Self-Nanoemulsifying System Loaded with Sildenafil Citrate and Incorporated within Oral Lyophilized Flash Tablets: Preparation, Optimization, and In Vivo Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Estimation of Sildenafil Citrate (SLC) Solubility in Various SNEDDS Components
2.3. Pseudoternary-Phase Diagram for SLC in Various Solvent Systems
2.4. Optimization of Preparation of SLC-Loaded SNEDDS as per Mixture Design
2.5. Assessment of the SLC-SNEDDS
2.5.1. Emulsification Ability
2.5.2. Determination of Globule Size of the Emulsion
2.5.3. Stability Studies
2.5.4. Surface Morphology of SLC-SNEDDS
2.6. Preparation of SLC-SNTs
2.7. Optimization of SLC-SNTs
2.8. Wetting Time
2.9. Disintegration Time
2.10. In Vitro Drug Release Studies
2.11. In Vivo Pharmacokinetic Studies
3. Results and Discussion
3.1. Solubility Studies
3.2. Pseudoternary-Phase Diagram for SLC in Various Solvent Systems
3.3. Optimization of SLC-SNT Formulation
3.3.1. Effect of Mixture Components on Globule Size
X3 − 1185.61 X2 X3 − 871.765 X1 X2 X3
3.3.2. Response Optimization Using Desirability Approach
3.3.3. Impact of NE Components on the Stability Index
3.4. Morphologic Characterization
3.5. Formulation of SLC-SNTs
3.6. Evaluation of SLC-SNT Wetting Time
3.7. Disintegration Study
3.8. In Vitro Dissolution Study
3.9. Optimization of SLC-SNT Preparation by Response Surface Methodology
3.9.1. Effect of Formulation Variables on Disintegration of SNTs
+ 0.25 X1X2 + 0.25 X1X3 + 5.08333 X22 + 2.0 X2X3 + 10.5833 X32
3.9.2. Effect of Independent Variables on the Percentage of Release of SLC after 5 min (Y2)
+ 3.5 X1X3 − 1.0 X22 + 0.25 X2X3 + 1.25 X32
3.9.3. Optimization
3.10. Bioavailability Studies in Healthy Human Volunteers
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lue, T.F. Erectile Dysfunction. N. Engl. J. Med. 2000, 342, 1802–1813. [Google Scholar] [CrossRef]
- Ludwig, W.; Phillips, M. Organic Causes of Erectile Dysfunction in Men Under 40. Urol. Int. 2014, 92, 1–6. [Google Scholar] [CrossRef]
- Dean, R.C.; Lue, T.F. Physiology of Penile Erection and Pathophysiology of Erectile Dysfunction. Urol. Clin. N. Am. 2005, 32, 379. [Google Scholar] [CrossRef]
- Leung, A.C.; Christ, G.J.; Melman, A. Physiology of penile erection and pathophysiology of erectile dysfunction. In Atlas of Male Sexual Dysfunction; Current Medicine Group: London, UK, 2004; pp. 1–25. [Google Scholar] [CrossRef]
- McCullough, A.R. Four-year review of sildenafil citrate. Rev. Urol. 2002, 4 (Suppl. 3), S26–S38. [Google Scholar]
- Zippe, C.D.; Kedia, A.W.; Kedia, K.; Nelson, D.R.; Agarwal, A. Treatment of erectile dysfunction after radical prostatectomy with sildenafil citrate (Viagra). Urology 1998, 52, 963–966. [Google Scholar] [CrossRef]
