Strategies for Climate-Smart Forest Management in Austria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of Austrian Forests
2.2. Forest Management Scenarios
- The demand for timber quantity and quality is equal to the observed situation of the years 2007 and 2009, according to data of the Austrian National Forest Inventory.
- The National Renewable Action Plan 2010 is implemented in the future and the supply increases due to higher market prices for fuel wood [25].
- The annual cuttings increase from 2010 to 2020 in accordance with the observation that the forests had been under-utilized in the past.
- The forest area remains constant.
- The Renewable Action Plan 2010 [25] is further developed and the demand for fuel wood increases due to higher market prices for fuel wood.
- The demand for timber increases, in particular for hardwoods with a high caloric value.
- Increased forest management intensity is implemented in the form of more thinnings and shorter rotation periods.
- A decline in standing stock of biomass is expected and accepted.
- An increased demand for wood and wood products, partially triggered by government subsidies, modified regulations for buildings, and new technologies.
- Attractive market situations for timber, and low prices for fuel wood stimulate the demand.
- Moderate imports of timber are still possible. However, a larger quantity of timber derives from national forest resources because growing wood processing capacities in neighboring countries constrain timber imports.
- The characteristics of Scenario 1b.
- An increasing rate of timber imports that alleviate the pressure on national natural resources.
- Stepwise reduction of the harvesting rate by 5% until 2020 to 15% after 2050.
- Enlargement of nature conservation areas in the wake of Natura 2000 and the European Biodiversity Strategy [26].
- The protected area goes from currently 1.2% of the production forest area to 5% in the year 2100, in accordance with the expected unfolding political agenda on nature conservation.
2.3. Climate
2.4. Simulation of the Aboveground Biomass
2.5. Simulation of the Soil Carbon Pool
3. Results
3.1. Aboveground Stem Biomass
3.2. Soil Carbon Pool
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- De Vries, W.; Reinds, G.J.; Gundersen, P.; Sterba, H. The impact of nitrogen deposition on carbon sequestration in European forests and forest soils. Glob. Chang. Biol. 2006, 12, 1151–1173. [Google Scholar] [CrossRef]
- De Vries, W.; Posch, M.; Simpson, D.; Reinds, G.J. Modelling long-term impacts of changes in climate, nitrogen deposition and ozone exposure on carbon sequestration of European forest ecosystems. Sci. Total Environ. 2017, 605–606, 1097–1116. [Google Scholar] [CrossRef] [PubMed]
- Pretzsch, H.; Biber, P.; Schütze, G.; Uhl, E.; Rötzer, T. Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat. Commun. 2014, 5, 4967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. Global Forest Resources Assessment 2015 How Are the World’S Forests Changing? 2nd ed.; FAO: Rome, Italy, 2016. [Google Scholar]
- Janssens, I.A.; Freibauer, A.; Ciais, P.; Smith, P.; Nabuurs, G.J.; Folberth, G.; Schlamadinger, B.; Hutjes, R.W.A.; Ceulemans, R.; Schulze, E.D.; et al. Europe’s terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions. Science 2003, 300, 1538–1542. [Google Scholar] [CrossRef] [PubMed]
- Luyssaert, S.; Ciais, P.; Piao, S.L.; Schulze, E.D.; Jung, M.; Zaehle, S.; Schelhaas, M.J.; Reichstein, M.; Churkina, G.; Papale, D.; et al. The European carbon balance. Part 3: Forests. Glob. Chang. Biol. 2010, 16, 1429–1450. [Google Scholar] [CrossRef]
- Anderl, M.; Friedrich, A.; Haider, S.; Kriech, M.; Lampert, C.; Moosmann, L.; Pazdernik, K.; Pfaff, G.; Pinterits, M.; Poupa, S.; et al. Austria’s National Inventory Report 2016. Submission under the United Nations Framework Convention on Climate Change and under the Kyoto Protocol; Umweltbundesamt: Vienna, Austria, 2016; Vol. REP-0565. [Google Scholar]
