Detection of Microplastic in Human Placenta and Meconium in a Clinical Setting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Sample Collecting
2.3. Sample Preparation
2.4. Experimental Protocol for Microplastic Detection in Placentaand Meconium
2.5. Quality Assurance and Quality Control
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brandon, J.A.; Jones, W.; Ohman, M.D. Multidecadal increase in plastic particles in coastal ocean sediments. Sci. Adv. 2019, 5, eaax0587. [Google Scholar] [CrossRef] [Green Version]
- Ambrosini, R.; Azzoni, R.S.; Pittino, F.; Diolaiuti, G.; Franzetti, A.; Parolini, M. First evidence of microplastic contamination in the supraglacial debris of an alpine glacier. Environ. Pollut. 2019, 253, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, M.; Mutzel, S.; Primpke, S.; Tekman, M.B.; Trachsel, J.; Gerdts, G. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci. Adv. 2019, 5, eaax1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campanale, C.; Massarelli, C.; Savino, I.; Locaputo, V.; Uricchio, V.F. A Detailed Review Study on Potential Effects of Microplastics and Additives of Concern on Human Health. Int. J. Environ. Res. Public Health 2020, 17, 1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frias, J.; Nash, R. Microplastics: Finding a consensus on the definition. Mar. Pollut. Bull. 2019, 138, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Barboza, L.G.A.; Dick Vethaak, A.; Lavorante, B.; Lundebye, A.K.; Guilhermino, L. Marine microplastic debris: An emerging issue for food security, food safety and human health. Mar. Pollut. Bull. 2018, 133, 336–348. [Google Scholar] [CrossRef]
- Schwabl, P.; Koppel, S.; Konigshofer, P.; Bucsics, T.; Trauner, M.; Reiberger, T.; Liebmann, B. Detection of Various Microplastics in Human Stool: A Prospective Case Series. Ann. Intern. Med. 2019, 171, 453–457. [Google Scholar] [CrossRef]
- Cox, K.D.; Covernton, G.A.; Davies, H.L.; Dower, J.F.; Juanes, F.; Dudas, S.E. Human Consumption of Microplastics. Environ. Sci. Technol. 2019, 53, 7068–7074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosuth, M.; Mason, S.A.; Wattenberg, E.V. Anthropogenic contamination of tap water, beer, and sea salt. PLoS ONE 2018, 13, e0194970. [Google Scholar] [CrossRef]
- Hernandez, L.M.; Xu, E.G.; Larsson, H.C.E.; Tahara, R.; Maisuria, V.B.; Tufenkji, N. Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea. Environ. Sci. Technol. 2019, 53, 12300–12310. [Google Scholar] [CrossRef]
- Li, D.; Shi, Y.; Yang, L.; Xiao, L.; Kehoe, D.K.; Gun’kon, Y.K.; Boland, J.J.; Wang, J.J. Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation. Nat. Food 2020, 1, 746–754. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, E.G.; Li, J.; Chen, Q.; Ma, L.; Zeng, E.Y.; Shi, H. A Review of Microplastics in Table Salt, Drinking Water, and Air: Direct Human Exposure. Environ. Sci. Technol. 2020, 54, 3740–3751. [Google Scholar] [CrossRef] [PubMed]
- Brachner, A.; Fragouli, D.; Duarte, I.F.; Farias, P.M.A.; Dembski, S.; Ghosh, M.; Barisic, I.; Zdzieblo, D.; Vanoirbeek, J.; Schwabl, P.; et al. Assessment of Human Health Risks Posed by Nano-and Microplastics Is Currently Not Feasible. Int. J. Environ. Res. Public Health 2020, 17, 8832. [Google Scholar] [CrossRef] [PubMed]
- de Sa, L.C.; Oliveira, M.; Ribeiro, F.; Rocha, T.L.; Futter, M.N. Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future? Sci. Total Environ. 2018, 645, 1029–1039. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zhang, Y.; Lemos, B.; Ren, H. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci. Rep. 2017, 7, 46687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avio, C.G.; Gorbi, S.; Milan, M.; Benedetti, M.; Fattorini, D.; D’Errico, G.; Pauletto, M.; Bargelloni, L.; Regoli, F. Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environ. Pollut. 2015, 198, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Seltenrich, N. New link in the food chain? Marine plastic pollution and seafood safety. Environ. Health Perspect. 2015, 123, A34–A41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grafmueller, S.; Manser, P.; Diener, L.; Maurizi, L.; Diener, P.A.; Hofmann, H.; Jochum, W.; Krug, H.F.; Buerki-Thurnherr, T.; Von Mandach, U.; et al. Transfer studies of polystyrene nanoparticles in the ex vivo human placenta perfusion model: Key sources of artifacts. Sci. Technol. Adv. Mater. 2015, 16, 044602. [Google Scholar] [CrossRef] [PubMed]
