Pickering Emulsions Enhance Oral Bioavailability of Curcumin Nanocrystals: The Effect of Oil Types
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of CUR-NCs
2.3. Characterization of CUR-NCs
2.4. Screening of Oils
2.4.1. Solubility of CUR
2.4.2. Screening of Oils
2.5. Preparation of IPP-PEs and SO-PEs
2.6. Morphology
2.7. Pharmacokinetics Study
2.8. Determination of CUR in Rat Plasma by HPLC-MS/MS
2.9. In Vitro Lipolysis Study
3. Results and Discussion
3.1. Characterization of CUR-NCs
3.2. Screening of Oil Phase
3.3. Preparation of IPP-PEs and SO-PEs
3.4. Characterization of IPP-PEs and SO-PEs
3.4.1. Size distribution
3.4.2. Microstructures
3.5. Pharmacokinetics Study
3.6. In Vitro Lipolysis Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Davis, M.; Walker, G. Recent Strategies in Spray Drying for the Enhanced Bioavailability of Poorly Water-Soluble Drugs. J. Control. Release 2018, 269, 110–127. [Google Scholar] [PubMed]
- Wang, Y.; Tan, X.; Fan, X.; Zhao, L.; Wang, S.; He, H.; Yin, T.; Zhang, Y.; Tang, X.; Jian, L.; et al. Current Strategies for Oral Delivery of BCS IV Drug Nanocrystals: Challenges, Solutions and Future Trends. Expert Opin. Drug Deliv. 2021, 18, 1211–1228. [Google Scholar] [PubMed]
- Markovic, M.; Zur, M.; Ragatsky, I.; Cvijic, S.; Dahan, A. BCS Class IV Oral Drugs and Absorption Windows: Regional-Dependent Intestinal Permeability of Furosemide. Pharmaceutics 2020, 12, 1175. [Google Scholar] [PubMed]
- Lu, Y.; Qi, J.; Dong, X.; Zhao, W.; Wu, W. The in Vivo Fate of Nanocrystals. Drug Discov. Today 2017, 22, 744–750. [Google Scholar]
- Lv, Y.; Wu, W.; Corpstein, C.D.; Li, T.; Lu, Y. Biological and Intracellular Fates of Drug Nanocrystals through Different Delivery Routes: Recent Development Enabled by Bioimaging and PK Modeling. Adv. Drug Deliv. Rev. 2022, 188, 114466. [Google Scholar]
- Xie, Y.; Shi, B.; Xia, F.; Qi, J.; Dong, X.; Zhao, W.; Li, T.; Wu, W.; Lu, Y. Epithelia Transmembrane Transport of Orally Administered Ultrafine Drug Particles Evidenced by Environment Sensitive Fluorophores in Cellular and Animal Studies. J. Control. Release 2018, 270, 65–75. [Google Scholar]
- Shen, C.; Yang, Y.; Shen, B.; Xie, Y.; Qi, J.; Dong, X.; Zhao, W.; Zhu, W.; Wu, W.; Yuan, H.; et al. Self-Discriminating Fluorescent Hybrid Nanocrystals: Efficient and Accurate Tracking of Translocation Via Oral Delivery. Nanoscale 2017, 10, 436–450. [Google Scholar]
- Lu, Y.; Lv, Y.; Li, T. Hybrid Drug Nanocrystals. Adv. Drug Deliv. Rev. 2019, 143, 115–133. [Google Scholar]
- Oshi, M.A.; Lee, J.; Naeem, M.; Hasan, N.; Kim, J.; Kim, H.J.; Lee, E.H.; Jung, Y.; Yoo, J.W. Curcumin Nanocrystal/Ph-Responsive Polyelectrolyte Multilayer Core-Shell Nanoparticles for Inflammation-Targeted Alleviation of Ulcerative Colitis. Biomacromolecules 2020, 21, 3571–3581. [Google Scholar]
- Huang, W.; Fang, Z.; Zheng, X.; Qi, J.; Wu, W.; Lu, Y. Green and Controllable Fabrication of Nanocrystals from Ionic Liquids. Chin. Chem. Lett. 2022, 33, 4079–4083. [Google Scholar]
