li, G.; Lu, D.; Chen, E.; Wei, X. Stratification-based forest aboveground biomass estimation in a subtropical region using airborne lidar data. Remote Sens. 2020, 12, 1101. [Google Scholar] [CrossRef]
- Van Etten, J.; Sumner, M.; Cheng, J.; Baston, D.; Bevan, A.; Bivand, R.; Busetto, L.; Canty, M.; Fasoli, B.; Forrest, D.; et al. Package ‘raster’ R topics documented. R Package 2023, 734, 473. [Google Scholar]
- Jin, Z.; Shang, J.; Zhu, Q.; Ling, C.; Xie, W.; Qiang, B. RFRSF: Employee Turnover Prediction Based on Random Forests and Survival Analysis. In Proceedings of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Fisciano, Italy, 29 June–3 July 2020. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Malla, R.; Neupane, P.R.; Köhl, M. Assessment of above ground biomass and soil organic carbon in the forests of Nepal under climate change scenario. Front. For. Glob. Change 2023, 6, 1209232. [Google Scholar] [CrossRef]
- Ali, A.; Lin, S.L.; He, J.K.; Kong, F.M.; Yu, J.H.; Jiang, H.S. Climate and soils determine aboveground biomass indirectly via species diversity and stand structural complexity in tropical forests. For. Ecol. Manag. 2019, 432, 823–831. [Google Scholar] [CrossRef]
- Yuan, S.; Tang, T.; Wang, M.; Chen, H.; Zhang, A.; Yu, J. Regional Scale Determinants of Nutrient Content of Soil in a Cold-Temperate Forest. Forests 2018, 9, 177. [Google Scholar] [CrossRef]
- Slik, J.W.F.; Paoli, G.; Mcguire, K.; Amaral, I.; Barroso, J.; Bastian, M.; Blanc, L.; Bongers, F.; Boundja, P.; Clark, C.; et al. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob. Ecol. Biogeogr. 2013, 22, 1261–1271. [Google Scholar] [CrossRef]
- Liu, L.; Lim, S.; Shen, X.; Yebra, M. Assessment of generalized allometric models for aboveground biomass estimation: A case study in Australia. Comput. Electron. Agric. 2020, 175, 105610. [Google Scholar] [CrossRef]
- Laurance, W.F.; Fearnside, P.M.; Laurance, S.G.; Lovejoy, T.E.; Merona, J.M.R.; Jeffrey, Q.; Gascon, C. Relationship between soils and Amazon forest biomass: A landscape-scale study. For. Ecol. Manag. 1999, 118, 127–138. [Google Scholar] [CrossRef]
- Bowman, D.; Williamson, K.; Prior, L. A warmer world will reduce tree growth in evergreen broadleaf forests: Evidence from Australian temperate and subtropical eucalypt forests. Glob. Ecol. Biogeogr. 2014, 23, 925–934. [Google Scholar] [CrossRef]
- Medlyn, B.; Zeppel, M.; Brouwers, N.; Howard, K.; Gara, E.; Hardy, G.; Lyons, T.; Li, L.; Evans, B. An Assessment of the Vulnerability of Australian Forests to the Impacts of Climate Change; Griffith University: Brisbane, Australian, 2011. [Google Scholar]
- Lewis, S.L.; Sonké, B.; Sunderland, T.; Begne, S.K.; Lopez-Gonzalez, G.; van der Heijden, G.M.F.; Phillips, O.L.; Affum-Baffoe, K.; Baker, T.R.; Banin, L.; et al. Above-ground biomass and structure of 260 African tropical forests. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 295. [Google Scholar] [CrossRef]
- Du, Q.; Xu, J.; Wang, J.; Zhang, F.; Ji, B. Correlation between forest carbon distribution and terrain elements of altitude and slope. J. Zhejiang A F Univ. 2013, 30, 330–335. [Google Scholar]
- Fan, Y.; Zhou, G.; Shi, Y.; Du, H.; Zhou, Y.; Xu, X. Effects of terrain on stand structure and vegetation carbon storage of phyllostachys edulis forest. Sci. Silvae Sin. 2013, 49, 177–182. [Google Scholar]
- Li, P.; Wei, X.; Tang, M. Forest site classification based on nfi and dem in zhejiang province. J. Southwest For. Univ. 2018, 38, 137–144. [Google Scholar]