- Grafmueller, S.; Manser, P.; Diener, L.; Diener, P.A.; Maeder-Althaus, X.; Maurizi, L.; Jochum, W.; Krug, H.F.; Buerki-Thurnherr, T.; Von Mandach, U.; et al. Bidirectional Transfer Study of Polystyrene Nanoparticles across the Placental Barrier in an Ex Vivo Human Placental Perfusion Model. Environ. Health Perspect. 2015, 123, 1280–1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bove, H.; Bongaerts, E.; Slenders, E.; Bijnens, E.M.; Saenen, N.D.; Gyselaers, W.; Van Eyken, P.; Plusquin, M.; Roeffaers, M.B.J.; Ameloot, M.; et al. Ambient black carbon particles reach the fetal side of human placenta. Nat. Commun. 2019, 10, 3866. [Google Scholar] [CrossRef]
- Bouwmeester, H.; Hollman, P.C.; Peters, R.J. Potential Health Impact of Environmentally Released Micro- and Nanoplastics in the Human Food Production Chain: Experiences from Nanotoxicology. Environ. Sci. Technol. 2015, 49, 8932–8947. [Google Scholar] [CrossRef] [PubMed]
- Wick, P.; Malek, A.; Manser, P.; Meili, D.; Maeder-Althaus, X.; Diener, L.; Diener, P.-A.; Zisch, A.; Krug, H.F.; Von Mandach, U. Barrier capacity of human placenta for nanosized materials. Environ. Health Perspect. 2010, 118, 432–436. [Google Scholar] [CrossRef]
- Gruber, M.M.; Hirschmugl, B.; Berger, N.; Holter, M.; Radulović, S.; Leitinger, G.; Liesinger, L.; Berghold, A.; Roblegg, E.; Birner-Gruenberger, R.; et al. Plasma proteins facilitates placental transfer of polystyrene particles. J. Nanobiotechnol. 2020, 18, 128. [Google Scholar] [CrossRef] [PubMed]
- Hesler, M.; Aengenheister, L.; Ellinger, B.; Drexel, R.; Straskraba, S.; Jost, C.; Wagner, S.; Meier, F.; von Briesen, H.; Büchel, C.; et al. Multi-endpoint toxicological assessment of polystyrene nano- and microparticles in different biological models in vitro. Toxicol. Vitr. 2019, 61, 104610. [Google Scholar] [CrossRef] [PubMed]
- Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.C.A.; Baiocco, F.; Draghi, S.; et al. Plasticenta: First evidence of microplastics in human placenta. Environ. Int. 2021, 146, 106274. [Google Scholar] [CrossRef] [PubMed]
- AWMF. 015-084k_S3_Leitlinie Sectio-Caesarea. Internet. 2020. Available online: https://www.awmf.org/leitlinien/detail/ll/015-084.html (accessed on 26 June 2020).
- Prata, J.C.; Reis, V.; da Costa, J.P.; Mouneyrac, C.; Duarte, A.C.; Rocha-Santos, T. Contamination issues as a challenge in quality control and quality assurance in microplastics analytics. J. Hazard. Mater. 2021, 403, 123660. [Google Scholar] [CrossRef]
- Ilekis, J.V.; Tsilou, E.; Fisher, S.; Abrahams, V.M.; Soares, M.J.; Cross, J.C.; Zamudio, S.; Illsley, N.P.; Myatt, L.; Colvis, C.; et al. Placental origins of adverse pregnancy outcomes: Potential molecular targets: An Executive Workshop Summary of the Eunice Kennedy Shriver National Institute of Child Health and Human Development. Am. J. Obstet. Gynecol. 2016, 215, S1–S46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, K.M.; Gerlach, M.J.; Adam, T.; Heimesaat, M.M.; Rossi, L.; Surette, M.G.; Sloboda, D.M.; Braun, T. Fetal meconium does not have a detectable microbiota before birth. Nat. Microbiol. 2021. [Google Scholar] [CrossRef]
- Vaseashta, A.E. Life Cycle Analysis of Nanoparticles—Risk, Assessment, and Sustainability; Vaseashta, A., Ed.; DEStech Publications, Inc.: Lancaster, PA, USA, 2015. [Google Scholar]
- Brander, S.M.; Renick, V.C.; Foley, M.M.; Steele, C.; Woo, M.; Lusher, A.; Carr, S.; Helm, P.; Box, C.; Cherniak, C.S.L.; et al. Sampling and Quality Assurance and Quality Control: A Guide for Scientists Investigating the Occurrence of Microplastics Across Matrices. Appl. Spectrosc. 2020, 74, 1099–1125. [Google Scholar] [CrossRef]
- Stock, F.; Kochleus, C.; Bänsch-Baltruschat, B.; Brennholt, N.; Reifferscheid, G. Sampling techniques and preparation methods for microplastic analyses in the aquatic environment—A review. TrAC Trends Anal. Chem. 2019, 113, 84–92. [Google Scholar] [CrossRef]
- Thomas, D.; Schütze, B.; Heinze, W.M.; Steinmetz, Z. Sample Preparation Techniques for the Analysis of Microplastics in Soil—A Review. Sustainability 2020, 12, 9074. [Google Scholar] [CrossRef]
