Targeted Liposomes: A Nonviral Gene Delivery System for Cancer Therapy
Abstract
:1. Introduction
2. Gene Therapy
3. Liposomes as a Nonviral Vector
4. Functionalized Liposomes
4.1. Antibodies
Liposomes’ Composition | Target Ligand | Gene/Drug | Method of Carrying NAs in Liposomes | Particle Size (nm) | Effect of Functionalization | Ref. |
---|---|---|---|---|---|---|
DOPC, DOPE, CHOL and DOPE-PEG | Anti-CD44 | Triple fusion gene | NAs-encapsulated liposomes | 100 | Increased in vitro uptake in HepG2 cells, targeted delivery to rat hepatocellular carcinoma, increased transfection efficacy. | [95] |
S100-PC, DC-chol, DSPE-PEG, DSPE-PEG2000-Mal | OX26 and chlorotoxin | pC27 and pEGFP | NAs-encapsulated liposomes | 120 | Decrease encapsulation efficiency by about 1.5-fold, increase transfection efficiency, decrease tumor size and increase survival time in mice. | [49] |
DMKE, Chol, DSPE-mPEG2000, and DSPE-PEG2000-Mal | Cetuximab | Vimentin or JAK3 | (1) NAs-encapsulated liposomes (2) Liposomes/NAs complex | (1) 173.1 (2) 153.1 | Increased in vitro cell binding to EGFR, increased transfection efficiency in vitro and in vivo, increased antitumor activity in vitro in EGFR-positive cells, specific targeting in vivo, complete regression of tumors without lung metastasis. | [45] |
DMKE, Chol, DSPE-mPEG2000, and DSPE-PEG2000-Mal | Cetuximab | Salmosin or IL12 | (1) NAs-encapsulated liposomes (2) Liposomes/NAs complex | (1) 173.1 ± 7.5 (2) 153.1 ± 4.2 | Increased in vitro cell binding to EGFR, increased transfection efficiency in vitro, and in vivo increased expression of genes in vivo. | [8] |
DC-chol, DOPE, DSPE-PEG2000-Mal, and DSPE-mPEG2000 | Anti-HER2 Fab’ | Anti-RhoA siRNA | Liposomes/NAs complex | 130 to 150 | Increased in vitro cell binding to HER1, increased transfection efficiency in vitro, increased RhoA gene silencing efficiency. | [96] |
DOPC, DLPC, PEG and PEI | RBDV-IgG1 Fc | pRBDV gene | Liposomes/NAs complex | 527.5 ± 83.4 | Increased specific delivery in vitro and in vivo, increased transfection and expression of recombinant RBDV protein in 48 h for 7 days in vivo, activation of antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity, inhibition of tumor growth, and increased survival time. | [51] |
POPC, DSPE-PEG2000-Mal, DSPE-mPEG2000, and DDAB | Anti-CD105 | Endostatin gene | Liposomes/NAs complex | 122 ± 11 | Increased recognition and internalization by the endothelial cell nucleus, increased transfection efficiency, decreased toxicity and tumor size in vivo, decreased targeting of the mononuclear phagocytic system to organs. | [97] |
HSPC, DDAB, chol, DSPE-mPEG2000 | ENG-scFv and ENG-mAb | Porcine α1,3GT gene | Liposomes/NAs complex | 103.12 ± 1.5 (scFv) 107.58 ± 2.1 (mAb) | Increased endosomal escape, increased cellular uptake through clathrin-mediated endocytosis in vitro e in vivo, increased induction of hyperacute rejection, increase in anti-αGal antibodies, tumor growth inhibited, and decreased toxicity in vivo. | [98] |
DOTAP, DOPE, DSPE-PEG2000, l-α-PC, and cholesterol | TAT peptide and trastuzumab | siRNA against the MDR1 gene | NAs-encapsulated liposomes | 196.41 ± 0.39 | Dual modification of liposomes with TAT peptide and trastuzumab enhanced the cellular transfection of siRNA. | [46] |
DOTAP, iRGD-PEG2000-DSPE, mPEG2000-Chol, and cholesterol | iRGD peptide | Pigment epithelium-derived factor-DNA (PEDF-DNA) | Liposomes/NAs complex | 240 | iRGD-modified liposomes enhanced the cellular of PEDF-DNA, which suppressed angiogenesis and enhanced apoptosis. | [9] |
DPPC, DSPE-PEG-Mal/OCH3, DOTAP, and cholesterol | iRGD peptide | Antisense oligonucleotides against androgen receptor (AR-ASO) | NAs-encapsulated liposomes | 150 ± 36 | iRGD-liposomes increase AR-ASO transfection in the tumor tissue and reduce androgen receptor expression. | [99] |
DOTAP, cholesterol, DSPE-PEG2000 | iRGD peptide | shRNA against elF3i | Liposomes/NAs complex | 100 | iRGD-liposomes effectively transfect B16F10 cells. In vivo studies indicated that this formulation downregulated eIF3i expression, inhibiting metastasis and cell proliferation. | [100] |
DSPE-PEG2000, EPC, and PSH | cRGD peptide | Survivin siRNA | Liposomes/NAs complex | 131.87 ± 8.45 | cRGD-liposomes showed great gene silencing and antitumor activity both in vitro and in vivo. | [101] |
EPC, cholesterol, DSPE-PEG, and DOTAP | GE-11 peptide | HIF1α-siRNA | Liposomes/NAs complex | 166.4 ± 1.45 | The synergic effect of gemcitabine and HIF1α-siRNA loaded in GE-11-modified liposomes reduced the tumor fourfold more than in the control group. | [102] |
EPC, cholesterol, stearamide, and DSPE-PEG2000 | tLyp-1 peptide | miRNA against Slug gene | Liposomes/NAs complex | 120 | TLyp-1-modified liposomes enhance the transfection of miRNA in MDA-MB-231 cells and silenced the Slug gene and protein expression in vivo. | [103] |
DPPC, cholesterol, DPPE-PEG750, and PEI | PR_b peptide | miRNA 603 (miR-603) | NAs-encapsulated liposomes | 141 ± 34 | PR_b-modified liposomes enhanced the cellular transfection of miR-603 and the radiation sensitivity of patient-derived glioblastoma stem-like cells. | [16] |
DOTAP, cholesterol, DSPE-PEG2000, an DOPC | Angiopep-2 | GOLPH3-siRNA | Liposomes/NAs complex | 88.0 | Angiopep-2-modified GOLPH3-siRNa-loaded liposomes were able to accumulate in the brain and inhibit glioma growth. | [104] |
Dc-Chol, DOPE, and MAL-PEG-NHS | AS1411 Aptamer | Anti-BRAF siRNA (siBraf) | Liposomes/NAs complex | 150 | Anti-BRAF siRNA accumulation in melanoma cells, with BRAF gene silencing in vitro and in vivo | [105] |
DOPE, sphingomyelin (SM), cholesterol, DSPE-PEG2000, Didecyldimethylammonium bromide (DDAB) | AS1411 Aptamer | siRNA PLK1 and paclitaxel | Liposomes/NAs complex | 121.27 | Reduced polo-like kinase 1 mRNA expression, induced apoptosis, and reduced angiogenesis and systemic toxicity in vivo | [106] |
DPPC, cholesterol, mDSPE-PEG2000 | AS1411 Aptamer | siRNA Notch 1 and protamine | Liposomes/NAs complex | 285 | Notch 1 gene silencing and potentiation of the anti-proliferative effect | [15] |
DOTAP and cholesterol | A10 Aptamer | CRISPR/Cas9 | Liposomes/NAs complex | 150 | Polo-like kinase 1 gene silencing, induction of apoptosis, and tumor reduction in vivo | [107] |
DPPC, cholesterol, DSPE-PEG2000 | Anti-CD44 Aptamer | siRNA and protamine | Liposomes/NAs complex | 137 | Reduced luciferase activity in vitro and in vivo | [50] |