- Nabuurs, G.J.; Delacote, P.; Ellison, D.; Hanewinkel, M.; Hetemäki, L.; Lindner, M.; Ollikainen, M. By 2050 the Mitigation Effects of EU Forests Could Nearly Double through Climate Smart Forestry. Forests 2017, 8, 484. [Google Scholar] [CrossRef]
- Jandl, R.; Schindlbacher, A.; Schüler, S.; Stöhr, D. Wald- und Waldgrenzenforschung in Obergurgl—Vergangenheit und Zukunft; Alpine Forschungsstelle Obergurgl; Innsbruck University Press: Innsbruck, Austria, 2012; Volume 2, Chapter 5; pp. 125–145. [Google Scholar]
- Büchsenmeister, R. Waldinventur 2007/09: Betriebe und Bundesforste nutzen mehr als den Zuwachs. BFW-Praxisinformation 2011, 24, 6–9. [Google Scholar]
- Amt der Tiroler Landesregierung. Waldstrategie 2020; Sterndruck GmbH: Fügen, Austria, 2011. [Google Scholar]
- Figueres, C.; Whiteman, H.J.S.G.; Rockström, J.; Hobley, A.; Rahmstorf, S. Three years to safeguard our climate. Nature 2017, 546, 594–595. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.; Davis, S.J.; Creutzig, F.; Fuss, S.; Minx, J.; Gabrielle, B.; Kato, E.; Jackson, R.B.; Cowie, A.; Kriegler, E.; et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Chang. 2016, 6, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Braun, M.; Fritz, D.; Braschel, N.; Büchsenmeister, R.; Freudenschuss, A.; Gschwantner, T.; Jandl, R.; Ledermann, T.; Neumann, M.; Pölz, W.; et al. A Holistic Assessment of Green House Gas Dynamics from Forests to the Effects of Wood Products Use in Austria. Carbon Manag. 2016, 7, 271–283. [Google Scholar] [CrossRef]
- Lundmark, T.; Bergh, J.; Hofer, P.; Lundström, A.; Nordin, A.; Poudel, B.C.; Sathre, R.; Taverna, R.; Werner, F. Potential Roles of Swedish Forestry in the Context of Climate Change Mitigation. Forests 2014, 5, 557–578. [Google Scholar] [CrossRef] [Green Version]
- Mehr, J.; Vadenbo, C.; Steubing, B.; Hellweg, S. Environmentally optimal wood use in Switzerland—Investigating the relevance of material cascades. Resour. Conserv. Recycl. 2018, 131, 181–191. [Google Scholar] [CrossRef]
- Rüter, S.; Werner, F.; Forsell, N.; Prins, C.; Vial, E.; Levet, A.L. ClimWood2030. ‘Climate Benefits of Material Substitution by Forest Biomass and Harvested Wood Products: Perspective 2030; Thünen Report; Thünen Institut: Eberswald, Germany, 2016; Volume 42, p. 142. [Google Scholar]
- Soimakallio, S.; Saikku, L.; Valsta, L.; Pingoud, K. Climate Change Mitigation Challenge for Wood Utilization—The Case of Finland. Environ. Sci. Technol. 2016, 50, 5127–5134. [Google Scholar] [CrossRef] [PubMed]
- Taverna, R.; Hofer, P.; Werner, F.; Kaufmann, E.; Thürig, E. CO2-Effekte der Schweizer Wald- und Holzwirtschaft. Szenarien ZuküNftiger Beiträge zum Klimaschutz; Umwelt-Wissen 0739; Bundesamt für Umwelt: Bern, Switzerland, 2007. [Google Scholar]
- Nabuurs, G.J.; Verkerk, P.J.; Schelhaas, M.J.; Olabarria, J.R.G.; Trasobares, A.; Cienciala, E. Climate-Smart Forestry: Mitigation Impacts in Three European Regions; EFI: Helsinki, Finland, 2018; Volume 6, p. 31. [Google Scholar]
- EASAC. Multi-functionality and sustainability in the European Union’s forests. EASAC Policy Rep. 2017, 32, 1–44. [Google Scholar]
- Strimitzer, L. Holzströme in Österreich; Technical Report; Österreichische Energieagentur: Wien, Austria, 2017. [Google Scholar]
- Hauk, E.; Schadauer, K. Instruktionen für die Feldarbeit der Österreichischen Waldinventur 2007–2009, Fassung 2009 ed.; Bundesforschungs- und Ausbildungszentrum für Wald: Wien, Austria, 2009; p. 203S. [Google Scholar]
- Gschwantner, T.; Gabler, K.; Schadauer, K.; Weiss, P. National Forest Inventory Reports—Austria. In National Forest Inventories—Pathways for Common Reporting; Springer: New York, NY, USA, 2010; pp. 57–71. [Google Scholar]
- BMWFI. National Renewable Energy Action Plan 2010 for Austria (NREAP—AT) under Directive 2009/28/EC of the European Parliament and of the Council; Federal Ministry of Economy, Family, and Youth: Vienna, Austria, 2010. [Google Scholar]
- European Commission. Biodiversity Strategy 2015. Available online: http://ec.europa.eu/environment/nature/biodiversity/strategy/ (accessed on 21 May 2018).
