Comprehensive Therapeutic Approaches to Tuberculous Meningitis: Pharmacokinetics, Combined Dosing, and Advanced Intrathecal Therapies
Abstract
:1. Introduction
1.1. Physiology of BBB and CSF
1.2. Physiological Factors Influencing IT-PK
1.3. Advancing IT Therapy for TBM: Beyond Physiological Barriers to PK Optimization
2. Materials and Method
3. Results
3.1. PK of Systemic Anti-TB Drug in CSF: General Overview, Importance, and Challenges
3.1.1. PK of RIF in CSF
3.1.2. PK of INH in CSF
3.1.3. Comparative PK with Other Anti-TB Drugs in CSF
3.2. Clinical Experience and Evidence Supports Concomitant IT/IVT Anti-TB Effectiveness and Safety
3.3. Optimization of IT Therapeutic Regimens of RIF and INH in the Treatment of TBM
3.4. Comparative Analysis of Systemic Treatment versus Concomitant IT-Anti-TB Therapy
Drugs | Disease | Pts | Dosage and Regimens | Efficacy | Toxicity/Side Effect | References |
---|---|---|---|---|---|---|
INH | TBM | 12 | 10–20 mg/d IVT | Cured | Convulsion 1, partial optic atrophy 1 | Sifontes, J. et al., 1955 [105] |
TBM | 18 | 25–50 mg IT for 1~119 days | Cured | Hemiplegia 2, etc. | Swift, P. et al., 1956 [107] | |
TBM | 1 | 35–37 mg IT every 3 days | Cured | Hepatotoxicity | Daielides, I., 1983 [108] | |
TBM | 23 | 100 mg/d or qod IT based on the severity | Cured | 8 pts mild brain hernia rapidly improved | Chen, Y. et al., 1996 [24,125] | |
TBM | 1 | 100 mg, 3x/wk IT. | Cured | No | Takahashi, T., 2003 [109] | |
TBMH | 12 | 5–20 mg one time every 2–3 days | 9 cured, 1 Pt died, 2 Pts not cured | 2 pts disability | Lin, J. et al., 2012 [110], | |
TBM | 1 | 100 mg, 3x/wk, tapered to 1x/wk upon symptom improvement. | Cured | Mild aphasia, 1 pts hemi-paresis | Nakatani, Y et al., 2017 [111] | |
TBM | 10 | 100 mg/d IT | Cured | One patient, hemiparesis | Li, D. et al., 2017 [112] | |
RIF | F.M | 3 | 2–5 mg/d, IVT for 10 days (2 patients) or 10 wks (others). | Cured | Transient Jaundice | Lee, E. et al., 1976 [106] |
F.M | 7 | 2–5 mg/d, IVT | Cured | Transient Jaundice | Lee, E. et al., 1977 [119] | |
F.M | 1 | 5 mg 1x/d, IVT/ for 22 days | Cured | No | Rios, I., 1978 [120] | |
TBM | 1 | 5 mg/d, IVT for 7 days, then 3 mg qod for a total of 63 days. | Cured | No | Dajez, P et al., 1981 [22] | |
F.M | 9 | 3 mg/kg/d, IVT for at least 10 days | 5 cured, 2 died of other DS, and 2 succumbed. | No | Boo, N. et al., 1989 [121] | |
F.M | 2 | 5 mg/kg/d, IVT for 7–10 days | Cured | No | Bruun, B. et al., 1989 [122] | |
TBM | 1 | 5 mg/d IVT for 50 days | Cured | No | Vincken, W et al., 1992 [23] | |
TBM | 1 | 600 mg infusion 1x for 4 h, IT | Inadvertent Inj. | No | Senbaga, N et al., 2005 [123] | |
LVX/ AMK | MDR- TBM | 1 | 1.5 mg LVX and 5 mg AMK qod/IT | Cured | Mild; Insomnia and Myalgia | Berning, S.E. et al., 2001 [25] |
3.5. Adverse Events and Risks of IT/IVT Administration of Anti-TB Drugs
4. Discussion
4.1. PK Properties of Anti-TB Drugs
4.2. The Clinical Significance of Concurrent IT/IVT Therapy
4.2.1. Concurrent IT/IVT Therapy of Anti-TB Drugs
4.2.2. Concurrent IT/IVT Therapy of Non-Anti-TB Antibiotics
4.2.3. TDM and Adverse Effect of IT/IVT Drug Administration