DOTAP and cholesterol | EGFR Aptamer | SATB1 siRNA | Liposomes/NAs complex | 161.2 | Inhibition of the SATB1 gene in vitro and in vivo, increased cytotoxicity in vitro, and inhibition of choriocarcinoma xenograft tumor in vivo | [14] |
HSPC, DOTAP, cholesterol, DSPE-PEG2000-COOH | Epithelial cell adhesion molecule (EpCAM) Aptamer | miR-139-5p | Liposomes/NAs complex | 150.3 | Greater accumulation in tumor tissue and reduction in tumor volume in vivo | [108] |
1,26-bis (cholest-5-en-3β-yloxycarbonylamino)-7,11,16,20-tetraazahexacosan tetrahydrochloride, DOPE, and lipoconjugate | Folate | Anti-MDR1 siRNA | Liposomes/NAs complex | 60 ± 22 | Folate-modified liposomes enhanced the siRNA transfection 3–4-fold in comparison with the unmodified formulation. | [109] |
DOPE and lipoconjugate | Folate | Anti-MDR1 siRNA | Liposomes/NAs complex | 175.2 ± 22.6 | FA-modified liposomes effectively accumulate in tumors with overexpression of folate receptors. | [13] |
DOTAP, cholesterol, DSPE-PEG2000, and folate-PEG-CHEMS | Folate | Anti-Bmi1 siRNA and ursolic acid | Liposomes/NAs complex | 165.1 | Folate-modified liposomes codelivering Bmi1 siRNA and ursolic acid demonstrated significant higher cellular uptake and antitumoral effect than the unmodified liposomes | [110] |
DOTAP, cholesterol, and mPEG-Chol | Folate | PEDF plasmid | Liposomes/NAs complex | 200 | Folate-modified PEDF plasmid-loaded liposomes inhibited cell proliferation and induced apoptosis of cervical cancer cells in vivo. | [111] |
4.2. Peptides
4.3. Aptamers
4.4. Folate
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- The global challenge of cancer. Nat. Cancer 2020, 1, 1–2. [CrossRef] [PubMed] [Green Version]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pucci, C.; Martinelli, C.; Ciofani, G. Innovative approaches for cancer treatment: Current perspectives and new challenges. Ecancermedicalscience 2019, 13, 961. [Google Scholar] [CrossRef] [PubMed]
- Lorscheider, M.; Gaudin, A.; Nakhlé, J.; Veiman, K.-L.; Richard, J.; Chassaing, C. Challenges and opportunities in the delivery of cancer therapeutics: Update on recent progress. Ther. Deliv. 2021, 12, 55–76. [Google Scholar] [CrossRef] [PubMed]
- Cross, D.; Burmester, J.K. Gene therapy for cancer treatment: Past, present and future. Clin. Med. Res. 2006, 4, 218–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kranz, L.M.; Diken, M.; Haas, H.; Kreiter, S.; Loquai, C.; Reuter, K.C.; Meng, M.; Fritz, D.; Vascotto, F.; Hefesha, H.; et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 2016, 534, 396–401. [Google Scholar] [CrossRef]
- Kim, J.S.; Kang, S.J.; Jeong, H.Y.; Kim, M.W.; Park, S.I.; Lee, Y.K.; Kim, H.S.; Kim, K.S.; Park, Y.S. Anti-EGFR immunonanoparticles containing IL12 and salmosin genes for targeted cancer gene therapy. Int. J. Oncol. 2016, 49, 1130–1138. [Google Scholar] [CrossRef]
- Bao, X.; Zeng, J.; Huang, H.; Ma, C.; Wang, L.; Wang, F.; Liao, X.; Song, X. Cancer-targeted PEDF-DNA therapy for metastatic colorectal cancer. Int. J. Pharm. 2020, 576, 118999. [Google Scholar] [CrossRef]
- Belete, T.M. The Current Status of Gene Therapy for the Treatment of Cancer. Biol. Targets Ther. 2021, 15, 67–77. [Google Scholar] [CrossRef]
- Ponti, F.; Campolungo, M.; Melchiori, C.; Bono, N.; Candiani, G. Cationic lipids for gene delivery: Many players, one goal. Chem. Phys. Lipids 2021, 235, 105032. [Google Scholar] [CrossRef] [PubMed]
- Villate-Beitia, I.; Puras, G.; Soto-Sánchez, C.; Agirre, M.; Ojeda, E.; Zarate, J.; Fernández, E.; Pedraz, J.L. Non-viral vectors based on magnetoplexes, lipoplexes and polyplexes for VEGF gene delivery into central nervous system cells. Int. J. Pharm. 2017, 521, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Gladkikh, D.V.; Sen′ Kova, A.V.; Chernikov, I.V.; Kabilova, T.O.; Popova, N.A.; Nikolin, V.P.; Shmendel, E.V.; Maslov, M.A.; Vlassov, V.V.; Zenkova, M.A.; et al. Folate-equipped cationic liposomes deliver anti-mdr1-sirna to the tumor and increase the efficiency of chemotherapy. Pharmaceutics 2021, 13, 1252. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Cao, Y.; Shen, H.; Ma, Q.; Mao, S.; Li, S.; Sun, J. EGFR aptamer-conjugated liposome-polycation-DNA complex for targeted delivery of SATB1 small interfering RNA to choriocarcinoma cells. Biomed. Pharmacother. 2018, 107, 849–859. [Google Scholar] [CrossRef]
- Gharaibeh, L.; Alshaer, W.; Wehaibi, S.; Al Buqain, R.; Alqudah, D.A.; Al-Kadash, A.; Al-Azzawi, H.; Awidi, A.; Bustanji, Y. Fabrication of aptamer-guided siRNA loaded lipopolyplexes for gene silencing of notch 1 in MDA-mb-231 triple negative breast cancer cell line. J. Drug Deliv. Sci. Technol. 2021, 65, 102733. [Google Scholar] [CrossRef]
- Shabana, A.M.; Xu, B.; Schneiderman, Z.; Ma, J.; Chen, C.C.; Kokkoli, E. Targeted liposomes encapsulation miR-603 complexes enhance radiation sensitivity of patient-derived glioblastoma stem-like cells. Pharmaceutics 2021, 13, 1115. [Google Scholar] [CrossRef]
- Luiz, M.T.; Tofani, L.B.; Araújo, V.H.S.; Di Filippo, L.D.; Duarte, J.L.; Marchetti, J.M.; Chorilli, M. Gene therapy based on lipid nanoparticles as non-viral vectors for Glioma treatment. Curr. Gene Ther. 2021, 21, 452–463. [Google Scholar] [CrossRef]
- Maestro, S.; Weber, N.D.; Zabaleta, N.; Aldabe, R.; Gonzalez-Aseguinolaza, G. Novel vectors and approaches for gene therapy in liver diseases. JHEP Rep. 2021, 3, 100300. [Google Scholar] [CrossRef]
- Mohammad, R. Key considerations in formulation development for gene therapy products. Drug Discov. Today 2022, 27, 292–303. [Google Scholar] [CrossRef]
- Pan, X.; Veroniaina, H.; Su, N.; Sha, K.; Jiang, F.; Wu, Z.; Qi, X. Applications and developments of gene therapy drug delivery systems for genetic diseases. Asian J. Pharm. Sci. 2021, 16, 687–703. [Google Scholar] [CrossRef]
- Garrison, L.P.; Pezalla, E.; Towse, A.; Yang, H.; Faust, E.; Wu, E.Q.; Li, N.; Sawyer, E.K.; Recht, M. Hemophilia Gene Therapy Value Assessment: Methodolocial Challeges and Recomendations. Methodology 2021, 24, 1628–1633. [Google Scholar]
- Shinkuma, S. Advances in gene therapy and their application to skin diseases: A review. J. Dermatol. Sci. 2021, 103, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.C.; Wang, Z.L.; Xu, T.; He, Z.Y.; Wei, Y.Q. The approved gene therapy drugs worldwide: From 1998 to 2019. Biotechnol. Adv. 2020, 40, 107502. [Google Scholar] [CrossRef] [PubMed]
- Yahya, E.B.; Alqadhi, A.M. Recent trends in cancer therapy: A review on the current state of gene delivery. Life Sci. 2021, 269, 119087. [Google Scholar] [CrossRef]