- De Castilho, C.V.; Magnusson, W.E.; de Araújo, R.N.O.; Luizão, R.C.C.; Luizão, F.J.; Lima, A.P.; Higuchi, N. Variation in aboveground tree live biomass in a central Amazonian Forest: Effects of soil and topography. For. Ecol. Manag. 2006, 234, 85–96. [Google Scholar] [CrossRef]
- Nepal, S.; Kc, M.; Pudasaini, N.; Adhikari, H. Divergent Effects of Topography on Soil Properties and Above-Ground Biomass in Nepal’s Mid-Hill Forests. Resources 2023, 12, 136. [Google Scholar] [CrossRef]
- Sanaei, A.; Ali, M.; Chahouki, Z.; Ali, A.; Jafari, M.; Azarnivand, H. Science of the Total Environment Abiotic and biotic drivers of aboveground biomass in semi-steppe rangelands. Sci. Total Environ. 2018, 615, 895–905. [Google Scholar] [CrossRef] [PubMed]
- Raich, J.W.; Russell, A.E.; Vitousek, P.M. Primary productivity and ecosystem development along an elevational gradient on Mauna Loa, Hawaii. Ecology 1997, 78, 707–721. [Google Scholar]
- Waide, R.B.; Zimmerman, J.K.; Scatena, F.N. Controls of primary productivity: Lessons from the Luquillo Mountains in Puerto Rico. Ecology 1998, 79, 31–37. [Google Scholar] [CrossRef]
- Aiba, S.; Kitayama, K. Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu, Borneo. Plant Ecol. 1999, 140, 139–157. [Google Scholar] [CrossRef]
- Kitayma, K.; Aiba, S. Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. J. Ecol. 2002, 90, 37–51. [Google Scholar] [CrossRef]
- Leuschner, C.; Moser, G.; Bertsch, C.; Röderstein, M.; Hertel, D. Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic Appl. Ecol. 2007, 8, 219–230. [Google Scholar] [CrossRef]
- Broich, M.; Hansen, M.; Stolle, F.; Potapov, P.; Margono, B.A.; Adusei, B. Remotely sensed forest cover loss shows high spatial and temporal variation across Sumatera and Kalimantan, Indonesia 2000–2008. Environ. Res. Lett. 2011, 6, 014010. [Google Scholar] [CrossRef]
- Mehta, V.K.; Sullivan, P.J.; Walter, M.T.; Krishnaswamy, J.; Degloria, S.D. Impacts of disturbance on soil properties in a dry tropical forest in Southern India. Ecohydrology 2008, 175, 161–175. [Google Scholar] [CrossRef]
- Rad, J.E.; Valadi, G.; Salehzadeh, O.; Maroofi, H. Effects of anthropogenic disturbance on plant composition, plant diversity and soil properties in oak forests, Iran. J. For. Sci. 2018, 2018, 358–370. [Google Scholar]
- Ma, L.; Li, W.; Shi, N.; Fu, S.; Lian, J.; Ye, W. Temporal and spatial patterns of aboveground biomass and its driving forces in a subtropical forest: A case study. Pol. J. Ecol. 2019, 67, 95–104. [Google Scholar] [CrossRef]
- Oberleitner, F.; Egger, C.; Oberdorfer, S.; Dullinger, S.; Wanek, W.; Hietz, P. Forest Ecology and Management Recovery of aboveground biomass, species richness and composition in tropical secondary forests in SW Costa Rica. For. Ecol. Manag. 2021, 479, 118580. [Google Scholar] [CrossRef]
- Ojha, R.B.; Panday, D. (Eds.) The Soils of Nepal; Springer International Publishing: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
Attributes | Mean ± Standard Deviation | Range (Minimum to Maximum) |
---|---|---|
Density (trees/ha) | 462 ± 343 | 39–2122 |
DBH (cm) | 24 ± 14 | 6–101 |
Height (m) | 17 ± 7 | 2–28 |
Basal area (m2) | 12 ± 10 | 0.2–47 |
Volume (m3/ha) | 108 ± 112 | 0.6–519 |
AGB (ton/ha) | 131 ± 137 | 1–640 |
ALS- LiDAR Metrics | Predictor Variables | Characteristics |
---|---|---|