- Lee, H.; Bang, J.B.; Na, Y.G.; Lee, J.Y.; Cho, C.W.; Baek, J.S.; Lee, H.K. Development and Evaluation of Tannic Acid-Coated Nanosuspension for Enhancing Oral Bioavailability of Curcumin. Pharmaceutics 2021, 13, 1460. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Zhao, J.; Ding, Y.; Li, L. A Cost-Effective Method to Prepare Curcumin Nanosuspensions with Enhanced Oral Bioavailability. J. Colloid Interface Sci. 2017, 485, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Rachmawati, H.; Pradana, A.T.; Safitri, D.; Adnyana, I.K. Multiple Functions of D-α-Tocopherol Polyethylene Glycol 1000 Succinate (TPGS) as Curcumin Nanoparticle Stabilizer: In Vivo Kinetic Profile and Anti-Ulcerative Colitis Analysis in Animal Model. Pharmaceutics 2017, 9, 24. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, M.C.; Carbone, C.; Souto, E.B. Beyond Liposomes: Recent Advances on Lipid Based Nanostructures for Poorly Soluble/Poorly Permeable Drug Delivery. Prog. Lipid Res. 2017, 68, 1–11. [Google Scholar] [CrossRef]
- Liu, R.; Luo, C.; Pang, Z.Q.; Zhang, J.M.; Ruan, S.B.; Wu, M.Y.; Wang, L.; Sun, T.; Li, N.; Han, L.; et al. Advances of Nanoparticles as Drug Delivery Systems for Disease Diagnosis and Treatment. Chin. Chem. Lett. 2023, 34, 107518. [Google Scholar] [CrossRef]
- Zheng, X.; Fang, Z.; Huang, W.; Qi, J.; Dong, X.; Zhao, W.; Wu, W.; Lu, Y. Ionic Co-Aggregates (Icas) Based Oral Drug Delivery: Solubilization and Permeability Improvement. Acta Pharm. Sin. B 2022, 12, 3972–3985. [Google Scholar] [CrossRef] [PubMed]
- Porter, C.J.; Trevaskis, N.L.; Charman, W.N. Lipids and Lipid-Based Formulations: Optimizing the Oral Delivery of Lipophilic Drugs. Nat. Rev. Drug Discov. 2007, 6, 231–248. [Google Scholar] [CrossRef]
- Kalepu, S.; Manthina, M.; Padavala, V. Oral Lipid-Based Drug Delivery Systems: An Overview. Acta Pharm. Sin. B 2013, 3, 361–372. [Google Scholar] [CrossRef]
- Kossena, G.A.; Charman, W.N.; Boyd, B.J.; Dunstan, D.E.; Porter, C.J.H. Probing Drug Solubilization Patterns in the Gastrointestinal Tract after Administration of Lipid-Based Delivery Systems: A Phase Diagram Approach. J. Pharm. Sci. 2004, 93, 332–348. [Google Scholar] [CrossRef]
- Feeney, O.M.; Crum, M.F.; McEvoy, C.L.; Trevaskis, N.L.; Williams, H.D.; Pouton, C.W.; Charman, W.N.; Bergstrom, C.A.S.; Porter, C.J.H. 50 Years of Oral Lipid-Based Formulations: Provenance, Progress and Future Perspectives. Adv. Drug Deliv. Rev. 2016, 101, 167–194. [Google Scholar]
- Qi, J.; Zhuang, J.; Lu, Y.; Dong, X.; Zhao, W.; Wu, W. In Vivo Fate of Lipid-Based Nanoparticles. Drug Discov. Today 2017, 22, 166–172. [Google Scholar] [CrossRef]
- Carriere, F. Impact of Gastrointestinal Lipolysis on Oral Lipid-Based Formulations and Bioavailability of Lipophilic Drugs. Biochimie 2016, 125, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Yu, Q.; Chen, Z.; Wu, W.; Zhu, Q.; Lu, Y. In Vitro and in Vivo Correlation for Lipid-Based Formulations: Current Status and Future Perspectives. Acta Pharm. Sin. B 2021, 11, 2469–2487. [Google Scholar] [CrossRef] [PubMed]
- Tai, Z.; Huang, Y.; Zhu, Q.; Wu, W.; Yi, T.; Chen, Z.; Lu, Y. Utility of Pickering Emulsions in Improved Oral Drug Delivery. Drug Discov. Today 2020, 25, 2038–2045. [Google Scholar] [CrossRef]