- Azevedo, A.; Farinha, D.; Geraldes, C.; Faneca, H. Combining gene therapy with other therapeutic strategies and imaging agents for cancer theranostics. Int. J. Pharm. 2021, 606, 120905. [Google Scholar] [CrossRef]
- Alhakamy, N.A.; Curiel, D.T.; Berkland, C.J. The era of gene therapy: From preclinical development to clinical application. Drug Discov. Today 2021, 26, 1602–1619. [Google Scholar] [CrossRef]
- Shanahan, M.A.; Aagaard, K.M.; McCullough, L.B.; Chervenak, F.A.; Shamshirsaz, A.A. Society for Maternal-Fetal Medicine Special Statement: Beyond the scalpel: In utero fetal gene therapy and curative medicine. Am. J. Obstet. Gynecol. 2021, 225, B9–B18. [Google Scholar] [CrossRef]
- Bulaklak, K.; Gersbach, C.A. The once and future gene therapy. Nat. Commun. 2020, 11, 11–14. [Google Scholar] [CrossRef]
- Branski, L.K.; Gauglitz, G.G.; Herndon, D.N.; Jeschke, M.G. A review of gene and stem cell therapy in cutaneous wound healing. Burns 2009, 35, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, G.A.R.; Paiva, R.M.A. Gene therapy: Advances, challenges and perspectives. Einstein 2017, 15, 369–375. [Google Scholar] [CrossRef] [Green Version]
- Witlox, M.A.; Lamfers, M.L.; Wuisman, P.I.J.M.; Curiel, D.T.; Siegal, G.P. Evolving gene therapy approaches for osteosarcoma using viral vectors: Review. Bone 2007, 40, 797–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Dosari, M.S.; Gao, X. Nonviral gene delivery: Principle, limitations, and recent Progress. AAPS J. 2009, 11, 671–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, H.; Hui, K.M. Synthesis of a novel series of cationic lipids that can act as efficient gene delivery vehicles through systematic heterocyclic substitution of cholesterol derivatives. Gene Ther. 2001, 8, 855–863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patil, S.; Gao, Y.G.; Lin, X.; Li, Y.; Dang, K.; Tian, Y.; Zhang, W.J.; Jiang, S.F.; Qadir, A.; Qian, A.R. The development of functional non-viral vectors for gene delivery. Int. J. Mol. Sci. 2019, 20, 5491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, L.; Zeng, X.; Liu, M.; Deng, Y.; He, N. Current progress in gene delivery technology based on chemical methods and nano-carriers. Theranostics 2014, 4, 240–255. [Google Scholar] [CrossRef] [PubMed]
- Kaneda, Y.; Tabata, Y. Non-viral vectors for cancer therapy. Cancer Sci. 2006, 97, 348–354. [Google Scholar] [CrossRef]
- Lu, Y.; Madu, C.O. Viral-based gene delivery and regulated gene expression for targeted cancer therapy. Expert Opin. Drug Deliv. 2010, 7, 19–35. [Google Scholar] [CrossRef]
- Wang, T.; Zhu, X.; Yi, H.; Gu, J.; Liu, S.; Izenwasser, S.; Lemmon, V.P.; Roy, S.; Hao, S. Viral vector-mediated gene therapy for opioid use disorders. Exp. Neurol. 2021, 341, 113710. [Google Scholar] [CrossRef]
- Glover, D.J.; Lipps, H.J.; Jans, D.A. Towards safe, non-viral therapeutic gene expression in humans. Nat. Rev. Genet. 2005, 6, 299–310. [Google Scholar] [CrossRef]
- Srivastava, A.; Mallela, K.M.G.; Deorkar, N.; Brophy, G. Manufacturing Challenges and Rational Formulation Development for AAV Viral Vectors. J. Pharm. Sci. 2021, 110, 2609–2624. [Google Scholar] [CrossRef]
- Kaneda, Y. Update on non-viral delivery methods for cancer therapy: Possibilities of a drug delivery system with anticancer activities beyond delivery as a new therapeutic tool. Expert Opin. Drug Deliv. 2010, 7, 1079–1093. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Nie, W.; Hu, Y.; Shen, Y.; Lin, Y.; Wang, B.; Qian, Z.; Gao, X. A folic acid-modified non-viral vector combines gene therapy with chemotherapy to reverse cancer chemotherapy resistance. Appl. Mater. Today 2021, 26, 101277. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Rezaei-sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef] [Green Version]
- Luiz, M.T.; Viegas, J.S.R.; Abriata, J.P.; Tofani, L.B.; de Menezes Vaidergorn, M.; da Silva Emery, F.; Chorilli, M.; Marchetti, J.M. Docetaxel-loaded folate-modified TPGS-transfersomes for glioblastoma multiforme treatment. Mater. Sci. Eng. C 2021, 124, 112033. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Kim, M.W.; Kang, S.J.; Jeong, H.Y.; Park, S.I.; Lee, Y.K.; Kim, H.S.; Kim, K.S.; Park, Y.S. Tumor-specific delivery of therapeutic siRNAs by anti-EGFR immunonanoparticles. Int. J. Nanomed. 2018, 13, 4817–4828. [Google Scholar] [CrossRef] [Green Version]
- Dehkordi, N.G.; Elahian, F.; Khosravian, P.; Mirzaei, A.A. Intelligent TAT-coupled anti-HER2 immunoliposomes knock downed MDR1 to chemosensitize phenotype of multidrug resistant carcinoma. J. Cell. Physiol. 2019, 234, 20769–20778. [Google Scholar] [CrossRef]
- Noack, L.C.; Jaillais, Y. Functions of Anionic Lipids in Plants. Annu. Rev. Plant Biol. 2020, 71, 71–102. [Google Scholar] [CrossRef]
- Balazs, D.A.; Godbey, W. Liposomes for Use in Gene Delivery. J. Drug Deliv. 2011, 2011, 326497. [Google Scholar] [CrossRef] [Green Version]
- Yue, P.J.; He, L.; Qiu, S.W.; Li, Y.; Liao, Y.J.; Li, X.P.; Xie, D.; Peng, Y. OX26/CTX-conjugated PEGylated liposome as a dual-targeting gene delivery system for brain glioma. Mol. Cancer 2014, 13, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Alshaer, W.; Hillaireau, H.; Vergnaud, J.; Mura, S.; Delomenie, C.; Sauvage, F.; Ismail, S.; Fattal, E. Aptamer-guided siRNA-loaded nanomedicines for systemic gene silencing in CD-44 expressing murine triple-negative breast cancer model. J. Control. Release 2017, 271, 98–106. [Google Scholar] [CrossRef]
- Ho, S.Y.; Chen, P.R.; Chen, C.H.; Tsai, N.M.; Lin, Y.H.; Lin, C.S.; Chuang, C.H.; Huang, X.F.; Chan, Y.L.; Liu, Y.K.; et al. Lipoplex-based targeted gene therapy for the suppression of tumours with VEGFR expression by producing anti-angiogenic molecules. J. Nanobiotechnol. 2020, 18, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Fujii, S.; Nishimura, T.; Sakurai, K. Thermodynamics of lipoplex formation: Relationship between the lipid alkyl tail length and thermodynamic functions. Chem. Lett. 2012, 41, 501–503. [Google Scholar] [CrossRef]
- Gao, L.; Cao, J.; Fang, W. Self-assembly of lamellar lipid-DNA complexes simulated by explicit solvent counterion model. J. Phys. Chem. B 2010, 114, 7261–7264. [Google Scholar] [CrossRef] [PubMed]
- Freeman, E.C.; Weiland, L.M.; Meng, W.S. Modeling the proton sponge hypothesis: Examining proton sponge effectiveness for enhancing intracellular gene delivery through multiscale modeling. J. Biomater. Sci. Polym. Ed. 2013, 24, 398–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pei, D.; Buyanova, M. Overcoming Endosomal Entrapment in Drug Delivery Dehua. Bioconjug. Chem. 2019, 30, 273–283. [Google Scholar] [CrossRef]