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Chimani, B.; Heinrich, G.; Hofstätter, M.; Kerschbaumer, M.; Kienberger, S.; Leuprecht, A.; Lexer, A.; Pessenteiner, S.; Poetsch, M.; Salzmann, M.; et al. Endbericht ÖKS15—Klimaszenarien für Österreich-Daten-Methoden-Klimaanalyse; Climate Change Center Austria. Available online: https://hdl.handle.net/20.500.11756/06edd0c9 (accessed on 5 February 2018).
- Nazarenko, L.; Schmidt, G.A.; Miller, R.L.; Tausnev, N.; Kelley, M.; Ruedy, R.; Russell, G.L.; Aleinov, I.; Bauer, M.; Bauer, S.; et al. Future climate change under RCP emission scenarios with GISS ModelE2. J. Adv. Model. Earth Syst. 2015, 7, 244–267. [Google Scholar] [CrossRef] [Green Version]
- Kromp-Kolb, H.; Nakicenovic, N.; Seidl, R.; Steininger, K.; Ahrens, B.; Auer, I.; Baumgarten, A.; Bednar-Friedl, B.; Eitzinger, J.; Foelsche, U.; et al. Synthese. In Österreichischer Sachstandsbericht Klimawandel 2014 (AAR14); Austrian Panel on Climate Change (APCC), Verlag der Österreichischen Akademie der Wissenschaften: Wien, Austria, 2014. [Google Scholar]
- Kindermann, G. Eine klimasensitive Weiterentwicklung des Kreisflächenzuwachsmodells aus PrognAus. Centralblatt für das Gesamte Forstwesen 2010, 127, 147–178. [Google Scholar]
- Ledermann, T.; Kindermann, G.; Gschwantner, T. National Woody Biomass Projection Systems Based on Forest Inventory in Austria. In Forest Inventory-Based Projection Systems for Wood and Biomass Availability; Springer International: New York, NY, USA, 2017; Chapter 6; pp. 79–95. [Google Scholar]
- Bundesholzwirtschaftsrat. Österreichische Holzhandelsusancen 1973, 1985 ed.; Verlag der Wiener Börsenkammer: Wien, Austria, 1985. [Google Scholar]
- Liski, J.; Palosuo, T.; Peltoniemi, M.; Sievänen, R. Carbon and decomposition model Yasso for forest soils. Ecol. Model. 2005, 189, 168–182. [Google Scholar] [CrossRef]
- Liski, J.; Tuomi, M.; Rasinmäki, J. Yasso07 User-Interface Manual; Technical Report; Finnish Environment Institute: Helsinki, Finland, 2009. [Google Scholar]
- Tuomi, M.; Thum, T.; Järvinen, H.; Fronzek, S.; Berg, B.; Harmon, M.; Trofymov, J.; Sevanto, S.; Liski, J. Global Patterns of Leaf Litter Decomposition; Technical Report; Finnish Environment Institute: Helsinki, Finland, 2008. [Google Scholar]
- Ledermann, T.; Gschwantner, T. A comparison of selected Austrian biomass equations. Cent. Gesamte Forstwes. 2006, 123, 167–183. [Google Scholar]
- Dolschak, K.; Jandl, R.; Ledermann, T. Coupling a Forest Growth Model with a Soil Carbon Simulator; InTech: London, UK, 2013; ISBN 978-953-51-1194-8 13. [Google Scholar]
- Hernández, L.; Jandl, R.; Blujdea, V.N.; Lehtonen, A.; Kriiska, K.; Alberdi, I.; Adermann, V.; Cañellas, I.; Marin, G.; Moreno-Fernández, D.; et al. Towards complete and harmonized assessment of soil carbon stocks and balance in forests: The ability of the Yasso07 model across a wide gradient of climatic and forest conditions in Europe. Sci. Total Env. 2017, 599–600, 1171–1180. [Google Scholar] [CrossRef] [PubMed]