(A) | ||||
ID | Sample | Description | Screening for MPs | Type |
A | Placenta | sampled from the peripheral regions | positive | PE, PP |
B | Placenta | sampled from central regions | positive | PE, PU |
C | Placenta | negative control, sampled in lab | negative | - |
D | Meconium | sampled on metal | positive | PE |
E | Meconium | negative control, sampled in lab | positive | PP |
G | Stool | negative control for stool post partum | positive | PE, PP, PS |
(B) | ||||
ID | Sample | Description | Screening for MPs | No/10 g * |
F | Stool | maternal stool post partum | PE | 0.96 |
PP | <0.48 | |||
PVC | <0.48 | |||
PS | 0.48 | |||
PET | <0.48 | |||
PA | <0.48 | |||
PU | <0.48 | |||
PC | <0.48 | |||
PMMA | <0.48 | |||
POM | <0.48 | |||
(C) | ||||
ID | Sample | Description | Screening for MPs | No/10 g |
1 | surgical mask | surgical mask, white, Mölnycke Health Care AB, Göteborg, Sweden | fleece plastic around wire | PP PE |
2 | head cover | surgical head cover, green, FarStar medical GmbH, Barsbüttel, Germany | green material white material yarn | PP PET PET |
3 | drape | cesarean section drape with sponge, Medline International France, Chateaubriant, France | film sponge | PE copopolymere |
4 | pad | 3-layer cesarean pad, Medline Industries Inc., Northfield, USA | fleece green foil white filling | PP PE cellulose |
5 | lab sponge green | abdominal swab, green, Allmed Medical Products Co., Zhijiang City, China | negative | cellulose |
6 | white swab | two-layer white paper swabs from surgical operation set, Allmed Medical Products Co., Zhijiang City, China | negative | cellulose |
7 | soaking drape | Two-layer additional side drapes, 3M Deutschland GmbH, Neuss, Germany | Film fleece | PE PP |
8 | packaging | packaging of cover sheet (3), Allmed Medical Products Co., Zhijiang City, China | rough side smooth side | cellulose polysiloxane |
9 | gauze ball | white surgical gauze ball, Nobamed Paul Danz AG, Wettler, Germany | negative | cellulose |
10 | packaging | packaging of cover sheet (9), Allmed Medical Products Co., Zhijiang City, China | film | PE |
11 | table protection | surgical table covering, blue, Medline International France, Chateaubriant, France | film | PE |
12 | sterile glove | sterile surgical glove, CardinalHealth, Waukegan, USA | rubber | EPDM |
13 | gown | dark blue operating gown, Medline International France, Chateaubriant, France | fleece | PP |
14 | scrubs | blue scrub, SITEX GmbH, Minden, Germany | solid fabric | PET |
15 | tubing | operating suction tubing, Pennine Healthcare, Derby, UK | pipe | PET |
16 | non-sterile glove | non-sterile lab glove, Medical Device Safety Service GmbH, Hannover, Germany | rubber | NBR |
ID | Sample | Description | Screening for MPs | Type |
---|---|---|---|---|
H | Placenta | block 1 × 1 × 1 cm | negative | - |
I | Placenta | core block 1 × 1 × 1 cm | positive | PP |
J | Placenta | negative control, sampled in lab | positive | PS |
K | Meconium | sampled on metal | positive | PP, PS |
L | Meconium | negative control, sampled in lab | negative | - |
M | airborne fallout | 5 min air probe from the operating theatre | positive | PU |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braun, T.; Ehrlich, L.; Henrich, W.; Koeppel, S.; Lomako, I.; Schwabl, P.; Liebmann, B. Detection of Microplastic in Human Placenta and Meconium in a Clinical Setting. Pharmaceutics 2021, 13, 921. https://doi.org/10.3390/pharmaceutics13070921
Braun T, Ehrlich L, Henrich W, Koeppel S, Lomako I, Schwabl P, Liebmann B. Detection of Microplastic in Human Placenta and Meconium in a Clinical Setting. Pharmaceutics. 2021; 13(7):921. https://doi.org/10.3390/pharmaceutics13070921
Chicago/Turabian StyleBraun, Thorsten, Loreen Ehrlich, Wolfgang Henrich, Sebastian Koeppel, Ievgeniia Lomako, Philipp Schwabl, and Bettina Liebmann. 2021. "Detection of Microplastic in Human Placenta and Meconium in a Clinical Setting" Pharmaceutics 13, no. 7: 921. https://doi.org/10.3390/pharmaceutics13070921
APA StyleBraun, T., Ehrlich, L., Henrich, W., Koeppel, S., Lomako, I., Schwabl, P., & Liebmann, B. (2021). Detection of Microplastic in Human Placenta and Meconium in a Clinical Setting. Pharmaceutics, 13(7), 921. https://doi.org/10.3390/pharmaceutics13070921