- Padma-Nathan, H.; McCullough, A.R.; Levine, L.A.; Lipshultz, L.I.; Siegel, R.; Montorsi, F.; Giuliano, F.; Brock, G. Randomized, double-blind, placebo-controlled study of postoperative nightly sildenafil citrate for the prevention of erectile dysfunction after bilateral nerve-sparing radical prostatectomy. Int. J. Impot. Res. 2008, 20, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Boulton, A.J.M.; Selam, J.L.; Sweeney, M.; Ziegler, D. Sildenafil citrate for the treatment of erectile dysfunction in men with Type II diabetes mellitus. Diabetologia 2001, 44, 1296–1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graziano, S.; Montana, A.; Zaami, S.; Rotolo, M.C.; Minutillo, A.; Busardò, F.P.; Marinelli, E. Sildenafil-Associated Hepatoxicity: A Review of the Literature. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 17–22. [Google Scholar] [PubMed]
- Milligan, P.A.; Marshall, S.F.; Karlsson, M.O. A population pharmacokinetic analysis of sildenafil citrate in patients with erectile dysfunction. Br. J. Clin. Pharmacol. 2002, 53, 45S–52S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nichols, D.J.; Muirhead, G.J.; Harness, J.A. Pharmacokinetics of sildenafil after single oral doses in healthy male subjects: Absolute bioavailability, food effects and dose proportionality. Br. J. Clin. Pharmacol. 2002, 53, 5S–12S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, H.S.; Bae, S.K.; Lee, M.G. Pharmacokinetics of sildenafil after intravenous and oral administration in rats: Hepatic and intestinal first-pass effects. Int. J. Pharm. 2006, 320, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Satalkar, P.; Elger, B.S.; Hunziker, P.; Shaw, D. Challenges of clinical translation in nanomedicine: A qualitative study. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 893–900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Say, K.M.; El-Sawy, H.S. Polymeric nanoparticles: Promising platform for drug delivery. Int. J. Pharm. 2017, 528, 675–691. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.V.R.; Yajurvedi, K.; Shao, J. Self-nanoemulsifying drug delivery system (SNEDDS) for oral delivery of protein drugs: III. In vivo oral absorption study. Int. J. Pharm. 2008, 362, 16–19. [Google Scholar] [CrossRef]
- Abdelghani, G.M.; Nouh, A.T. Self-nanoemulsifying drug-delivery systems for potentiated anti-inflammatory activity of diacerein. Int. J. Nanomed. 2018, 13, 6585–6602. [Google Scholar]
- Al-Subaie, M.M.; Hosny, K.M.; El-Say, K.M.; Ahmed, T.A.; Aljaeid, B.M. Utilization of nanotechnology to enhance percutaneous absorption of acyclovir in the treatment of herpes simplex viral infections. Int. J. Nanomed. 2015, 10, 3973–3985. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, O.A.A.; Badr-Eldin, S.M.; Tawfik, M.K.; Ahmed, T.A.; El-Say, K.M.; Badr, J.M. Design and Optimization of Self-Nanoemulsifying Delivery System to Enhance Quercetin Hepatoprotective Activity in Paracetamol-Induced Hepatotoxicity. J. Pharm. Sci. 2014, 103, 602–612. [Google Scholar] [CrossRef]
- Venkatesh, M.; Mallesh, K. Self-Nano Emulsifying Drug Delivery System (Snedds) for Oral Delivery of Atorvastatin—Formulation and Bioavailability Studies. J. Drug Deliv. Ther. 2013, 3, 131–140. [Google Scholar] [CrossRef]
- Hosny, K.M.; Aldawsari, H.M.; Bahmdan, R.H.; Sindi, A.M.; Kurakula, M.; Alrobaian, M.M.; Aldryhim, A.Y.; Alkhalidi, H.M.; Bahmdan, H.H.; Khallaf, R.A.; et al. Preparation, Optimization, and Evaluation of Hyaluronic Acid-Based Hydrogel Loaded with Miconazole Self-Nanoemulsion for the Treatment of Oral Thrush. AAPS PharmSciTech 2019, 20, 297. [Google Scholar] [CrossRef]