- Didion, M.; Blujdea, V.; Grassi, G.; Hernández, L.; Jandl, R.; Kriiska, K.; Lehtonen, A.; Saint-André, L. Models for reporting forest litter and soil C pools in national greenhouse gas inventories: Methodological considerations and requirements. Carbon Manag. 2016, 7, 79–92. [Google Scholar] [CrossRef]
- Seidl, R.; Schelhaas, M.J.; Lexer, M.J. Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob. Chang. Biol. 2011, 17, 2842–2852. [Google Scholar] [CrossRef]
- Seidl, R.; Schelhaas, M.J.; Rammer, W.; Verkerk, P.J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Chang. 2014, 4, 806–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bebi, P.; Seidl, R.; Motta, R.; Fuhr, M.; Firm, D.; Krumm, F.; Conedera, M.; Ginzler, C.; Wohlgemuth, T.; Kulakowski, D. Changes of forest cover and disturbance regimes in the mountain forests of the Alps. For. Ecol. Manag. 2017, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Schulze, E.D.; Körner, C.; Law, B.E.; Haberl, H.; Luyssaert, S. Large-scale bioenergy from additional harvest of forest biomass is neither sustainable nor greenhouse gas neutral. GCB Bioenergy 2012, 4, 611–616. [Google Scholar] [CrossRef] [Green Version]
- Schlesinger, W. Are wood pellets a green fuel? Science 2018, 359, 1328–1329. [Google Scholar] [CrossRef] [PubMed]
- BMNT. Holzeinschlagsmeldung über das Kalenderjahr 2017; Technical Report; Bundesministerium für Nachhaltigkeit und Tourismus: Wien, Austria, 2017. [Google Scholar]
- Englisch, M.; Reiter, R. Standörtliche Nährstoff-Nachhaltigkeit bei der Nutzung von Wald-Biomasse. BFW Praxis Inf. 2009, 18, 13–15. [Google Scholar]
- Schaffner, S.; Suda, M.; Huml, G. Mobilisierung. Das Unwort des Jahrzehnts. AFZ-Der Wald 2014, 2, 19–22. [Google Scholar]
- Luyssaert, S.; Schulze, E.D.; Börner, A.; Knohl, A.; Hessenmöller, D.; Law, B.E.; Ciais, P.; Grace, J. Old-growth forests as global carbon sinks. Nature 2008, 455, 214–215. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Liu, S.; Li, Z.; Zhang, D.; Tang, X.; Zhou, C.; Yan, J.; Mo, J. Old-Growth Forests Can Accumulate Carbon in Soils. Science 2006, 314, 1417. [Google Scholar] [CrossRef] [PubMed]
- Schulze, E.D.; Frör, O.; Hessenmüller, D. Externe ökologische Folgen von Flächenstilllegungen im Wald. AFZ-DerWald 2016, 15, 24–26. [Google Scholar]
- Brown, P.; Cabarle, B.; Livernash, R. Carbon Counts: Estimating Climate Change Mitigation in Forestry Projects; World Resources Institute: Washington, DC, USA, 1997. [Google Scholar]
- Körner, C. Slow in, rapid out—Carbon flux studies and Kyoto targets. Science 2003, 300, 1242–1243. [Google Scholar] [CrossRef] [PubMed]
- Millar, C.I.; Stephenson, N.L. Temperate forest health in an era of emerging megadisturbance. Science 2015, 349, 823–826. [Google Scholar] [CrossRef] [PubMed]