- Wong-Baeza, C.; Bustos, I.; Serna, M.; Tescucano, A.; Alcántara-Farfán, V.; Ibáñez, M.; Montañez, C.; Wong, C.; Baeza, I. Membrane fusion inducers, chloroquine and spermidine increase lipoplex-mediated gene transfection. Biochem. Biophys. Res. Commun. 2010, 396, 549–554. [Google Scholar] [CrossRef]
- Buck, J.; Grossen, P.; Cullis, P.R.; Huwyler, J.; Witzigmann, D. Lipid-based DNA therapeutics: Hallmarks of non-viral gene delivery. ACS Nano 2019, 13, 3754–3782. [Google Scholar] [CrossRef]
- Hajj, K.A.; Whitehead, K.A. Tools for translation: Non-viral materials for therapeutic mRNA delivery. Nat. Rev. Mater. 2017, 2, 1–17. [Google Scholar] [CrossRef]
- Rietwyk, S.; Peer, D. Next-Generation Lipids in RNA Interference Therapeutics. ACS Nano 2017, 11, 7572–7586. [Google Scholar] [CrossRef]
- Niculescu-Duvaz, D.; Heyes, J.; Springer, C. Structure-Activity Relationship in Cationic Lipid Mediated Gene Transfection. Curr. Med. Chem. 2005, 10, 1233–1261. [Google Scholar] [CrossRef]
- Kim, B.K.; Bae, Y.U.; Doh, K.O.; Hwang, G.B.; Lee, S.H.; Kang, H.; Seu, Y.B. The synthesis of cholesterol-based cationic lipids with trimethylamine head and the effect of spacer structures on transfection efficiency. Bioorganic Med. Chem. Lett. 2011, 21, 3734–3737. [Google Scholar] [CrossRef] [PubMed]
- Wasungu, L.; Hoekstra, D. Cationic lipids, lipoplexes and intracellular delivery of genes. J. Control. Release 2006, 116, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Felgner, P.L.; Gadek, T.R.; Holm, M.; Roman, R.; Chan, H.W.; Wenz, M.; Northrop, J.P.; Ringold, G.M.; Danielsen, M. Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA 1987, 84, 7413–7417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behr, J.P.; Demeneix, B.; Loeffler, J.P.; Perez-Mutul, J. Efficient gene transfer into mammalian primary endocrine cells with lipopolyamine-coated DNA. Proc. Natl. Acad. Sci. USA 1989, 86, 6982–6986. [Google Scholar] [CrossRef] [Green Version]
- Carbone, C.; Tomasello, B.; Ruozi, B.; Renis, M.; Puglisi, G. Preparation and optimization of PIT solid lipid nanoparticles via statistical factorial design. Eur. J. Med. Chem. 2012, 49, 110–117. [Google Scholar] [CrossRef]
- Ciani, L.; Ristori, S.; Salvati, A.; Calamai, L.; Martini, G. DOTAP/DOPE and DC-Chol/DOPE lipoplexes for gene delivery: Zeta potential measurements and electron spin resonance spectra. Biochim. Biophys. Acta Biomembr. 2004, 1664, 70–79. [Google Scholar] [CrossRef] [Green Version]
- Malone, R.W.; Felgner, P.L.; Verma, I.M. Cationic liposome-mediated RNA transfection. Proc. Natl. Acad. Sci. USA 1989, 86, 6077–6081. [Google Scholar] [CrossRef] [Green Version]
- Cui, S.; Wang, Y.; Gong, Y.; Lin, X.; Zhao, Y.; Zhi, D.; Zhou, Q.; Zhang, S. Correlation of the cytotoxic effects of cationic lipids with their headgroups. Toxicol. Res. 2018, 7, 473–479. [Google Scholar] [CrossRef]
- Lin, Z.; Bao, M.; Yu, Z.; Xue, L.; Ju, C.; Zhang, C. The development of tertiary amine cationic lipids for safe and efficient siRNA delivery. Biomater. Sci. 2019, 7, 2777–2792. [Google Scholar] [CrossRef]
- Ouellette, R.J.; Rawn, J.D. Amines and Amides; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780128128381. [Google Scholar]
- Liu, Q.; Jiang, Q.Q.; Yi, W.J.; Zhang, J.; Zhang, X.C.; Wu, M.B.; Zhang, Y.M.; Zhu, W.; Yu, X.Q. Novel imidazole-functionalized cyclen cationic lipids: Synthesis and application as non-viral gene vectors. Bioorganic Med. Chem. 2013, 21, 3105–3113. [Google Scholar] [CrossRef]
- Zhi, D.; Bai, Y.; Yang, J.; Cui, S.; Zhao, Y.; Chen, H.; Zhang, S. A review on cationic lipids with different linkers for gene delivery. Adv. Colloid Interface Sci. 2018, 253, 117–140. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, H.; Thor, D.; Rahimian, R.; Guo, X. Novel pH-sensitive cationic lipids with linear ortho ester linkers for gene delivery. Eur. J. Med. Chem. 2012, 52, 159–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhi, D.; Zhang, S.; Wang, B.; Zhao, Y.; Yang, B.; Yu, S. Transfection efficiency of cationic lipids with different hydrophobic domains in gene delivery. Bioconjug. Chem. 2010, 21, 563–577. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.H.; Chen, C.K.; Ravikrishnan, A.; Rane, S.; Pfeifer, B.A. Overcoming nonviral gene delivery barriers: Perspective and future. Mol. Pharm. 2013, 10, 4082–4098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewert, K.; Slack, N.L.; Ahmad, A.; Evans, H.M.; Lin, A.J.; Samuel, C.E.; Safinya, C.R. Cationic Lipid-DNA Complexes for Gene Therapy: Understanding the Relationship Between Complex Structure and Gene Delivery Pathways at the Molecular Level. Curr. Med. Chem. 2004, 11, 133–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yusupov, M.; Wende, K.; Kupsch, S.; Neyts, E.C.; Reuter, S.; Bogaerts, A. Effect of head group and lipid tail oxidation in the cell membrane revealed through integrated simulations and experiments. Sci. Rep. 2017, 7, 1–14. [Google Scholar] [CrossRef]
- Lebrón, J.A.; López-Cornejo, P.; García-Dionisio, E.; Huertas, P.; García-Calderón, M.; Moyá, M.L.; Ostos, F.J.; López-López, M. Cationic single-chained surfactants with a functional group at the end of the hydrophobic tail dna compacting efficiency. Pharmaceutics 2021, 13, 589. [Google Scholar] [CrossRef]
- Wu, Y.; Li, L.; Chen, Q.; Su, Y.; Levkin, P.A.; Davidson, G. Single-Tailed Lipidoids Enhance the Transfection Activity of Their Double-Tailed Counterparts. ACS Comb. Sci. 2016, 18, 43–50. [Google Scholar] [CrossRef]
- Wang, H.J.; Liu, Y.H.; Zhang, J.; Zhang, Y.; Xia, Y.; Yu, X.Q. Cyclen-based cationic lipids with double hydrophobic tails for efficient gene delivery. Biomater. Sci. 2014, 2, 1460–1470. [Google Scholar] [CrossRef]