- Ahmed, O.A.A.; Kurakula, M.; Banjar, Z.M.; Afouna, M.I.; Zidan, A.S. Quality by design coupled with near infrared in formulation of transdermal glimepiride liposomal films. J. Pharm. Sci. 2015, 104, 2062–2075. [Google Scholar] [CrossRef]
- Kurakula, M.; Ahmed, O.A.A.; Fahmy, U.A.; Ahmed, T.A. Solid lipid nanoparticles for transdermal delivery of avanafil: Optimization, formulation, in-vitro and ex-vivo studies. J. Liposome Res. 2016, 26, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Pouton, C.W. Lipid formulations for oral administration of drugs: Non-emulsifying, self-emulsifying and ‘self-microemulsifying’ drug delivery systems. Eur. J. Pharm. Sci. 2000, 11, S93–S98. [Google Scholar] [CrossRef]
- Joyce, P.; Dening, T.J.; Meola, T.R.; Schultz, H.B.; Holm, R.; Thomas, N.; Prestidge, C.A. Solidification to improve the biopharmaceutical performance of SEDDS: Opportunities and challenges. Adv. Drug Deliv. Rev. 2019, 142, 102–117. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, E.A.; Bendas, E.R.; Mohamed, M.I. Preparation and evaluation of self-nanoemulsifying tablets of carvedilol. AAPS PharmSciTech 2009, 10, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, T.A.; El-Say, K.M.; Hosny, K.M.; Aljaeid, B.M. Development of optimized self-nanoemulsifying lyophilized tablets (SNTs) to improve finasteride clinical pharmacokinetic behavior. Drug Dev. Ind. Pharm. 2018, 44, 652–661. [Google Scholar] [CrossRef]
- El-Say, K.M.; Ahmed, T.A.; Ahmed, O.A.; Hosny, K.M.; Abd-Allah, F.I. Self-Nanoemulsifying Lyophilized Tablets for Flash Oral Transmucosal Delivery of Vitamin K: Development and Clinical Evaluation. J. Pharm. Sci. 2017, 106, 2447–2456. [Google Scholar] [CrossRef] [Green Version]
- Seo, Y.G.; Kim, D.W.; Yousaf, A.M.; Park, J.H.; Chang, P.-S.; Baek, H.H.; Lim, S.-J.; Kim, J.O.; Yong, C.S.; Choi, H.-G. Solid self-nanoemulsifying drug delivery system (SNEDDS) for enhanced oral bioavailability of poorly water-soluble tacrolimus: physicochemical characterisation and pharmacokinetics. J. Microencapsul. 2015, 32, 503–510. [Google Scholar] [CrossRef]
- Inugala, S.; Eedara, B.B.; Sunkavalli, S.; Dhurke, R.; Kandadi, P.; Jukanti, R.; Bandari, S. Solid self-nanoemulsifying drug delivery system (S-SNEDDS) of darunavir for improved dissolution and oral bioavailability: In vitro and in vivo evaluation. Eur. J. Pharm. Sci. 2015, 74, 1–10. [Google Scholar] [CrossRef]
- Kang, J.H.; Oh, D.H.; Oh, Y.-K.; Yong, C.S.; Choi, H.-G. Effects of solid carriers on the crystalline properties, dissolution and bioavailability of flurbiprofen in solid self-nanoemulsifying drug delivery system (solid SNEDDS). Eur. J. Pharm. Biopharm. 2012, 80, 289–297. [Google Scholar] [CrossRef]
- Nasr, A.; Gardouh, A.; Ghorab, M. Novel solid self-nanoemulsifying drug delivery system (S-SNEDDS) for oral delivery of olmesartan medoxomil: Design, formulation, pharmacokinetic and bioavailability evaluation. Pharmaceutics 2016, 8. [Google Scholar] [CrossRef]
- Mohd, A.B.; Sanka, K.; Bandi, S.; Diwan, P.V.; Shastri, N. Solid self-nanoemulsifying drug delivery system (S-SNEDDS) for oral delivery of glimepiride: Development and antidiabetic activity in albino rabbits. Drug Deliv. 2015, 22, 499–508. [Google Scholar] [CrossRef] [PubMed]