- Schwarzbauer, P.; Braun, M. Auswirkungen von Nutzungsrestriktionen auf die Wertschöpfungskette Holz—Beispiel Österreich. Schweiz. Z. Forstwes. 2017, 168, 41–48. [Google Scholar] [CrossRef]
- Schwarzbauer, P. Längerfristige Trends auf Holzmärkten—Nachhaltige Verfügbarkeit von Holzbiomasse und Nachfrage nach Holzbasierten Produkten—Österreich im Internationalen Vergleich; Presentation; FAST: Gmunden, Austria, 2017. [Google Scholar]
- Girardin, M.P.; Bouriaud, O.; Hogg, E.H.; Kurz, W.; Zimmermann, N.E.; Metsaranta, J.M.; de Jong, R.; Frank, D.C.; Esper, J.; Büntgen, U.; et al. No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proc. Natl. Acad. Sci. USA 2016, 113, E8406–E8414. [Google Scholar] [CrossRef] [PubMed]
- Rössler, G. Wuchsleistungsvergleich zwischen Vor- und Folgebeständen langjähriger Fichten- Dauerversuchsflächen. BFW-Dokumentation 2015, 19, 1–199. [Google Scholar]
- Schelhaas, M.J.; Nabuurs, G.J.; Hengeveld, G.; Reyer, C.; Hanewinkel, M.; Zimmermann, N.; Cullmann, D. Alternative forest management strategies to account for climate change-induced productivity and species suitability changes in Europe. Reg. Environ. Chang. 2015, 15, 1581–1594. [Google Scholar] [CrossRef] [Green Version]
- Hildebrand, E.E.; Wilpert, K.V.; Buberl, H. Erkenntnismöglichkeiten an Waldökosystemen im Spannungsfeld zwischen grossräumiger Mustererkennung und dem “eisernen Gesetz des Örtlichen”. Allg. Forst. Jagdzeit. 1996, 167, 174–178. [Google Scholar]
- Schwarzbauer, P.; Huber, W.; Stern, T.; Hasenauer, H. Naturschutz gegenüber Holzbiomasse. Papier aus Österr. 2012, 4, 16–18. [Google Scholar]
- Anderson, K.; Peters, G. The trouble with negative emissions. Science 2016, 354, 182–183. [Google Scholar] [CrossRef] [PubMed]
- Venton, D. Can bioenergy with carbon capture and storage make an impact? Proc. Natl. Acad. Sci. USA 2016, 113, 13260–13262. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jandl, R.; Ledermann, T.; Kindermann, G.; Freudenschuss, A.; Gschwantner, T.; Weiss, P. Strategies for Climate-Smart Forest Management in Austria. Forests 2018, 9, 592. https://doi.org/10.3390/f9100592
Jandl R, Ledermann T, Kindermann G, Freudenschuss A, Gschwantner T, Weiss P. Strategies for Climate-Smart Forest Management in Austria. Forests. 2018; 9(10):592. https://doi.org/10.3390/f9100592
Chicago/Turabian StyleJandl, Robert, Thomas Ledermann, Georg Kindermann, Alexandra Freudenschuss, Thomas Gschwantner, and Peter Weiss. 2018. "Strategies for Climate-Smart Forest Management in Austria" Forests 9, no. 10: 592. https://doi.org/10.3390/f9100592
APA StyleJandl, R., Ledermann, T., Kindermann, G., Freudenschuss, A., Gschwantner, T., & Weiss, P. (2018). Strategies for Climate-Smart Forest Management in Austria. Forests, 9(10), 592. https://doi.org/10.3390/f9100592