- Mochizuki, S.; Kanegae, N.; Nishina, K.; Kamikawa, Y.; Koiwai, K.; Masunaga, H.; Sakurai, K. The role of the helper lipid dioleoylphosphatidylethanolamine (DOPE) for DNA transfection cooperating with a cationic lipid bearing ethylenediamine. Biochim. Biophys. Acta Biomembr. 2013, 1828, 412–418. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, D.; Rejman, J.; Wasungu, L.; Shi, F.; Zuhorn, I. Gene delivery by cationic lipids: In and out of an endosome. Biochem. Soc. Trans. 2007, 35, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Briuglia, M.L.; Rotella, C.; McFarlane, A.; Lamprou, D.A. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv. Transl. Res. 2015, 5, 231–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, C.; Stewart, D.J.; Lee, J.J.; Ji, L.; Ramesh, R.; Jayachandran, G.; Nunez, M.I.; Wistuba, I.I.; Erasmus, J.J.; Hicks, M.E.; et al. Phase I clinical trial of systemically administered TUSC2(FUS1)-nanoparticles mediating functional gene transfer in humans. PLoS ONE 2012, 7, e34833. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, J.A.; Cullis, P.R.; Van Der Meel, R. Lipid Nanoparticles Enabling Gene Therapies: From Concepts to Clinical Utility. Nucleic Acid Ther. 2018, 28, 146–157. [Google Scholar] [CrossRef] [Green Version]
- Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release 2010, 148, 135–146. [Google Scholar] [CrossRef]
- Lakkadwala, S.; dos Santos Rodrigues, B.; Sun, C.; Singh, J. Dual functionalized liposomes for efficient co-delivery of anti-cancer chemotherapeutics for the treatment of glioblastoma. J. Control. Release 2019, 307, 247–260. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, J.; Gu, Z.; Zhang, H.; Gong, Q.; Luo, K. Advances in nanomedicines for diagnosis of central nervous system disorders. Biomaterials 2021, 269, 120492. [Google Scholar] [CrossRef]
- Zahavi, D.; Weiner, L. Monoclonal antibodies in cancer therapy. Antibodies 2020, 9, 34. [Google Scholar] [CrossRef]
- Silvestre, A.L.P.; Oshiro-Júnior, J.A.; Garcia, C.; Turco, B.O.; da Silva Leite, J.M.; de Lima Damasceno, B.P.; Soares, J.C.M.; Chorilli, M. Monoclonal antibodies carried in drug delivery nanosystems as a strategy for cancer treatment. Curr. Med. Chem. 2021, 28, 401–418. [Google Scholar] [CrossRef]
- Kaplon, H.; Reichert, J.M. Antibodies to watch in 2021. MAbs 2021, 13, 1860476. [Google Scholar] [CrossRef]
- Lu, R.M.; Hwang, Y.C.; Liu, I.J.; Lee, C.C.; Tsai, H.Z.; Li, H.J.; Wu, H.C. Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci. 2020, 27, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Maloney, D.G.; Grillo-López, A.J.; White, C.A.; Bodkin, D.; Schilder, R.J.; Neidhart, J.A.; Janakiraman, N.; Foon, K.A.; Liles, T.-M.; Dallaire, B.K.; et al. IDEC-C2B8 (Rituximab) Anti-CD20 Monoclonal Antibody Therapy in Patients With Relapsed Low-Grade Non-Hodgkin’s Lymphoma. Blood 1997, 90, 2188–2195. [Google Scholar] [CrossRef] [PubMed]
- Arslan, F.B.; Ozturk Atar, K.; Calis, S. Antibody-mediated drug delivery. Int. J. Pharm. 2021, 596, 120268. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Su, W.; Liu, Z.; Zhou, M.; Chen, S.; Chen, Y.; Lu, D.; Liu, Y.; Fan, Y.; Zheng, Y.; et al. CD44 antibody-targeted liposomal nanoparticles for molecular imaging and therapy of hepatocellular carcinoma. Biomaterials 2012, 33, 5107–5114. [Google Scholar] [CrossRef]
- Gao, J.; Sun, J.; Li, H.; Liu, W.; Zhang, Y.; Li, B.; Qian, W.; Wang, H.; Chen, J.; Guo, Y. Lyophilized HER2-specific PEGylated immunoliposomes for active siRNA gene silencing. Biomaterials 2010, 31, 2655–2664. [Google Scholar] [CrossRef]
- Zhuo, H.; Zheng, B.; Liu, J.; Huang, Y.; Wang, H.; Zheng, D.; Mao, N.; Meng, J.; Zhou, S.; Zhong, L.; et al. Efficient targeted tumor imaging and secreted endostatin gene delivery by anti-CD105 immunoliposomes. J. Exp. Clin. Cancer Res. 2018, 37, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Huang, Y.; He, J.; Wang, H.; Luo, Y.; Li, Y.; Liu, J.; Zhong, L.; Zhao, Y. PEGylated immunoliposome-loaded endoglin single-chain antibody enhances anti-tumor capacity of porcine α1,3GT gene. Biomaterials 2019, 217, 119231. [Google Scholar] [CrossRef]
- Guan, J.; Guo, H.; Tang, T.; Wang, Y.; Wei, Y.; Seth, P.; Li, Y.; Dehm, S.M.; Ruoslahti, E.; Pang, H.B. iRGD-Liposomes Enhance Tumor Delivery and Therapeutic Efficacy of Antisense Oligonucleotide Drugs against Primary Prostate Cancer and Bone Metastasis. Adv. Funct. Mater. 2021, 31, 1–12. [Google Scholar] [CrossRef]
- Xiao, W.; Zhang, W.; Huang, H.; Xie, Y.; Zhang, Y.; Guo, X.; Jin, C.; Liao, X.; Yao, S.; Chen, G.; et al. Cancer Targeted Gene Therapy for Inhibition of Melanoma Lung Metastasis with eIF3i shRNA Loaded Liposomes. Mol. Pharm. 2020, 17, 229–238. [Google Scholar] [CrossRef]
- Yang, S.; Wang, D.; Zhang, X.; Sun, Y.; Zheng, B. cRGD peptide-conjugated polyethylenimine-based lipid nanoparticle for intracellular delivery of siRNA in hepatocarcinoma therapy. Drug Deliv. 2021, 28, 995–1006. [Google Scholar] [CrossRef]
- Lin, C.; Hu, Z.; Yuan, G.; Su, H.; Zeng, Y.; Guo, Z.; Zhong, F.; Jiang, K.; He, S. HIF1α-siRNA and gemcitabine combination-based GE-11 peptide antibody-targeted nanomedicine for enhanced therapeutic efficacy in pancreatic cancers. J. Drug Target. 2019, 27, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Li, X.Q.; Duan, J.L.; Bao, C.J.; Cui, Y.N.; Su, Z.B.; Xu, J.R.; Luo, Q.; Chen, M.; Xie, Y.; et al. Nanosized functional miRNA liposomes and application in the treatment of TNBC by silencing slug gene. Int. J. Nanomed. 2019, 14, 3645–3667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Z.; Zhao, L.; Zhang, Y.; Li, S.; Pan, B.; Hua, L.; Wang, Z.; Ye, C.; Lu, J.; Yu, R.; et al. Inhibition of glioma growth by a GOLPH3 siRNA-loaded cationic liposomes. J. Neurooncol. 2018, 140, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Hou, J.; Liu, X.; Guo, Y.; Wu, Y.; Zhang, L.; Yang, Z. Nucleolin-targeting liposomes guided by aptamer AS1411 for the delivery of siRNA for the treatment of malignant melanomas. Biomaterials 2014, 35, 3840–3850. [Google Scholar] [CrossRef]
- Yu, S.; Bi, X.; Yang, L.; Wu, S.; Yu, Y.; Jiang, B.; Zhang, A.; Lan, K.; Duan, S. Co-delivery of paclitaxel and PLK1-targeted siRNA using aptamer-functionalized cationic liposome for synergistic anti-breast cancer effects in vivo. J. Biomed. Nanotechnol. 2019, 15, 1135–1148. [Google Scholar] [CrossRef]
- Zhen, S.; Takahashi, Y.; Narita, S.; Yang, Y.C.; Li, X. Targeted delivery of CRISPR/Cas9 to prostate cancer by modified gRNA using a flexible aptamer-cationic liposome. Oncotarget 2017, 8, 9375–9387. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Xu, J.; Le, V.M.; Gong, Q.; Li, S.; Gao, F.; Ni, L.; Liu, J.; Liang, X. EpCAM Aptamer-Functionalized Cationic Liposome-Based Nanoparticles Loaded with miR-139-5p for Targeted Therapy in Colorectal Cancer. Mol. Pharm. 2019, 16, 4696–4710. [Google Scholar] [CrossRef]
- Kabilova, T.O.; Shmendel, E.V.; Gladkikh, D.V.; Chernolovskaya, E.L.; Markov, O.V.; Morozova, N.G.; Maslov, M.A.; Zenkova, M.A. Targeted delivery of nucleic acids into xenograft tumors mediated by novel folate-equipped liposomes. Eur. J. Pharm. Biopharm. 2018, 123, 59–70. [Google Scholar] [CrossRef]