4.3. Strategies for Prolonged IT DDS in TBM
4.3.1. Implantable Device for Prolonged Drug Delivery
4.3.2. Application of NP-Laden Hydrogel for IT-Prolonged Drug Release
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Abbreviations
TBM | Tuberculous Meningitis |
BBB | Blood–Brain Barrier |
CNS | Central Nervous System |
IT | Intrathecal |
IVT | Intraventricular |
CSF | Cerebrospinal Fluid |
TB | Tuberculosis |
PK | Pharmacokinetics |
PD | Pharmacodynamics |
NP | Nanoparticles |
BCSFB | Blood–CSF Barrier |
UI | Uncertainty Interval |
HIV-1 | Human Immunodeficiency Virus type 1 |
RR/MDR-TBM | Rifampicin/Multidrug-Resistant Tuberculous Meningitis |
IV | Intravenous |
MDR | Multidrug-Resistant |
DDS | Drug Delivery Systems |
MW | Molecular Weight |
MIC | Minimal Inhibitory Concentration |
AUC | Area Under Curve |
DILI | Drug-Induced Liver Injury |
EPTB | Extrapulmonary Tuberculosis |
HIV | Human Immunodeficiency Virus |
INH | Isoniazid |
RIF | Rifampicin |
LVX | Levofloxacin |
AMK | Amikacin |
PZA | Pyrazinamide |
ETB | Ethambutol |
PAS | Para-aminosalicylic acid |
RFB | Rifabutin |
CYC | Cycloserine |
LNZ | Linezolid |
CFZ | Clofazimine |
BDQ | Bedaquiline |
Dlm | Delamanid |
CM | Capreomycin |
KAN | Kanamycin |
ETO | Ethionamide |
NEW | Not well established |
DS | Drug sensitive |
Ys | Years |
XDR | Extensively drug-resistant |
CI/F | Clearance over bioavailability |
Vd/F | Volume of distribution over bioavailability |
GOS | Glasgow Outcome Scale |
MRS | Modified Rankin Scale |
R | Resistant |
Mod. | Moderate |
Sus. | Susceptible |
BL | Borderline |
NAT2 | N-acetyltransferase 2 |
MDR-TB | Multidrug-Resistant Tuberculosis |
LMCA | Left Middle Cerebral Artery |
BCSFB | Blood-Cerebrospinal Fluid Barrier |
XDR | Extensively Drug-Resistant |
TDM | Therapeutic Drug Monitoring |
PK-PD | Pharmacokinetic-Pharmacodynamic |
FDA | Food and Drug Administration |
MTB | Mycobacterium tuberculosis |
References
- Marais, S.; Pepper, D.J.; Schutz, C.; Wilkinson, R.J.; Meintjes, G. Presentation and outcome of tuberculous meningitis in a high HIV prevalence setting. PLoS ONE 2011, 6, e20077. [Google Scholar] [CrossRef]
- Mezochow, A.; Thakur, K.; Vinnard, C. Tuberculous Meningitis in Children and Adults: New Insights for an Ancient Foe. Curr. Neurol. Neurosci. Rep. 2017, 17, 85. [Google Scholar] [CrossRef] [PubMed]
- Bourgi, K.; Fiske, C.; Sterling, T.R. Tuberculosis Meningitis. Curr. Infect. Dis. Rep. 2017, 19, 39. [Google Scholar] [CrossRef]
- Navarro-Flores, A.; Fernandez-Chinguel, J.E.; Pacheco-Barrios, N.; Soriano-Moreno, D.R.; Pacheco-Barrios, K. Global morbidity and mortality of central nervous system tuberculosis: A systematic review and meta-analysis. J. Neurol. 2022, 269, 3482–3494. [Google Scholar] [CrossRef] [PubMed]
- Dodd, P.J.; Osman, M.; Cresswell, F.V.; Stadelman, A.M.; Lan, N.H.; Thuong, N.T.T.; Muzyamba, M.; Glaser, L.; Dlamini, S.S.; Seddon, J.A. The global burden of tuberculous meningitis in adults: A modelling study. PLoS Glob. Public. Health 2021, 1, e0000069. [Google Scholar] [CrossRef] [PubMed]