- El-Nesr, O.H.; Yahiya, S.A.; El-Gazayerly, O.N. Effect of formulation design and freeze-drying on properties of fluconazole multilamellar liposomes. Saudi Pharm. J. 2010, 18, 217–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhtar, N.; Ahmad, M.; Shoaib Khan, H.M.; Akram, J.; Mahmood, A.; Uzair, M. Formulation and characterization of a multiple emulsion containing 1% L-ascorbic acid. Bull. Chem. Soc. Ethiop. 2010, 24, 1–10. [Google Scholar] [CrossRef]
- Al-Amodi, Y.A.; Hosny, K.M.; Alharbi, W.S.; Safo, M.K.; El-Say, K.M. Investigating the Potential of Transmucosal Delivery of Febuxostat from Oral Lyophilized Tablets Loaded with a Self-Nanoemulsifying Delivery System. Pharmaceutics 2020, 12, 534. [Google Scholar] [CrossRef] [PubMed]
- Pratap, S.B.; Brajesh, K.; Jain, S.K.; Kausar, S. Development and characterization of a nanoemulsion gel formulation for transdermal delivery of carvedilol. Int. J. Drug Dev. Res. 2012, 4, 151–161. [Google Scholar]
- Azeem, A.; Rizwan, M.; Ahmad, F.J.; Iqbal, Z.; Khar, R.K.; Aqil, M.; Talegaonkar, S. Nanoemulsion Components Screening and Selection: A Technical Note. AAPS PharmSciTech 2009, 10, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Majeed, H.; Liu, F.; Hategekimana, J.; Sharif, H.R.; Qi, J.; Ali, B.; Bian, Y.-Y.; Ma, J.; Yokoyama, W.; Zhong, F. Bactericidal action mechanism of negatively charged food grade clove oil nanoemulsions. Food Chem. 2016, 197, 75–83. [Google Scholar] [CrossRef]
- Ghosh, V.; Ravishankar, P.; Mukherjee, A. Formulation and Characterization of Plant Essential Oil Based Nanoemulsion: Evaluation of Its Larvicidal Activity Against Aedes Aegypti Nano Food Modifiers and Supplements View Project Environmental Toxicity of Engineered Nanomaterials and Emerging Pollutants in Freshwater and Marine Organisms: The Risk of Trophic Transfer View Project. Asian J. Chem. 2014, 25 (Suppl. 2013), S321. [Google Scholar]
- Shahba, A.A.W.; Mohsin, K.; Alanazi, F.K. Novel self-nanoemulsifying drug delivery systems (SNEDDS) for oral delivery of cinnarizine: Design, optimization, and in-vitro assessment. PharmSciTech 2012, 13, 967–977. [Google Scholar] [CrossRef] [Green Version]
- Sakthi, M.U.; Lobo, F.J.R.; Uppuluri, K.B. Self nano emulsifying drug delivery systems for oral delivery of hydrophobic drugs. Biomed. Pharmacol. J. 2013, 6, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Elnaggar, Y.S.R.; El-Massik, M.A.; Abdallah, O.Y. Sildenafil citrate nanoemulsion vs. self-nanoemulsifying delivery systems: Rational development and transdermal permeation. Int. J. Nanotechnol. 2011, 8, 749–763. [Google Scholar] [CrossRef]
- Saberi, A.H.; Fang, Y.; McClements, D.J. Fabrication of vitamin E-enriched nanoemulsions by spontaneous emulsification: Effect of propylene glycol and ethanol on formation, stability, and properties. Food Res. Int. 2013, 54, 812–820. [Google Scholar] [CrossRef]
- Dapčević Hadnadev, T.; Dokić, P.; Krstonošić, V.; Hadnadev, M. Influence of oil phase concentration on droplet size distribution and stability of oil-in-water emulsions. Eur. J. Lipid Sci. Technol. 2013, 115, 313–321. [Google Scholar] [CrossRef]
