Core-Shell Structured PLGA Particles Having Highly Controllable Ketoprofen Drug Release
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of the Drug-Free and KP-Loaded PLGA NPs
2.2.2. Methods for Size, Size Distribution and Structural Characterizations
2.2.3. In Vitro Release Studies
3. Results
3.1. Influence of the Initial Synthesis Conditions on the Drug-Free PLGA50 Particles
3.2. Characterization of the KP-Loaded PLGA NPs
3.3. In Vitro Drug Release Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khizar, S.; Alrushaid, N.; Alam Khan, F.; Zine, N.; Jaffrezic-Renault, N.; Errachid, A.; Elaissari, A. Nanocarriers Based Novel and Effective Drug Delivery System. Int. J. Pharm. 2023, 632, 122570. [Google Scholar] [CrossRef]
- Cao, J.; Choi, J.S.; Oshi, M.A.; Lee, J.; Hasan, N.; Kim, J.; Yoo, J.W. Development of PLGA Micro- and Nanorods with High Capacity of Surface Ligand Conjugation for Enhanced Targeted Delivery. Asian J. Pharm. Sci. 2019, 14, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Kovács, A.N.; Varga, N.; Juhász, Á.; Csapó, E. Serum Protein-Hyaluronic Acid Complex Nanocarriers: Structural Characterisation and Encapsulation Possibilities. Carbohydr. Polym. 2021, 251, 117047. [Google Scholar] [CrossRef]
- Liu, P.; Yu, H.; Sun, Y.; Zhu, M.; Duan, Y. A MPEG-PLGA-b-PLL Copolymer Carrier for Adriamycin and SiRNA Delivery. Biomaterials 2012, 33, 4403–4412. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Sharma, N.; Pathak, M.; Agrawala, P.K.; Basu, M.; Ojha, H. Nanotechnology-Based Drug Delivery Systems: Challenges and Opportunities. In Drug Targeting and Stimuli Sensitive Drug Delivery Systems; Elsevier: Amsterdam, The Netherlands, 2018; pp. 39–79. [Google Scholar] [CrossRef]
- Tyler, B.; Gullotti, D.; Mangraviti, A.; Utsuki, T.; Brem, H. Polylactic Acid (PLA) Controlled Delivery Carriers for Biomedical Applications. Adv. Drug Deliv. Rev. 2016, 107, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Armentano, I.; Bitinis, N.; Fortunati, E.; Mattioli, S.; Rescignano, N.; Verdejo, R.; Lopez-Manchado, M.A.; Kenny, J.M. Multifunctional Nanostructured PLA Materials for Packaging and Tissue Engineering. Prog. Polym. Sci. 2013, 38, 1720–1747. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, Y.; Guo, S.; Huang, W. Tyrosine Kinase Inhibitor Loaded PCL Microspheres Prepared by S/O/W Technique Using Ethanol as Pretreatment Agent. Int. J. Pharm. 2009, 369, 19–23. [Google Scholar] [CrossRef]
- Brzeziński, M.; Socka, M.; Makowski, T.; Kost, B.; Cieślak, M.; Królewska-Golińska, K. Microfluidic-Assisted Nanoprecipitation of Biodegradable Nanoparticles Composed of PTMC/PCL (Co)Polymers, Tannic Acid and Doxorubicin for Cancer Treatment. Colloids Surf. B Biointerfaces 2021, 201, 111598. [Google Scholar] [CrossRef]
- Cherng, J.Y.; Hou, T.Y.; Shih, M.F.; Talsma, H.; Hennink, W.E. Polyurethane-Based Drug Delivery Systems. Int. J. Pharm. 2013, 450, 145–162. [Google Scholar] [CrossRef]
- Perinelli, D.R.; Cespi, M.; Bonacucina, G.; Palmieri, G.F. PEGylated Polylactide (PLA) and Poly (Lactic-Co-Glycolic Acid) (PLGA) Copolymers for the Design of Drug Delivery Systems. J. Pharm. Investig. 2019, 49, 443–458. [Google Scholar] [CrossRef]
- Beig, A.; Ackermann, R.; Wang, Y.; Schutzman, R.; Schwendeman, S.P. Minimizing the Initial Burst of Octreotide Acetate from Glucose Star PLGA Microspheres Prepared by the Solvent Evaporation Method. Int. J. Pharm. 2022, 624, 121842. [Google Scholar] [CrossRef]
- Iván Martínez-Muñoz, O.; Elizabeth Mora-Huertas, C. Nanoprecipitation Technology to Prepare Carrier Systems of Interest in Pharmaceutics: An Overview of Patenting. Int. J. Pharm. 2022, 614, 121440. [Google Scholar] [CrossRef] [PubMed]
