Milling-Assisted Loading of Drugs into Mesoporous Silica Carriers: A Green and Simple Method for Obtaining Tunable Customized Drug Delivery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Milling-Assisted Loading (MAL) Method
2.2.2. Synthesis of Modified SBA-15 (SBA-15-NH2)
2.2.3. Characterization of Mesoporous Silica Carriers
2.2.4. Electron Microscopy
2.2.5. Drug Release Studies
2.2.6. Low-Frequency Raman Spectroscopy
3. Results
3.1. SBA-15, SBA-15-NH2 Characterization
3.2. Raman Spectroscopy
3.3. Electron Microscopy
3.4. Study of Release Kinetic Profiles of Ibuprofen from Mesoporous Matrices
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Analysis of the Influence of Milling on the Physical State of Ibuprofen
Appendix B. Thermogravimetric Analyses of MPS Carriers
Appendix C. Description of the Method used for Determining the Crystallinity of Confined Ibuprofen
Appendix D. Comparison of Drug Release Profiles and Calibration Curve of Ibuprofen
References
- Thayer, A.M. Form and function. Chem. Eng. News 2007, 85, 17–30. [Google Scholar] [CrossRef]
- Vallet-Regi, M.; Colilla, M.; Izquierdo-Barba, I.; Manzano, M. Mesoporous silica nanoparticles for drug delivery: Current insights. Molecules 2018, 23, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallet-Regi, M.; Ramila, A.; Del Real, R.P.; Perez-Pariente, J. A new property of MCM-41: Drug delivery system. Chem. Mater. 2001, 13, 308–311. [Google Scholar] [CrossRef]
- Juere, E.; Kleitz, F. On the nanopore confinement of therapeutic drugs into mesopourous silica materials and its implications. Microporous Mesoporous Mater. 2018, 270, 109–119. [Google Scholar] [CrossRef]
- Trzeciak, K.; Chotera-Ouda, A.; Bak-Sypien, I.; Potrzebowski, M. Mesoporous silicaparticles as drug delivery systems-The state of the art in loading methods and the recent progress in analytical techniques for monitoring these processes. Pharmaceutics 2021, 13, 950. [Google Scholar] [CrossRef]
- Prestidge, C.A.; Barnes, T.J.; Lau, C.-H.; Barnett, C.; Loni, A.; Canham, L. Mesoporous silicon: A platform for the delivery of therapeutics. Expert Opin. Drug Deliv. 2007, 4, 101–110. [Google Scholar] [CrossRef]
- Malfait, B.; Correia, N.; Ciotonea, C.; Dhainaut, J.; Dacquin, J.-P.; Royer, S.; Tabary, N.; Guinet, Y.; Hédoux, A. Manipulating the Physical states of confined ibuprofen in SBA-15 based drug delivery systems obtained by solid-state loading: Impact of the loading degree. J. Chem. Phys. 2020, 153, 154506–154513. [Google Scholar] [CrossRef]
- Beinier, M.; Rengarajan, G.; Pankaj, S.; Enke, D.; Steinhart, M. Manipulating the crystalline state of pharmaceuticals by nanoconfinement. Nano Lett. 2007, 7, 1381–1385. [Google Scholar] [CrossRef]
- Dengale, S.J.; Grohganz, H.; Rades, T.; Lobmann, K. Recent advances in coamorphous drug formulations. Adv. Drug Deliv. Rev. 2016, 100, 116–125. [Google Scholar] [CrossRef]
- Trzeciak, K.; Kazmierski, S.; Wielgus, E.; Potrzebowski, M. DiSupLo-New extremely easy and efficient method for loading of active pharmaceutical ingredients into the pores of MCM-41 mesoporous silica particles. Microporous Mesoporous Mater. 2020, 308, 110506–110523. [Google Scholar] [CrossRef]
- Ambrogi, V.; Perioli, L.; Pagano, C.; Marmottini, F.; Moretti, M.; Mizzi, F.; Rossi, C. Econazole Nitrate-loaded MCM-41 for an antifungal topical powder formulation. J. Pharm. Sci. 2010, 99, 4738–4745. [Google Scholar] [CrossRef]
- Skorupska, E.; Jeziorna, A.; Potrzebowski, M. Thermal Solvent-free method of loading of pharmaceutical cocrystals into the pores of silica particles: A case of naproxen/picolinamide cocrystal. J. Phys. Chem. C 2016, 120, 13169–13180. [Google Scholar] [CrossRef]