- Li, W.; Yan, R.; Liu, Y.; He, C.; Zhang, X.; Lu, Y.; Khan, M.W.; Xu, C.; Yang, T.; Xiang, G. Co-delivery of Bmi1 small interfering RNA with ursolic acid by folate receptor-targeted cationic liposomes enhances anti-tumor activity of ursolic acid in vitro and in vivo. Drug Deliv. 2019, 26, 794–802. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; He, L.; Liu, Y.; Xia, S.; Fang, A.; Xie, Y.; Gan, L.; He, Z.; Tan, X.; Jiang, C.; et al. Promising Nanocarriers for PEDF Gene Targeting Delivery to Cervical Cancer Cells Mediated by the Over-expressing FRα. Sci. Rep. 2016, 6, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Patel, D.; Wairkar, S.; Yergeri, M.C. Current Developments in Targeted Drug Delivery Systems for Glioma. Curr. Pharm. Des. 2020, 26, 3973–3984. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.L.; Tsai, N.M.; Chen, C.H.; Liu, Y.K.; Lee, C.J.; Chan, Y.L.; Wang, Y.S.; Chang, Y.C.; Lin, C.H.; Huang, T.H.; et al. Specific drug delivery efficiently induced human breast tumor regression using a lipoplex by non-covalent association with anti-tumor antibodies. J. Nanobiotechnology 2019, 17, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, J.; Chen, H.; Madigan, M.C.; Cozzi, P.J.; Beretov, J.; Xiao, W.; Delprado, W.J.; Russell, P.J.; Li, Y. Co-expression of CD147 (EMMPRIN), CD44v3-10, MDR1 and monocarboxylate transporters is associated with prostate cancer drug resistance and progression. Br. J. Cancer 2010, 103, 1008–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaidyanath, A.; Mahmud, H.B.; Khayrani, A.C.; KoKo Oo, A.; Seno, A.; Asakura, M.; Kasai, T.; Seno, M. Hyaluronic Acid Mediated Enrichment of CD44 Expressing Glioblastoma Stem Cells in U251MG Xenograft Mouse Model. J. Stem Cell Res. Ther. 2017, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Ganesh, S.; Iyer, A.K.; Morrissey, D.V.; Amiji, M.M. Hyaluronic acid based self-assembling nanosystems for CD44 target mediated siRNA delivery to solid tumors. Biomaterials 2013, 34, 3489–3502. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.H.; Xuan, S.; Kim, W.Y.; Bae, G.U.; Kim, J.S. CD133 antibody-conjugated immunoliposomes encapsulating gemcitabine for targeting glioblastoma stem cells. J. Mater. Chem. B 2014, 2, 3771–3781. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, M.; Li, W.; Fan, L.; Zhou, Y.; Hu, Z. A Novel CD133- and EpCAM-Targeted Liposome With Redox-Responsive Properties Capable of Synergistically Eliminating Liver Cancer Stem Cells. Front. Chem. 2020, 8, 649. [Google Scholar] [CrossRef]
- Hama, S.; Sakai, M.; Itakura, S.; Majima, E.; Kogure, K. Rapid modification of antibodies on the surface of liposomes composed of high-affinity protein A-conjugated phospholipid for selective drug delivery. Biochem. Biophys. Rep. 2021, 27, 101067. [Google Scholar] [CrossRef]
- Richards, D.A.; Maruani, A.; Chudasama, V. Antibody fragments as nanoparticle targeting ligands: A step in the right direction. Chem. Sci. 2017, 8, 63–77. [Google Scholar] [CrossRef] [Green Version]
- Dufaÿ Wojcicki, A.; Hillaireau, H.; Nascimento, T.L.; Arpicco, S.; Taverna, M.; Ribes, S.; Bourge, M.; Nicolas, V.; Bochot, A.; Vauthier, C.; et al. Hyaluronic acid-bearing lipoplexes: Physico-chemical characterization and in vitro targeting of the CD44 receptor. J. Control. Release 2012, 162, 545–552. [Google Scholar] [CrossRef]
- Leite Nascimento, T.; Hillaireau, H.; Vergnaud, J.; Rivano, M.; Deloménie, C.; Courilleau, D.; Arpicco, S.; Suk, J.S.; Hanes, J.; Fattal, E. Hyaluronic acid-conjugated lipoplexes for targeted delivery of siRNA in a murine metastatic lung cancer model. Int. J. Pharm. 2016, 514, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Desai, B.; Ma, T.; Zhu, J.; Chellaiah, M.A. Characterization of the expression of variant and standard CD44 in prostate cancer cells: Identification of the possible molecular mechanism of CD44/MMP9 complex formation on the cell surface. J. Cell. Biochem. 2009, 108, 272–284. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.; Tussey, L.; Athanasou, N.; Jackson, D.G. Heparan sulfate proteoglycan isoforms of the CD44 hyaluronan receptor induced in human inflammatory macrophages can function as paracrine regulators of fibroblast growth factor action. J. Biol. Chem. 2000, 275, 7964–7974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tremmel, M.; Matzke, A.; Albrecht, I.; Laib, A.M.; Olaku, V.; Ballmer-Hofer, K.; Christofori, G.; Héroult, M.; Augustin, H.G.; Ponta, H.; et al. A CD44v6 peptide reveals a role of CD44 in VEGFR-2 signaling and angiogenesis. Blood 2009, 114, 5236–5244. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Li, X.; Dong, D.; Zhang, B.; Xue, Y.; Shang, P. Transferrin receptor 1 in cancer: A new sight for cancer therapy. Am. J. Cancer Res. 2018, 8, 916–931. [Google Scholar]
- Rychtarcikova, Z.; Lettlova, S.; Tomkova, V.; Korenkova, V.; Langerova, L.; Simonova, E.; Zjablovskaja, P.; Alberich-Jorda, M.; Neuzil, J.; Truksa, J. Tumor-initiating cells of breast and prostate origin show alterations in the expression of genes related to iron metabolism. Oncotarget 2017, 8, 6376–6398. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Zhang, J.; Song, F.; Tian, M.; Shi, B.; Jiang, H.; Xu, W.; Wang, H.; Zhou, M.; Pan, X.; et al. EGFR regulates iron homeostasis to promote cancer growth through redistribution of transferrin receptor 1. Cancer Lett. 2016, 381, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Neves, S.; Faneca, H.; Bertin, S.; Konopka, K.; Düzgüneş, N.; Pierrefite-Carle, V.; Simões, S.; Pedroso De Lima, M.C. Transferrin lipoplex-mediated suicide gene therapy of oral squamous cell carcinoma in an immunocompetent murine model and mechanisms involved in the antitumoral response. Cancer Gene Ther. 2009, 16, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Sakaguchi, N.; Kojima, C.; Harada, A.; Koiwai, K.; Emi, N.; Kono, K. Effect of transferrin as a ligand of pH-sensitive fusogenic liposome-lipoplex hybrid complexes. Bioconjug. Chem. 2008, 19, 1588–1595. [Google Scholar] [CrossRef]
- Abela, R.A.; Qian, J.; Xu, L.; Lawrence, T.S.; Zhang, M. Radiation improves gene delivery by a novel transferrin-lipoplex nanoparticle selectively in cancer cells. Cancer Gene Ther. 2008, 15, 496–507. [Google Scholar] [CrossRef] [Green Version]