- Betancourt, T.; Brown, B.; Brannon-Peppas, L. Doxorubicin-Loaded PLGA Nanoparticles by Nanoprecipitation: Preparation, Characterization and in Vitro Evaluation. Future Med. 2007, 2, 219–232. [Google Scholar] [CrossRef]
- Kizilbey, K. Optimization of Rutin-Loaded PLGA Nanoparticles Synthesized by Single-Emulsion Solvent Evaporation Method. ACS Omega 2019, 4, 555–562. [Google Scholar] [CrossRef]
- Szczęch, M.; Szczepanowicz, K. Polymeric Core-Shell Nanoparticles Prepared by Spontaneous Emulsification Solvent Evaporation and Functionalized by the Layer-by-Layer Method. Nanomaterials 2020, 10, 496. [Google Scholar] [CrossRef] [Green Version]
- Hlaing, S.P.; Cao, J.; Lee, J.; Kim, J.; Saparbayeva, A.; Kwak, D.; Kim, H.; Hwang, S.; Yun, H.; Moon, H.R.; et al. Hyaluronic Acid-Conjugated PLGA Nanoparticles Alleviate Ulcerative Colitis via CD44-Mediated Dual Targeting to Inflamed Colitis Tissue and Macrophages. Pharmaceutics 2022, 14, 2118. [Google Scholar] [CrossRef]
- Arpagaus, C. PLA/PLGA Nanoparticles Prepared by Nano Spray Drying. J. Pharm. Investig. 2019, 49, 405–426. [Google Scholar] [CrossRef] [Green Version]
- Nicolas, J.; Mura, S.; Brambilla, D.; Mackiewicz, N.; Couvreur, P. Design, Functionalization Strategies and Biomedical Applications of Targeted Biodegradable/Biocompatible Polymer-Based Nanocarriers for Drug Delivery. Chem. Soc. Rev. 2013, 42, 1147–1235. [Google Scholar] [CrossRef]
- Kluge, J.; Fusaro, F.; Mazzotti, M.; Muhrer, G. Production of PLGA Micro- and Nanocomposites by Supercritical Fluid Extraction of Emulsions: II. Encapsulation of Ketoprofen. J. Supercrit. Fluids 2009, 50, 336–343. [Google Scholar] [CrossRef]
- Astete, C.E.; Sabliov, C.M. Synthesis and Characterization of PLGA Nanoparticles. J. Biomater. Sci. Polym. Ed. 2012, 17, 247–289. [Google Scholar] [CrossRef]
- Feczkó, T.; Tóth, J.; Dósa, G.; Gyenis, J. Influence of Process Conditions on the Mean Size of PLGA Nanoparticles. Chem. Eng. Process. Process Intensif. 2011, 50, 846–853. [Google Scholar] [CrossRef]
- Domínguez-Delgado, C.L.; Fuentes-Prado, E.; Escobar-Chávez, J.J.; Vidal-Romero, G.; Rodríguez-Cruz, I.M.; Díaz-Torres, R. Chitosan and Pluronic® F-127: Pharmaceutical Applications. In Book: Encycl. Biomed. Polym. Polym. Biomater. 2015, 11, 1513–1535. [Google Scholar] [CrossRef]
- Kim, J.; Kwak, S.; Park, M.S.; Rhee, C.H.; Yang, G.H.; Lee, J.; Son, W.C.; Kang, W.H. Safety Verification for Polysorbate 20, Pharmaceutical Excipient for Intramuscular Administration, in Sprague-Dawley Rats and New Zealand White Rabbits. PLoS ONE 2021, 16, e0256869. [Google Scholar] [CrossRef]
- Kantor, T.G. Ketoprofen: A Review of Its Pharmacologic and Clinical Properties. Pharmacother. J. Hum. Pharmacol. Drug Ther. 1986, 6, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Corrigan, O.I.; Li, X. Quantifying Drug Release from PLGA Nanoparticulates. Eur. J. Pharm. Sci. 2009, 37, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Zhang, X.; Sun, X.; Long, C.; Sun, F.; Liu, J.; Li, X.; Lee, R.J.; Liu, N.; Li, Y.; et al. Ketoprofen and MicroRNA-124 Co-Loaded Poly (Lactic-Co-Glycolic Acid) Microspheres Inhibit Progression of Adjuvant-Induced Arthritis in Rats. Int. J. Pharm. 2018, 552, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Gavini, E.; Sanna, V.; Juliano, C.; Giunchedi, P. Compressed Biodegradable Matrices of Spray-Dried PLGA Microspheres for the Modified Release of Ketoprofen. J. Microencapsul. 2003, 20, 193–201. [Google Scholar] [CrossRef]
- Varga, N.; Hornok, V.; Janovák, L.; Dékány, I.; Csapó, E. The Effect of Synthesis Conditions and Tunable Hydrophilicity on the Drug Encapsulation Capability of PLA and PLGA Nanoparticles. Colloids Surf. B Biointerfaces 2019, 176, 212–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varga, N.; Turcsânyi, Á.; Hornok, V.; Csapó, E. Vitamin E-Loaded PLA- and PLGA-Based Core-Shell Nanoparticles: Synthesis, Structure Optimization and Controlled Drug Release. Pharmaceutics 2019, 11, 357. [Google Scholar] [CrossRef] [Green Version]