- Ahern, R.J.; Hanrahan, J.P.; Tobin, J.M.; Ryan, K.B.; Crean, A.M. Comparison of fenofibrate–mesoporous silica drug-loading processes for enhanced drug delivery. Eur. J. Pharm. Sci. 2013, 50, 400–409. [Google Scholar] [CrossRef]
- Malfait, B.; Correia, N.; Mussi, A.; Paccou, L.; Guinet, Y.; Hédoux, A. Solid-state loading of organic molecular materials within mesoporous silica matrix: Application to ibuprofen. Microporous Mesoporous Mater. 2019, 277, 203–207. [Google Scholar] [CrossRef]
- Trzeciak, K.; Kazmierski, S.; Druzbicki, K.; Potrzebowski, M. Mapping of Guest Localization in Mesoporous Silica Particles by Solid-State NMR and Ab Initio Modeling: New Insights into Benzoic Acid and p-Fluorobenzoic Acid Embedded in MCM-41 via Ball Milling. J. Phys. Chem. C 2021, 125, 10096–10109. [Google Scholar] [CrossRef]
- Moutamenni, B.; Tabary, N.; Paccou, L.; Guinet, Y.; Hédoux, A. MAL: High performance method for loading hydrophobic molecular materials into MCM-41 mesoporous silica-analysis of confined L-tryptophan by Raman spectroscopy. J. Mol. Struct. 2022, 1254, 132383. [Google Scholar] [CrossRef]
- Balas, F.; Manzano, M.; Colilla, M.; Valler-Regi, M. L-Trp adsorption into silica mesoporous materials to promote bone formation. Acta Biomater. 2008, 4, 514–522. [Google Scholar] [CrossRef]
- Colilla, M.; Manzano, M.; Vallet-Regi, M. Recent advances in ceramic implants as drug delivery systems for biomedical applications. Int. J. Nanomed. 2008, 3, 403–414. [Google Scholar]
- Malfait, B.; Paccou, L.; Correia, N.; Guinet, Y.; Hedoux, A. Identification of an amorphous-amorphous two-step transformation in indomethacin embedded within mesoporous silicas. Microporous Mesoporous Mater. 2021, 328, 111502. [Google Scholar] [CrossRef]
- Guinet, Y.; Paccou, L.; Danede, F.; Hedoux, A. Confinement of molecular materials using a solid-state loading method: A route for exploring new physicals states and their subsequent transformation highlighted by caffeine confined to SBA-15 pores. RSC Adv. 2021, 11, 34564–34571. [Google Scholar] [CrossRef]
- Willart, J.-F.; Descamps, M. Solid State Amorphization of Pharmaceuticals. Mol. Pharm. 2008, 5, 905–920. [Google Scholar] [CrossRef] [PubMed]
- Gibaldi, M.; Feldman, S. Establishment of sink conditions in dissolution rate determinations. J. Pharm. Sci. 1967, 56, 1238–1242. [Google Scholar] [CrossRef] [PubMed]
- Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm. 2010, 67, 217–223. [Google Scholar] [PubMed]
- Hédoux, A. Recent developments in the Raman and infrared investigations of amorphous pharmaceuticals and protein formulations: A review. Adv. Drug Deliv. Rev. 2016, 100, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Hédoux, A.; Guinet, Y.; Descamps, M. The contribution of Raman spectroscopy to the analysis of phase transformations in pharmaceutical compounds. Int. J. Pharm. 2011, 417, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Galeener, F.L.; Sen, P.N. Theory for the first-order vibrational spectra of disordered solids. Phys. Rev. B 1978, 17, 1928–1933. [Google Scholar] [CrossRef]
- Shuker, R.; Gammon, R. Raman-scattering selection-rule breaking and the density of states in amorphous materials. Phys. Rev. Lett. 1970, 25, 222–225. [Google Scholar] [CrossRef]
- Hedoux, A.; Derollez, P.; Guinet, Y.; Dianoux, A.J.; Descamps, M. Low-frequency vibrational excitations in the amorphous and crystalline states of triphenyl phosphite: A neutron and Raman scattering investigation-art. no. 144202. Phys. Rev. B 2001, 63, 144202. [Google Scholar] [CrossRef]
- Donohue, M.D.; Aranovich, G.L. Classification of Gibbs adsorption isotherms. Adv. Colloid Interface Sci. 1988, 76–77, 137–152. [Google Scholar] [CrossRef]