- Murray, B.S. Pickering Emulsions for Food and Drinks. Curr. Opin. Food Sci. 2019, 27, 57–63. [Google Scholar] [CrossRef]
- Schrade, A.; Landfester, K.; Ziener, U. Pickering-Type Stabilized Nanoparticles by Heterophase Polymerization. Chem. Soc. Rev. 2013, 42, 6823–6839. [Google Scholar] [CrossRef]
- Sarkar, A.; Zhang, S.; Holmes, M.; Ettelaie, R. Colloidal Aspects of Digestion of Pickering Emulsions: Experiments and Theoretical Models of Lipid Digestion Kinetics. Adv. Colloid Interface Sci. 2019, 263, 195–211. [Google Scholar] [CrossRef] [PubMed]
- Sufi-Maragheh, P.; Nikfarjam, N.; Deng, Y.; Taheri-Qazvini, N. Pickering Emulsion Stabilized by Amphiphilic Ph-Sensitive Starch Nanoparticles as Therapeutic Containers. Colloids Surf. B Biointerfaces 2019, 181, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Yi, T.; Liu, C.; Zhang, J.; Wang, F.; Wang, J.; Zhang, J. A New Drug Nanocrystal Self-Stabilized Pickering Emulsion for Oral Delivery of Silybin. Eur. J. Pharm. Sci. 2017, 96, 420–427. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Wang, S.; Yi, T. Development of an Oral Compound Pickering Emulsion Composed of Nanocrystals of Poorly Soluble Ingredient and Volatile Oils from Traditional Chinese Medicine. Pharmaceutics 2018, 10, 170. [Google Scholar] [CrossRef]
- Salehi, B.; Stojanovic-Radic, Z.; Matejic, J.; Sharifi-Rad, M.; Anil Kumar, N.V.; Martins, N.; Sharifi-Rad, J. The Therapeutic Potential of Curcumin: A Review of Clinical Trials. Eur. J. Med. Chem. 2019, 163, 527–545. [Google Scholar] [CrossRef] [PubMed]
- Lal, J.; Gupta, S.K.; Thavaselvam, D.; Agarwal, D.D. Synthesis and Pharmacological Activity Evaluation of Curcumin Derivatives. Chin. Chem. Lett. 2016, 27, 1067–1072. [Google Scholar] [CrossRef]
- Yang, K.Y.; Lin, L.C.; Tseng, T.Y.; Wang, S.C.; Tsai, T.H. Oral Bioavailability of Curcumin in Rat and the Herbal Analysis from Curcuma Longa by LC-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007, 853, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Onoue, S.; Takahashi, H.; Kawabata, Y.; Seto, Y.; Hatanaka, J.; Timmermann, B.; Yamada, S. Formulation Design and Photochemical Studies on Nanocrystal Solid Dispersion of Curcumin with Improved Oral Bioavailability. J. Pharm. Sci. 2010, 99, 1871–1881. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xiao, P.; Lin, L.W.; Guo, F.; Wang, Q.Y.; Piao, Y.Z.; Diao, G.W. Study of a Water-Soluble Supramolecular Complex of Curcumin and β-Cyclodextrin Polymer with Electrochemical Property and Potential Anti-Cancer Activity. Chin. Chem. Lett. 2022, 33, 4043–4047. [Google Scholar] [CrossRef]
- Kurd, S.K.; Smith, N.; VanVoorhees, A.; Troxel, A.B.; Badmaev, V.; Seykora, J.T.; Gelfand, J.M. Oral Curcumin in the Treatment of Moderate to Severe Psoriasis Vulgaris: A Prospective Clinical Trial. J. Am. Acad. Dermatol. 2008, 58, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Antiga, E.; Bonciolini, V.; Volpi, W.; Del Bianco, E.; Caproni, M. Oral Curcumin (Meriva) Is Effective as an Adjuvant Treatment and Is Able to Reduce IL-22 Serum Levels in Patients with Psoriasis Vulgaris. Biomed Res. Int. 2015, 2015, 283634. [Google Scholar] [CrossRef] [PubMed]