- Varga, N.; Seres, L.; Kovács, N.A.; Turcsányi, Á.; Juhász, Á.; Csapó, E. Serum Albumin/Hyaluronic Acid Nanoconjugate: Evaluation of Concentration-Dependent Structural Changes to Form an Efficient Drug Carrier Particle. Int. J. Biol. Macromol. 2022, 220, 1523–1531. [Google Scholar] [CrossRef] [PubMed]
- Janovák, L.; Turcsányi, Á.; Bozó, É.; Deák, Á.; Mérai, L.; Sebők, D.; Juhász, Á.; Csapó, E.; Abdelghafour, M.M.; Farkas, E.; et al. Preparation of Novel Tissue Acidosis-Responsive Chitosan Drug Nanoparticles: Characterization and in Vitro Release Properties of Ca2+ Channel Blocker Nimodipine Drug Molecules. Eur. J. Pharm. Sci. 2018, 123, 79–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deepika, M.S.; Thangam, R.; Sheena, T.S.; Vimala, R.T.V.; Sivasubramanian, S.; Jeganathan, K.; Thirumurugan, R. Dual Drug Loaded PLGA Nanospheres for Synergistic Efficacy in Breast Cancer Therapy. Mater. Sci. Eng. C 2019, 103, 109716. [Google Scholar] [CrossRef]
- Lenik, J.; Łyszczek, R. A Potentiometric Sensor for Ketoprofen Based on a β-Cyclodextrin Derivative. J. Anal. Chem. 2022, 77, 246–256. [Google Scholar] [CrossRef]
- Choi, S.-H.; Kim, S.-Y.; Ryoo, J.J.; Park, J.Y.; Lee, K.-P. FT-Raman and FT-IR Spectra of the Non-Steroidal Anti-Inflammatory Drug Ketoprofen Included in Cyclodextrins. Anal. Sci. 2002, 17, i785–i788. [Google Scholar] [CrossRef]
- Shahzad, Y.; Saeed, S.; Ghori, M.U.; Mahmood, T.; Yousaf, A.M.; Jamshaid, M.; Sheikh, R.; Rizvi, S.A.A. Influence of Polymer Ratio and Surfactants on Controlled Drug Release from Cellulosic Microsponges. Int. J. Biol. Macromol. 2018, 109, 963–970. [Google Scholar] [CrossRef]
- Ritger, P.L.; Peppas, N.A. A Simple Equation for Description of Solute Release I. Fickian and Non-Fickian Release from Non-Swellable Devices in the Form of Slabs, Spheres, Cylinders or Discs. J. Control. Release 1987, 5, 23–36. [Google Scholar] [CrossRef]
cKP (mg/mL) | dDLS ± SD (nm) | PDI ± SD | EE ± SD (%) | DL ± SD (%) | |
---|---|---|---|---|---|
PLUR | 0.0 | 149 ± 3 | 0.144 ± 0.054 | - | - |
2.5 | 195 ± 2 | 0.087 ± 0.049 | 14.5 ± 1.1 | 3.5 ± 0.3 | |
5.0 | 212 ± 6 | 0.106 ± 0.074 | 18.2 ± 1.4 | 8.3 ± 0.6 | |
10.0 | 222 ± 4 | 0.101 ± 0.015 | 37.0 ± 3.7 | 26.9 ± 2.0 | |
15.0 | 226 ± 5 | 0.118 ± 0.055 | 43.9 ± 5.3 | 39.6 ± 2.9 | |
TWEEN | 0.0 | 139 ± 2 | 0.076 ± 0.030 | - | - |
2.5 | 187 ± 3 | 0.126 ± 0.051 | 12.2 ± 0.9 | 3.0 ± 0.2 | |
5.0 | 198 ± 4 | 0.131 ± 0.057 | 14.3 ± 1.1 | 6.7 ± 0.5 | |
10.0 | 208 ± 2 | 0.140 ± 0.055 | 61.9 ± 7.3 | 38.2 ± 2.8 | |
15.0 | 225 ± 9 | 0.203 ± 0.076 | 28.3 ± 2.9 | 29.7 ± 2.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varga, N.; Bélteki, R.; Juhász, Á.; Csapó, E. Core-Shell Structured PLGA Particles Having Highly Controllable Ketoprofen Drug Release. Pharmaceutics 2023, 15, 1355. https://doi.org/10.3390/pharmaceutics15051355
Varga N, Bélteki R, Juhász Á, Csapó E. Core-Shell Structured PLGA Particles Having Highly Controllable Ketoprofen Drug Release. Pharmaceutics. 2023; 15(5):1355. https://doi.org/10.3390/pharmaceutics15051355
Chicago/Turabian StyleVarga, Norbert, Rita Bélteki, Ádám Juhász, and Edit Csapó. 2023. "Core-Shell Structured PLGA Particles Having Highly Controllable Ketoprofen Drug Release" Pharmaceutics 15, no. 5: 1355. https://doi.org/10.3390/pharmaceutics15051355
APA StyleVarga, N., Bélteki, R., Juhász, Á., & Csapó, E. (2023). Core-Shell Structured PLGA Particles Having Highly Controllable Ketoprofen Drug Release. Pharmaceutics, 15(5), 1355. https://doi.org/10.3390/pharmaceutics15051355