Height metrics | Percentiles height (zq5 to zq95) | Percentiles of the ALS height distributions, where the “z” typically stands for height and “q” stands for quantile or percentile (including 5th, 10th, 15th, 20th, 25th, 30th, 35th, 40th, 45th, 50th, 55th, 60th, 65th, 70th, 75th, 80th, 85th, 90th, 95th) for all points above 2 m |
Maximum heights (zmax) | Maximum heights above 2 m for all points | |
Mean heights (zmean) | Mean heights above 2 m for all points | |
Coefficient of variation of height (zcv) | Coefficient of variation of heights for all points above 2 m | |
Standard deviation (zsd) | Standard deviation of heights for all points above 2 m | |
Skewness (zskew) | Skewness of heights for all points above 2 m | |
Kurtosis (zkurt) | Kurtosis of the heights for all points above 2 m | |
Entropy (zentropy) | Entropy of the height distribution | |
Density metrics | pzabove2 | Percentages of first returns above 2 m |
pzabovezmean | Percentage of returns greater than the mean returns height | |
zpcum1 | Cumulative percentage of first returns in the lower 10% of maximum elevation | |
zpcum2 | Cumulative percentage of first returns in the lower 20% of maximum elevation | |
zpcum3 | Cumulative percentage of first returns in the lower 30% of maximum elevation | |
Relative shape of the canopy | Canopy relief ratio (CRR) | Calculated as (height mean-height min)/(height max-height min), which represents the relative shape of the canopy |
Variable Type | Description | Spatial Resolution | Data Source |
---|---|---|---|
Climatic variables | Mean annual temperature (deg C) from 1981 to 2021 | 10 m × 10 m | DHM (http://www.dhm.gov.np/, accessed on 5 September 2023) |
Mean annual precipitation (mm) from 1981 to 2021 | 10 m × 10 m | ||
Topographic and soil variables | Elevation (m a.s.l.) based on DEM | 10 m × 10 m | DEM-LiDAR |
Slope (deg) based on DEM | 10 m × 10 m | DEM-LiDAR | |
Aspect (deg) based on DEM | 10 m × 10 m | DEM-LiDAR | |
Soil type | 10 m × 10 m | ICIMOD (https://rds.icimod.org/home/datadetail?metadataid=1889, accessed on 5 September 2023) | |
Road distance | 10 m × 10 m | ICIMOD (https://rds.icimod.org/home/datadetail?metadataid=1889, accessed on 5 September 2023) | |
River distance | 10 m × 10 m | ICIMOD (https://rds.icimod.org/home/datadetail?metadataid=1889, accessed on 5 September 2023) | |
Land use land cover | Sentinel-2: Land Use/Land Cover 2021 | 10 m × 10 m | ArcGIS online (https://livingatlas.arcgis.com/landcover/, accessed on 5 September 2023) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
KC, Y.B.; Liu, Q.; Saud, P.; Xu, C.; Gaire, D.; Adhikari, H. Driving Factors and Spatial Distribution of Aboveground Biomass in the Managed Forest in the Terai Region of Nepal. Forests 2024, 15, 663. https://doi.org/10.3390/f15040663
KC YB, Liu Q, Saud P, Xu C, Gaire D, Adhikari H. Driving Factors and Spatial Distribution of Aboveground Biomass in the Managed Forest in the Terai Region of Nepal. Forests. 2024; 15(4):663. https://doi.org/10.3390/f15040663
Chicago/Turabian StyleKC, Yam Bahadur, Qijing Liu, Pradip Saud, Chang Xu, Damodar Gaire, and Hari Adhikari. 2024. "Driving Factors and Spatial Distribution of Aboveground Biomass in the Managed Forest in the Terai Region of Nepal" Forests 15, no. 4: 663. https://doi.org/10.3390/f15040663
APA StyleKC, Y. B., Liu, Q., Saud, P., Xu, C., Gaire, D., & Adhikari, H. (2024). Driving Factors and Spatial Distribution of Aboveground Biomass in the Managed Forest in the Terai Region of Nepal. Forests, 15(4), 663. https://doi.org/10.3390/f15040663