- Johnsen, K.B.; Burkhart, A.; Melander, F.; Kempen, P.J.; Vejlebo, J.B.; Siupka, P.; Nielsen, M.S.; Andresen, T.L.; Moos, T. Targeting transferrin receptors at the blood-brain barrier improves the uptake of immunoliposomes and subsequent cargo transport into the brain parenchyma. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Duan, W.; Zhang, S.; Chen, D.; Feng, J.; Qi, N. Muscone/RI7217 co-modified upward messenger DTX liposomes enhanced permeability of blood–brain barrier and targeting glioma. Theranostics 2020, 10, 4308–4322. [Google Scholar] [CrossRef] [PubMed]
- Ulbrich, K.; Hekmatara, T.; Herbert, E.; Kreuter, J. Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood–brain barrier (BBB). Eur. J. Pharm. Biopharm. 2009, 71, 251–256. [Google Scholar] [CrossRef]
- Crombet, T.; Osorio, M.; Cruz, T.; Roca, C.; Del Castillo, R.; Mon, R.; Iznaga-Escobar, N.; Figueredo, R.; Koropatnick, J.; Renginfo, E.; et al. Use of the humanized anti-epidermal growth factor receptor monoclonal antibody h-R3 in combination with radiotherapy in the treatment of locally advanced head and neck cancer patients. J. Clin. Oncol. 2004, 22, 1646–1654. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.; Weihua, Z. Rethink of EGFR in cancer with its kinase independent function on board. Front. Oncol. 2019, 9, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Behravan, N.; Zahedipour, F.; Jaafari, M.R.; Johnston, T.P.; Sahebkar, A. Lipid-based nanoparticulate delivery systems for HER2-positive breast cancer immunotherapy. Life Sci. 2022, 291, 120294. [Google Scholar] [CrossRef]
- Ménard, S.; Pupa, S.M.; Campiglio, M.; Tagliabue, E. Biologic and therapeutic role of HER2 in cancer. Oncogene 2003, 22, 6570–6578. [Google Scholar] [CrossRef] [Green Version]
- Hatakeyama, H.; Akita, H.; Ishida, E.; Hashimoto, K.; Kobayashi, H.; Aoki, T.; Yasuda, J.; Obata, K.; Kikuchi, H.; Ishida, T.; et al. Tumor targeting of doxorubicin by anti-MT1-MMP antibody-modified PEG liposomes. Int. J. Pharm. 2007, 342, 194–200. [Google Scholar] [CrossRef]
- Jin, M.Z.; Jin, W.L. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct. Target. Ther. 2020, 5, 166. [Google Scholar] [CrossRef]
- Cavar, S.; Jelasic, D.; Seiwerth, S.; Milosevic, M.; Hutinec, Z.; Misic, M. Endoglin (CD 105) as a Potential Prognostic Factor in Neuroblastoma Stanko. Pediatric Blood Cancer 2015, 62, 770–775. [Google Scholar] [CrossRef]
- Sonju, J.J.; Dahal, A.; Singh, S.S.; Jois, S.D. Peptide-functionalized liposomes as therapeutic and diagnostic tools for cancer treatment. J. Control. Release 2021, 329, 624–644. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Fang, X.; Yang, Y.; Wang, C. Peptide-Enabled Targeted Delivery Systems for Therapeutic Applications. Front. Bioeng. Biotechnol. 2021, 9, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kuang, H.; Ku, S.H.; Kokkoli, E. The design of peptide-amphiphiles as functional ligands for liposomal anticancer drug and gene delivery. Adv. Drug Deliv. Rev. 2017, 110–111, 80–101. [Google Scholar] [CrossRef]
- Timur, S.S.; Gürsoy, R.N. The role of peptide-based therapeutics in oncotherapy. J. Drug Target. 2021, 29, 1048–1062. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Singh, J. In vitro and in vivo optimization of liposomal nanoparticles based brain targeted vgf gene therapy. Int. J. Pharm. 2021, 608, 121095. [Google Scholar] [CrossRef]
- Fisher, R.K.; West, P.C.; Mattern-schain, S.I.; Best, M.D.; Kirkpatrick, S.S.; Dieter, R.A.; Arnold, J.D.; Buckley, M.R.; McNally, M.M.; Freeman, M.B.; et al. Advances in the formulation and assembly of non-cationic lipid nanoparticles for the medical application of gene therapeutics. Nanomaterials 2021, 11, 825. [Google Scholar] [CrossRef]
- Shi, J.; Wang, F.; Liu, S. Radiolabeled cyclic RGD peptides as radiotracers for tumorimaging. Biophys. Rep. 2016, 2, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Wonder, E.; Simón-Gracia, L.; Scodeller, P.; Majzoub, R.N.; Kotamraju, V.R.; Ewert, K.K.; Teesalu, T.; Safinya, C.R. Competition of charge-mediated and specific binding by peptide-tagged cationic liposome–DNA nanoparticles in vitro and in vivo. Biomaterials 2018, 166, 52–63. [Google Scholar] [CrossRef]
- O’Farrell, B. Lateral Flow Immunoassay Systems: Evolution from the Current State of the Art to the Next Generation of Highly Sensitive, Quantitative Rapid Assays, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 9780080970370. [Google Scholar]
- Reverdatto, S.; Burz, D.; Shekhtman, A. Peptide Aptamers: Development and Applications. Curr. Top. Med. Chem. 2015, 15, 1082–1101. [Google Scholar] [CrossRef] [Green Version]
- Blind, M.; Blank, M. Aptamer Selection Technology and Recent Advances. Mol. Ther. Nucleic Acids 2015, 4, e223. [Google Scholar] [CrossRef]
- de Franciscis, V. Challenging cancer targets for aptamer delivery. Biochimie 2018, 145, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Xiang, J. Aptamer-functionalized nanoparticles in targeted delivery and cancer therapy. Int. J. Mol. Sci. 2020, 21, 9123. [Google Scholar] [CrossRef] [PubMed]
- Aravind, A.; Veeranarayanan, S.; Poulose, A.C.; Nair, R.; Nagaoka, Y.; Yoshida, Y.; Maekawa, T.; Kumar, D.S. Aptamer-Functionalized Silica Nanoparticles for Targeted Cancer Therapy. Bionanoscience 2012, 2, 1–8. [Google Scholar] [CrossRef]
- Argenziano, M.; Arpicco, S.; Brusa, P.; Cavalli, R.; Chirio, D.; Dosio, F.; Gallarate, M.; Peira, E.; Stella, B.; Ugazio, E. Developing Actively Targeted Nanoparticles to Fight Cancer:Focus on Italian Research. Pharmaceutics 2021, 13, 1538. [Google Scholar] [CrossRef]
- Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm. 2015, 93, 52–79. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Wu, Q.; Peng, F.; Liu, L.; Gong, C. Strategies of polymeric nanoparticles for enhanced internalization in cancer therapy. Colloids Surf. B Biointerfaces 2015, 135, 56–72. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, T.; Wu, B.; Zhang, X. Insights into the therapeutic potential of hypoxia-inducible factor-1α small interfering RNA in malignant melanoma delivered via folate-decorated cationic liposomes. Int. J. Nanomed. 2016, 11, 991–1002. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Luo, M.; Wei, X.W.; Ma, C.C.; Yang, Y.H.; Shao, B.; Liu, Y.T.; Liu, T.; Ren, J.; Liu, L.; et al. A folate receptor-targeted lipoplex delivering interleukin-15 gene for colon cancer immunotherapy. Oncotarget 2016, 7, 52207–52217. [Google Scholar] [CrossRef] [Green Version]
Disease | Vector/Gene | Phase | Status | Company | Identifier |
---|---|---|---|---|---|