- Majeed, H.; Antoniou, J.; Zhong, F. Apoptotic Effects of Eugenol-loaded Nanoemulsions in Human Colon and Liver Cancer Cell Lines. Asian Pac. J. Cancer Prev. 2014, 15, 9159–9164. [Google Scholar] [CrossRef] [Green Version]
- Deore, S.L.; Kale, S.N. Emulsion Micro Emulsion and Nano Emulsion: A Review. Syst. Rev. Pharm. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Resende, K.X.; Corrêa, M.A.; Oliveira, A.G.; De Scarpa, M.V. Effect of cosurfactant on the supramolecular structure and physicochemical properties of non-ionic biocompatible microemulsions. Revista Brasileira Ciências Farmacêuticas 2008, 44, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Ma, X.H.; Yao, G.L.; Zhang, W.T.; Zhao, Y. Microemulsion-based anthocyanin systems: Effect of surfactants, cosurfactants, and its stability. Int. J. Food Prop. 2018, 21, 1152–1165. [Google Scholar] [CrossRef]
- Aboul-Einien, M. Design and in-Vitro Evaluation of Olanzapine—Loaded Self Nanoemulsifying Drug Delivery System. Int. J. Ind. Pharm. Life Sci. 2012, 2, 12–32. [Google Scholar]
- Musa, A.; Adamu, I.; Teriyila, A.M.I. Use of Hydrophobic Fumed Silica and Selected Binders in the Tablet Formulation of a Deliquescent Crude Plant extract: Vernonia galamensis (Asteraceae). JPBMS J. Pharm. Biomed. Sci. 2011, 06, 1–5. [Google Scholar]
- Remon, J.P.; Corveleyn, S. Freeze-Dried Disintegrating Tablets. U.S. Patent 6010719A, 1 April 2000. [Google Scholar]
- Jassim, Z.E.; Hussein, A.A. Formulation and Evaluation of Clopidogrel tablet incorporating drug nanoparticles. Int. J. Pharm. Pharm. Sci. 2015, 6, 838–851. [Google Scholar]
- Zhang, X.; Cresswell, M. Silica-Based Amorphous Drug Delivery Systems. Inorg. Control. Release Technol. 2015. [Google Scholar] [CrossRef]
- Stoltenberg, I.; Breitkreutz, J. Orally disintegrating mini-tablets (ODMTs)—A novel solid oral dosage form for paediatric use. Eur. J. Pharm. Biopharm. 2011, 78, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Awal, P.; Kusumadewi, N.R. The influence of avicel PH 102 as filler-binder agent and explotab as disintegrant agent against andrographolide dissolution rate of sambiloto extract tablets. In Proceedings of the International Conference Research and Application, Surakarta, Indosnesia, 21–23 June 2012. [Google Scholar]
- Marais, A.F.; Song, M.; de Villiers, M.M. Effect of compression force, humidity and disintegrant concentration on the disintegration and dissolution of directly compressed furosemide tablets using croscarmellose sodium as disintegrant. Trop. J. Pharm. Res. 2003, 2, 125–135. [Google Scholar]
- AlHusban, F.; Perrie, Y.; Mohammed, A. Preparation, Optimisation and Characterisation of Lyophilised Rapid Disintegrating Tablets Based on Gelatin and Saccharide. Curr. Drug Deliv. 2010, 7, 65–75. [Google Scholar] [CrossRef]
- Dave, V.; Yadav, R.B.; Ahuja, R.; Yadav, S. Formulation design and optimization of novel fast dissolving tablet of chlorpheniramine maleate by using lyophilization techniques. Bull. Fac. Pharm. Cairo Univ. 2017, 55, 31–39. [Google Scholar] [CrossRef]