- Manyelo, C.M.; Solomons, R.S.; Walzl, G.; Chegou, N.N. Tuberculous Meningitis: Pathogenesis, Immune Responses, Diagnostic Challenges, and the Potential of Biomarker-Based Approaches. J. Clin. Microbiol. 2021, 59, 10–1128. [Google Scholar] [CrossRef]
- du Preez, K.; Seddon, J.A.; Schaaf, H.S.; Hesseling, A.C.; Starke, J.R.; Osman, M.; Lombard, C.J.; Solomons, R. Global shortages of BCG vaccine and tuberculous meningitis in children. Lancet Glob. Health 2019, 7, e28–e29. [Google Scholar] [CrossRef]
- Cecchini, D.; Ambrosioni, J.; Brezzo, C.; Corti, M.; Rybko, A.; Perez, M.; Poggi, S.; Ambroggi, M. Tuberculous meningitis in HIV-infected and non-infected patients: Comparison of cerebrospinal fluid findings. Int. J. Tuberc. Lung Dis. 2009, 13, 269–271. [Google Scholar] [PubMed]
- Thwaites, G.E.; Duc Bang, N.; Huy Dung, N.; Thi Quy, H.; Thi Tuong Oanh, D.; Thi Cam Thoa, N.; Quang Hien, N.; Tri Thuc, N.; Ngoc Hai, N.; Thi Ngoc Lan, N.; et al. The influence of HIV infection on clinical presentation, response to treatment, and outcome in adults with Tuberculous meningitis. J. Infect. Dis. 2005, 192, 2134–2141. [Google Scholar] [CrossRef]
- Soria, J.; Metcalf, T.; Mori, N.; Newby, R.E.; Montano, S.M.; Huaroto, L.; Ticona, E.; Zunt, J.R. Mortality in hospitalized patients with tuberculous meningitis. BMC Infect. Dis. 2019, 19, 9. [Google Scholar] [CrossRef]
- Wilkinson, R.J.; Rohlwink, U.; Misra, U.K.; van Crevel, R.; Mai, N.T.H.; Dooley, K.E.; Caws, M.; Figaji, A.; Savic, R.; Solomons, R.; et al. Tuberculous meningitis. Nat. Rev. Neurol. 2017, 13, 581–598. [Google Scholar] [CrossRef] [PubMed]
- Cherian, A.; Ajitha, K.C.; Iype, T.; Divya, K.P. Neurotuberculosis: An update. Acta Neurol. Belg. 2021, 121, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.G.; Rohlwink, U.K.; Proust, A.; Figaji, A.A.; Wilkinson, R.J. The pathogenesis of tuberculous meningitis. J. Leukoc. Biol. 2019, 105, 267–280. [Google Scholar] [CrossRef] [PubMed]
- Nataprawira, H.M.; Gafar, F.; Risan, N.A.; Wulandari, D.A.; Sudarwati, S.; Marais, B.J.; Stevens, J.; Alffenaar, J.C.; Ruslami, R. Treatment Outcomes of Childhood Tuberculous Meningitis in a Real-World Retrospective Cohort, Bandung, Indonesia. Emerg. Infect. Dis. 2022, 28, 660–671. [Google Scholar] [CrossRef] [PubMed]
- Chiang, S.S.; Khan, F.A.; Milstein, M.B.; Tolman, A.W.; Benedetti, A.; Starke, J.R.; Becerra, M.C. Treatment outcomes of childhood tuberculous meningitis: A systematic review and meta-analysis. Lancet Infect. Dis. 2014, 14, 947–957. [Google Scholar] [CrossRef]
- Dian, S.; Ganiem, A.R.; van Laarhoven, A. Central nervous system tuberculosis. Curr. Opin. Neurol. 2021, 34, 396–402. [Google Scholar] [CrossRef]
- da Silva Leite, J.M.; Patriota, Y.B.G.; de La Roca, M.F.; Soares-Sobrinho, J.L. New Perspectives in Drug Delivery Systems for the Treatment of Tuberculosis. Curr. Med. Chem. 2022, 29, 1936–1958. [Google Scholar] [CrossRef]
- Calias, P.; Banks, W.A.; Begley, D.; Scarpa, M.; Dickson, P. Intrathecal delivery of protein therapeutics to the brain: A critical reassessment. Pharmacol. Ther. 2014, 144, 114–122. [Google Scholar] [CrossRef]