- Yildiz, R.; Lorgouilloux, Y.; Dhainaut, J.; Ciotonea, C.; Dacquin, J.-P.; Royer, S.; Courtois, C. Assembly of SBA-15 into hierarchical porous monoliths replicating polymeric scaffolds. Microporous Mesoporous Mater. 2022, 337, 111908. [Google Scholar] [CrossRef]
- Buchenau, U.; Zorn, R. A relation between fast and slow motions in glassy and liquid selenium. Europhys. Lett. 1992, 18, 523–528. [Google Scholar] [CrossRef]
- Ribeiro, M.C.C. Low-frequency Raman spectra and fragility of imidazolium ionic liquids. J. Chem. Phys. 2010, 133, 24503–24506. [Google Scholar] [CrossRef]
- Malfait, B.; Paccou, L.; Derollez, P.; Guinet, Y.; Hedoux, A. Capabilities of low-wavenumber Raman spectroscopy for analyzing the mechanism of devitrification of molecular glasses. J. Raman Spectrosc. 2019, 50, 1027–1033. [Google Scholar] [CrossRef]
- Guinet, Y.; Paccou, L.; Danede, F.; Willart, J.F.; Derollez, P.; Hédoux, A. Comparison of amorphous states prepared by melt-quenching and cryomilling polymorphs of carbamazépine. Int. J. Pharm. 2016, 509, 305–313. [Google Scholar] [CrossRef]
- Hédoux, A.; Paccou, L.; Guinet, Y.; Willart, J.-F.; Descamps, M. Using the low-frequency Raman spectroscopy to analyze the crystallization of amorphous indomethacin. Eur. J. Pharm. Sci. 2009, 38, 156–164. [Google Scholar] [CrossRef]
- Hédoux, A.; Guinet, Y.; Paccou, L.; Danede, F.; Derollez, P. Polymorphic transformation of anhydrous caffeine upon grinding and hydrostatic pressurizing analyzed by low-frequency Raman spectroscopy. J. Pharm. Sci. 2013, 102, 162–170. [Google Scholar] [CrossRef]
- Inocêncio, S.; Cordeiro, T.; Matos, I.; Danède, F.; Sotomayor, J.C.; Fonseca, I.M.; Correia, N.T.; Corvo, M.C.; Dionísio, M. Ibuprofen incorporated into unmodified and modified mesoporous silica: From matrix synthesis to drug release. Microporous Mesoporous Mater. 2021, 310, 110541. [Google Scholar] [CrossRef]
- Song, S.; Hidajat, K.; Kawi, S. Functionalized SBA-15 materials as carriers for controlled drug delivery: Influence of surface properties on matrix-drug interactions. Langmuir 2005, 21, 9568–9575. [Google Scholar] [CrossRef]
30 Hz | 25 Hz | 20 Hz | 15 Hz | 10 Hz | |
---|---|---|---|---|---|
SBA-15 | 0 | 4.5 | 19.6 | 39.2 | 42.2 |
SBA-15-NH2 | 67.8 | -- | -- | -- | 77.8 |
Milling Frequency (Hz) | Small Particle Sizes (nm) | Big Particle Sizes (nm) | Proportion of Small Particles (%) | Proportion of Big Particles (%) |
---|---|---|---|---|
Un-milled | -- | 470 ± 165 | 0 | 100 |
10 | 95 ± 50 | 405 ± 135 | 20 | 80 |
20 | 125 ± 45 | 335 ± 100 | 50 | 50 |
30 | 110 ± 30 | 305 ± 115 | 65 | 35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moutamenni, B.; Tabary, N.; Mussi, A.; Dhainaut, J.; Ciotonea, C.; Fadel, A.; Paccou, L.; Dacquin, J.-P.; Guinet, Y.; Hédoux, A. Milling-Assisted Loading of Drugs into Mesoporous Silica Carriers: A Green and Simple Method for Obtaining Tunable Customized Drug Delivery. Pharmaceutics 2023, 15, 390. https://doi.org/10.3390/pharmaceutics15020390
Moutamenni B, Tabary N, Mussi A, Dhainaut J, Ciotonea C, Fadel A, Paccou L, Dacquin J-P, Guinet Y, Hédoux A. Milling-Assisted Loading of Drugs into Mesoporous Silica Carriers: A Green and Simple Method for Obtaining Tunable Customized Drug Delivery. Pharmaceutics. 2023; 15(2):390. https://doi.org/10.3390/pharmaceutics15020390
Chicago/Turabian StyleMoutamenni, Basma, Nicolas Tabary, Alexandre Mussi, Jeremy Dhainaut, Carmen Ciotonea, Alexandre Fadel, Laurent Paccou, Jean-Philippe Dacquin, Yannick Guinet, and Alain Hédoux. 2023. "Milling-Assisted Loading of Drugs into Mesoporous Silica Carriers: A Green and Simple Method for Obtaining Tunable Customized Drug Delivery" Pharmaceutics 15, no. 2: 390. https://doi.org/10.3390/pharmaceutics15020390