- Liew, K.; Bin Peh, K.K. Investigation on the effect of polymer and starch on the tablet properties of lyophilized orally disintegrating tablet. Arch. Pharm. Res. 2015, 1–10. [Google Scholar] [CrossRef]
- Middleton, E.J.; Davies, J.M.; Morrison, A.B. Relationship between rate of dissolution, disintegration time, and physiological availability of riboflavin in sugar-coated tablets. J. Pharm. Sci. 1964, 53, 1378–1380. [Google Scholar] [CrossRef]
- Elkordy, A.A.; Tan, X.N.; Essa, E.A. Spironolactone release from liquisolid formulations prepared with Capryol™ 90, Solutol® HS-15 and Kollicoat® SR 30 D as non-volatile liquid vehicles. Eur. J. Pharm. Biopharm. 2013, 83, 203–223. [Google Scholar] [CrossRef]
- Mohanachandran, P.S.; Sindhumol, P.G.; Kiran, T.S. Superdisintegrants: An overview. Int. J. Pharm. Sci. Rev. Res. 2011, 6, 105–109. [Google Scholar]
- Raghavendra Naveen, N.; Kurakula, M.; Gowthami, B. Process optimization by response surface methodology for preparation and evaluation of methotrexate loaded chitosan nanoparticles. Mater. Today Proc. 2020. [Google Scholar] [CrossRef]
- Kurakula, M.; Raghavendra Naveen, N. In situ gel loaded with chitosan-coated simvastatin nanoparticles: Promising delivery for effective anti-proliferative activity against tongue carcinoma. Mar. Drugs 2020, 18, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosny, K.M.; El-Say, K.M.; Ahmed, O.A. Optimized sildenafil citrate fast orodissolvable film: A promising formula for overcoming the barriers hindering erectile dysfunction treatment. Drug Deliv. 2016, 23, 355–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zayed, R.; Kamel, A.O.; Shukr, M.; El-Shamy, A.E.-H. An in vitro and in vivo comparative study of directly compressed solid dispersions and freeze dried sildenafil citrate sublingual tablets for management of pulmonary arterial hypertension. Acta Pharm. 2012, 62, 411–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosny, K.M.; Aljaeid, B.M. Sildenafil citrate as oral solid lipid nanoparticles: a novel formula with higher bioavailability and sustained action for treatment of erectile dysfunction. Expert Opin. Drug Deliv. 2014, 11, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Ekambaram, P.; Abdul, A.; Sathali, H.; Priyanka, K. Solid lipid nanoparticles: A review. Sci. Revs. Chem. Commun. 2012, 2, 80–102. [Google Scholar]
Component | Level | Response | |
---|---|---|---|
Low | High | ||
Oil percentage; (X1) | 0.1 | 0.3 | Mean globule size |
Surfactant percentage; (X2) | 0.3 | 0.6 | |
Co-surfactant percentage; (X3) | 0.1 | 0.6 |
Formulation Code | Independent Variables (Mixture Components) | Dependent Variables (Responses) | ||
---|---|---|---|---|
X1 (gm) | X2 (gm) | X3 (gm) | Y1 (nm) | |
NE-1 | 0.1 | 0.3 | 0.6 | 528.17 |
NE-2 | 0.3 | 0.3 | 0.4 | 233.6 |
NE-3 | 0.1 | 0.6 | 0.3 | 65.07 |
NE-4 | 0.3 | 0.6 | 0.1 | 382 |
NE-5 | 0.15 | 0.375 | 0.475 | 855.5 |
NE-6 | 0.25 | 0.375 | 0.375 | 199.5 |
NE-7 | 0.15 | 0.525 | 0.325 | 165.84 |
NE-8 | 0.25 | 0.525 | 0.225 | 470 |
NE-9 | 0.2 | 0.3 | 0.5 | 720.49 |
NE-10 | 0.1 | 0.45 | 0.45 | 135.09 |
NE-11 | 0.3 | 0.45 | 0.25 | 296.22 |
NE-12 | 0.2 | 0.6 | 0.2 | 602.21 |
NE-13 | 0.2 | 0.45 | 0.35 | 532.56 |
NE-14 | 0.1 | 0.3 | 0.6 | 300.5 |