Ovarian Cancer and Peritoneal Cavity Cancer | Ad5CMV-p53 gene | I | Completed | University of Texas Southwestern Medical Center | NCT00003450 |
Pancreatic cancer | Rexin-gene | I | Completed | Epeius Biotechnologies | NCT00121745 |
Prostate cancer | Ad5-yCD/mutTKSR39rep-hIL12 | I | Unknown | Henry Ford Health System Detroit | NCT02555397 |
Non-Small Cell Lung Cancer | AdV-IL-12 | I | Incomplete | Houston Methodist Cancer Center | NCT04911166 |
Triple-Negative Breast Cancer | AdV-IL-12 | II | Incomplete | Houston Methodist Cancer Center | NCT04095689 |
Breast Cancer | Ad5CMV-p53 gene | I | Completed | Fox Chase Cancer Center Philadelphia | NCT00004038 |
Ovarian Cancer and Primary Peritoneal Cancer | Ad5CMV-p53 | I | Completed | Simmons Cancer Center—Dallas | NCT00003450 |
Prostate Cancer | Ad5-CMV-NIS | I | Completed | Mayo Clinic Rochester | NCT00788307 |
Lipid | Abbreviation | Polar Domain | Nonpolar Domain | Feature |
---|---|---|---|---|
N-[1-(2,3-Dioleyloxy)propyl]N,N,N-trimethylammonium chloride | DOTMA | Quaternary ammonium | Unsaturated aliphatic | Cationic lipid |
1,2-Dioleoyloxy-3-trimethylammonium-propane | DOTAP | Quaternary ammonium | Unsaturated aliphatic | Cationic lipid |
Dioctadecylamidoglycylspermine | DOGS | Polyamine | Aliphatic | Cationic lipid |
Cetyltrimethylammonium bromide | CTAB | Quaternary ammonium | Single-tail aliphatic | Cationic lipid |
2,3-Dioleyloxy-N-[2(sperminecarboxamido)-ethyl]-N,N-dimethyl-1-propanaminium trifluoroacetate | DOSPA | Polyamine | Unsaturated aliphatic | Cationic lipid |
1,2-Dioleyl-3-trimethylammonium-propane | DOPA | Quaternary ammonium | Unsaturated aliphatic | Cationic lipid |
Dimyristooxypropyl dimethyl hydroxyethyl ammonium bromide | DMRIE | Quaternary ammonium | Aliphatic | Cationic lipid |
Dimethyldioctadecylammonium bromide | DDAB | Quaternary ammonium | Aliphatic | Cationic lipid |
1,2-Distearyloxy-N,N-dimethyl-3-aminopropane | DSDMA | Secondary amine | Aliphatic | Cationic lipid |
1,2-Dimyristoyl-trimethylammoniumpropane | DMTAP | Quaternary ammonium | Aliphatic | Cationic lipid |
1,2-Distearoyl-sn-glycero-3-ethylphosphocholine | DSEPC | Quaternary ammonium | Aliphatic | Cationic lipid |
N-Palmitoyl d-erythro-sphingosyl carbamoyl-spermine | CCS | Spermine | Unsaturated aliphatic | Cationic lipid |
1,3-Dioleoxy-2-(6-carboxy-spermyl)-propylamide | DOSPER | Polyamine | Unsaturated aliphatic | Cationic lipid |
(1,2-dioleoyl-3-dimethyl-hydroxyethyl ammonium bromide) | DORIE | Quaternary ammonium | Unsaturated aliphatic | Cationic lipid |
(1,2-dioleoyloxypropyl-3-dimethyl-hydrox yethyl ammonium chloride) | DORI | Quaternary ammonium | Unsaturated aliphatic | Cationic lipid |
N,N-dioleyl-N,N-dimethylammonium Chloride | DODAC | Quaternary ammonium | Aliphatic | Cationic lipid |
Bis-guanidium-tren-cholesterol | BGTC | Guanidinium-spermidine- | Steroid-based | Cationic lipid |
3β-[N-(N′,N′-Dimethylaminoethane)-carbamoyl]cholesterol | DC-Chol | Tertiary amine | Steroid-based | Cationic lipid |
Octadecenolyoxy[ethyl-2-heptadecenyl-3 hydroxyethyl] imidazolinium chloride | DOTIM | Heterocycle (imidazole) | Unsaturated aliphatic | Cationic lipid |
1,2-dioleoyl-sn-glycerol-3-ethylphosphocholine | DOEPC | Ethylphosphocholine | Aliphatic | Cationic lipid |
O,O′-Dimyristyl-N-lysyl aspartate | DMKE | Primary amine | Aliphatic | Cationic lipid |
O,O′-dimyristyl N-lysylaspartate | DMKD | Primary amine | Aliphatic | Cationic lipid |
N-t-Butyl-N0-tetradecyl-3-tetradecylaminopropionamidine | diC14-amidine | Imine group | Aliphatic | Cationic lipid |
N-(4-carboxybenzyl)-N,N-dimethyl-2,3-bis(oleoyloxy)propan-1-aminium | DOBAQ | Quaternary ammonium | Unsaturated aliphatic | Cationic lipid |
1,2-dioleyloxy-3-dimethylaminopropane | DODMA | Tertiary amine | Unsaturated aliphatic | Cationic lipid |
6-Lauroxyhexyl ornithinate | LHON | Ornithine | Single-tail aliphatic | Cationic lipid |
1,2-Dioleoyl-sn-glycero-3-phosphatidylcholine | DOPC | - | Phosphatidylcholine | Helper lipid |
1,2-Dioleoyl-sn-glycero-3-phosphatidylethanolamine | DOPE | - | Phosphatidylcholine | Helper lipid |
Cholesterol | CHOL | - | Steroid | Helper lipid |
Lipid | Gene/Drug | Disease | Administration Route | Phase (Start Year) | Sponsors | Identifier |
---|---|---|---|---|---|---|
n.r. | mRNA encoding human OX40L | Advanced/metastatic solid tumors or lymphoma | Intratumoral | I/II recruiting (2017) | ModernaTX, Inc. (Cambridge, MA, USA) | NCT03323398 |
Lipo-MERIT | NY-ESO-1, MAGE-A3, and TPPE RNA | Melanoma | Intravenous | I recruiting (2015) | BioNTech SE (Mainz, Germany) | NCT02410733 |
DOTAP:Chol | Pbi-shRNA™ EWS/FLI1 Type 1 | Ewing’s sarcoma. | Intravenous | I recruiting (2016) | Gradalis, Inc. (New York, NY, USA) | NCT02736565 |
DOPC | EphA2 siRNA | Advanced Malignant Solid Neoplasm | Intravenous | I active (2012) | M.D. Anderson Cancer Center (Houston, TX, USA) | NCT01591356 |
DOTAP:Chol | TUSC2 | Lung Cancer | Intravenous | I/II active (2011) | Genprex, Inc. (Houston, TX, USA) | NCT01455389 |
DOTAP:DOPE | SGT-53 | Recurrent/refractory solid tumors in children | Intravenous | I active (2015) | SynerGene Therapeutics, Inc. (Houston, TX, USA) | NCT02354547 |
DOTAP:DOPE | SGT-53 | Metastatic pancreatic cancer | Intravenous | II recruiting (2015) | SynerGene Therapeutics, Inc. (Houston, TX, USA) | NCT02340117 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luiz, M.T.; Dutra, J.A.P.; Tofani, L.B.; de Araújo, J.T.C.; Di Filippo, L.D.; Marchetti, J.M.; Chorilli, M. Targeted Liposomes: A Nonviral Gene Delivery System for Cancer Therapy. Pharmaceutics 2022, 14, 821. https://doi.org/10.3390/pharmaceutics14040821
Luiz MT, Dutra JAP, Tofani LB, de Araújo JTC, Di Filippo LD, Marchetti JM, Chorilli M. Targeted Liposomes: A Nonviral Gene Delivery System for Cancer Therapy. Pharmaceutics. 2022; 14(4):821. https://doi.org/10.3390/pharmaceutics14040821
Chicago/Turabian StyleLuiz, Marcela Tavares, Jessyca Aparecida Paes Dutra, Larissa Bueno Tofani, Jennifer Thayanne Cavalcante de Araújo, Leonardo Delello Di Filippo, Juliana Maldonado Marchetti, and Marlus Chorilli. 2022. "Targeted Liposomes: A Nonviral Gene Delivery System for Cancer Therapy" Pharmaceutics 14, no. 4: 821. https://doi.org/10.3390/pharmaceutics14040821
APA StyleLuiz, M. T., Dutra, J. A. P., Tofani, L. B., de Araújo, J. T. C., Di Filippo, L. D., Marchetti, J. M., & Chorilli, M. (2022). Targeted Liposomes: A Nonviral Gene Delivery System for Cancer Therapy. Pharmaceutics, 14(4), 821. https://doi.org/10.3390/pharmaceutics14040821