- Hegde, M.; Girisa, S.; BharathwajChetty, B.; Vishwa, R.; Kunnumakkara, A.B. Curcumin Formulations for Better Bioavailability: What We Learned from Clinical Trials Thus Far? ACS Omega 2023, 8, 10713–10746. [Google Scholar] [CrossRef]
- Shi, T.; Lv, Y.; Huang, W.; Fang, Z.; Qi, J.; Chen, Z.; Zhao, W.; Wu, W.; Lu, Y. Enhanced Transdermal Delivery of Curcumin Nanosuspensions: A Mechanistic Study Based on Co-Localization of Particle and Drug Signals. Int. J. Pharm. 2020, 588, 119737. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Tong, J.F.; Xu, Z.L.; Wei, P.P.; Xu, L.; Wan, Q.; Huang, Y.H.; He, X.L.; Yang, J.Y.; Shao, H.B.; et al. Soybean C2H2-Type Zinc Finger Protein GmZFP3 with Conserved QALGGH Motif Negatively Regulates Drought Responses in Transgenic Arabidopsis. Front. Plant Sci. 2016, 7, 325. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, H.; Zheng, T.; Liu, Q.; Zhu, J.; Huang, Q. Evaluation of Oral Bioaccessibility of Aged Citrus Peel Extracts Encapsulated in Different Lipid-Based Systems: A Comparison Study Using Different in Vitro Digestion Models. J. Agric. Food Chem. 2020, 68, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liang, H.; Li, J.; Li, B. Fabrication of Processable and Edible High Internal Phase Pickering Emulsions Stabilized with Gliadin/Sodium Carboxymethyl Cellulose Colloid Particles. Food Hydrocolloid. 2022, 128, 107571. [Google Scholar] [CrossRef]
Solvent | Solubility |
---|---|
SO | 124.19 ± 2.40 (μg/g) |
glyceryl monooleate | 217.66 ± 5.34 (μg/g) |
Capmul MCM | 1323.03 ± 25.87 (μg/g) |
Captex 355 | 557.78 ± 10.23 (μg/g) |
sesame oil | 42.49 ± 1.02 (μg/g) |
IPP | 158.06 ± 3.44 (μg/g) |
FaSSIF | 2.92 ± 0.02 (μg/mL) |
CUR-NCs | SO-PEs | IPP-PEs | |
---|---|---|---|
Tmax (h) | 0.50 ± 0.24 | 3.00 ± 0.00 | 0.75 ± 0.25 |
Cmax (μg/L) | 21.18 ± 2.82 | 17.43 ± 2.69 | 26.78 ± 3.54 * |
AUC0–8 (μg/L*h) | 34.22 ± 7.56 | 52.04 ± 7.58 * | 59.15 ± 8.36 *** |
Frel (%) | / | 152.07 | 172.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheng, Y.; Yu, Q.; Huang, Y.; Zhu, Q.; Chen, Z.; Wu, W.; Yi, T.; Lu, Y. Pickering Emulsions Enhance Oral Bioavailability of Curcumin Nanocrystals: The Effect of Oil Types. Pharmaceutics 2023, 15, 1341. https://doi.org/10.3390/pharmaceutics15051341
Sheng Y, Yu Q, Huang Y, Zhu Q, Chen Z, Wu W, Yi T, Lu Y. Pickering Emulsions Enhance Oral Bioavailability of Curcumin Nanocrystals: The Effect of Oil Types. Pharmaceutics. 2023; 15(5):1341. https://doi.org/10.3390/pharmaceutics15051341
Chicago/Turabian StyleSheng, Yuze, Qin Yu, Yanping Huang, Quangang Zhu, Zhongjian Chen, Wei Wu, Tao Yi, and Yi Lu. 2023. "Pickering Emulsions Enhance Oral Bioavailability of Curcumin Nanocrystals: The Effect of Oil Types" Pharmaceutics 15, no. 5: 1341. https://doi.org/10.3390/pharmaceutics15051341
APA StyleSheng, Y., Yu, Q., Huang, Y., Zhu, Q., Chen, Z., Wu, W., Yi, T., & Lu, Y. (2023). Pickering Emulsions Enhance Oral Bioavailability of Curcumin Nanocrystals: The Effect of Oil Types. Pharmaceutics, 15(5), 1341. https://doi.org/10.3390/pharmaceutics15051341