NE-15 | 0.3 | 0.3 | 0.4 | 512.4 |
NE-16 | 0.1 | 0.6 | 0.3 | 103.5 |
Formula Code | X1 | X2 | X3 |
---|---|---|---|
SNT-1 | 2 | 0 | 4 |
SNT-2 | 2 | 0 | 0 |
SNT-3 | 4 | 0 | 2 |
SNT-4 | 2 | 1 | 2 |
SNT-5 | 0 | 1 | 4 |
SNT-6 | 2 | 1 | 2 |
SNT-7 | 0 | 0 | 2 |
SNT-8 | 0 | 1 | 0 |
SNT-9 | 2 | 2 | 0 |
SNT-10 | 4 | 2 | 2 |
SNT-11 | 2 | 1 | 2 |
SNT-12 | 4 | 1 | 4 |
SNT-13 | 4 | 1 | 0 |
SNT-14 | 2 | 2 | 4 |
SNT-15 | 0 | 2 | 2 |
Factors | Disintegration Time (Y1), Second | Cumulative Release after 5 min (Y2), % | ||||
---|---|---|---|---|---|---|
Estimate | F-Ratio | p-Value | Estimate | F-Ratio | p-Value | |
X1 | 0.25 | 0.06 | 0.8100 | 42.75 | 880.75 | 0.0000 * |
X2 | −1.125 | 1.30 | 0.3057 | 1.0 | 0.48 | 0.5185 |
X3 | −22.875 | 537.83 | 0.0000 * | 7.75 | 28.95 | 0.0030 * |
X1X1 | −1.66667 | 1.32 | 0.3029 | 27.5 | 168.21 | 0.0000 * |
X1X2 | 0.25 | 0.03 | 0.8648 | 1.5 | 0.54 | 0.4946 |
X1X3 | 0.25 | 0.03 | 0.8648 | 7.0 | 11.81 | 0.0185 * |
X2X2 | 5.08333 | 12.26 | 0.0173 * | −2.0 | 0.89 | 0.3889 |
X2X3 | 2.0 | 2.06 | 0.2111 | 0.5 | 0.06 | 0.8159 |
X3X3 | 10.5833 | 53.13 | 0.0008 * | 2.5 | 1.39 | 0.2914 |
R2 | 99.1828 | 99.5453 | ||||
Adj. R2 | 97.7119 | 98.7269 | ||||
SE | 2.78986 | 2.03715 | ||||
MAE | 1.32222 | 0.933333 |
PK Parameters | Optimized SLC-SNTs | Marketed SLC-Tablets |
---|---|---|
Cmax (ng/mL) | 360 ± 20 | 205 ± 11 |
Tmax (min) | 30 ± 0.0 | 90 ± 6.0 |
t1/2 (h) | 4.46 ± 1.46 | 6.2 ± 1.1 |
AUC 0-t (ng/mL h) | 1801 ± 400 | 1248.25 ± 233.125 |
AUC0-inf (ng/mL h) | 1846.36 ± 727.34 | 1281.5 ± 316.82 |
AUMC 0-inf (ng/mL h2) | 11,801.119 ±10,058.3 | 7185.7 ± 1398.60 |
Kel (h−1) | 0.154 ± 0.02 | 0.110 ± 0.040 |
MRT (h) | 6.39 ± 2.10 | 7.16 ± 1.3 |
Relative BA (%) | 144.28% | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosny, K.M.; Alhakamy, N.A.; Almodhwahi, M.A.; Kurakula, M.; Almehmady, A.M.; Elgebaly, S.S. Self-Nanoemulsifying System Loaded with Sildenafil Citrate and Incorporated within Oral Lyophilized Flash Tablets: Preparation, Optimization, and In Vivo Evaluation. Pharmaceutics 2020, 12, 1124. https://doi.org/10.3390/pharmaceutics12111124
Hosny KM, Alhakamy NA, Almodhwahi MA, Kurakula M, Almehmady AM, Elgebaly SS. Self-Nanoemulsifying System Loaded with Sildenafil Citrate and Incorporated within Oral Lyophilized Flash Tablets: Preparation, Optimization, and In Vivo Evaluation. Pharmaceutics. 2020; 12(11):1124. https://doi.org/10.3390/pharmaceutics12111124
Chicago/Turabian StyleHosny, Khaled M., Nabil A. Alhakamy, Maeen A. Almodhwahi, Mallesh Kurakula, Alshaimaa M. Almehmady, and Samar S. Elgebaly. 2020. "Self-Nanoemulsifying System Loaded with Sildenafil Citrate and Incorporated within Oral Lyophilized Flash Tablets: Preparation, Optimization, and In Vivo Evaluation" Pharmaceutics 12, no. 11: 1124. https://doi.org/10.3390/pharmaceutics12111124
APA StyleHosny, K. M., Alhakamy, N. A., Almodhwahi, M. A., Kurakula, M., Almehmady, A. M., & Elgebaly, S. S. (2020). Self-Nanoemulsifying System Loaded with Sildenafil Citrate and Incorporated within Oral Lyophilized Flash Tablets: Preparation, Optimization, and In Vivo Evaluation. Pharmaceutics, 12(11), 1124. https://doi.org/10.3390/pharmaceutics12111124