- Fowler, M.J.; Cotter, J.D.; Knight, B.E.; Sevick-Muraca, E.M.; Sandberg, D.I.; Sirianni, R.W. Intrathecal drug delivery in the era of nanomedicine. Adv. Drug Deliv. Rev. 2020, 165–166, 77–95. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Waqas, M.; Siddiqui, U.T.; Shamim, M.S.; Nathani, K.R.; Jooma, R.; Mehmood, F. Intrathecal and intraventricular antibiotics for postoperative Gram-negative meningitis and ventriculitis. Surg. Neurol. Int. 2017, 8, 226. [Google Scholar] [CrossRef]
- Brotis, A.G.; Churis, I.; Karvouniaris, M. Local complications of adjunct intrathecal antibiotics for nosocomial meningitis associated with gram-negative pathogens: A meta-analysis. Neurosurg. Rev. 2021, 44, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Dajez, P.; Vincken, W.; Lambelin, D.; Noterman, J.; Yourassowski, E.; Telerman-Toppet, N. Intraventricular administration of rifampin for tuberculous meningitis. J. Neurol. 1981, 225, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Vincken, W.; Meysman, M.; Verbeelen, D.; Lauwers, S.; D’Haens, J. Intraventricular rifampicin in severe tuberculous meningo-encephalitis. Eur. Respir. J. 1992, 5, 891–893. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chang, F.; Wang, Z. Treatment of the secondary hydrocephalus of tuberculous meningitis by lateral ventricular drainage and drug injection. Zhonghua Jie He He Hu Xi Za Zhi 1996, 19, 297–299. [Google Scholar] [PubMed]
- Berning, S.E.; Cherry, T.A.; Iseman, M.D. Novel treatment of meningitis caused by multidrug-resistant Mycobacterium tuberculosis with intrathecal levofloxacin and amikacin: Case report. Clin. Infect. Dis. 2001, 32, 643–646. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Guidelines Approved by the Guidelines Review Committee. In Treatment of Tuberculosis: Guidelines; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Nahid, P.; Dorman, S.E.; Alipanah, N.; Barry, P.M.; Brozek, J.L.; Cattamanchi, A.; Chaisson, L.H.; Chaisson, R.E.; Daley, C.L.; Grzemska, M.; et al. Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: Treatment of Drug-Susceptible Tuberculosis. Clin. Infect. Dis. 2016, 63, e147–e195. [Google Scholar] [CrossRef] [PubMed]
- Thwaites, G.E.; van Toorn, R.; Schoeman, J. Tuberculous meningitis: More questions, still too few answers. Lancet Neurol. 2013, 12, 999–1010. [Google Scholar] [CrossRef] [PubMed]
- Thwaites, G.E.; Lan, N.T.; Dung, N.H.; Quy, H.T.; Oanh, D.T.; Thoa, N.T.; Hien, N.Q.; Thuc, N.T.; Hai, N.N.; Bang, N.D.; et al. Effect of antituberculosis drug resistance on response to treatment and outcome in adults with tuberculous meningitis. J. Infect. Dis. 2005, 192, 79–88. [Google Scholar] [CrossRef]
- Thwaites, G.E.; Nguyen, D.B.; Nguyen, H.D.; Hoang, T.Q.; Do, T.T.; Nguyen, T.C.; Nguyen, Q.H.; Nguyen, T.T.; Nguyen, N.H.; Nguyen, T.N.; et al. Dexamethasone for the treatment of tuberculous meningitis in adolescents and adults. N. Engl. J. Med. 2004, 351, 1741–1751. [Google Scholar] [CrossRef]
- Seddon, J.A.; Visser, D.H.; Bartens, M.; Jordaan, A.M.; Victor, T.C.; van Furth, A.M.; Schoeman, J.F.; Schaaf, H.S. Impact of drug resistance on clinical outcome in children with tuberculous meningitis. Pediatr. Infect. Dis. J. 2012, 31, 711–716. [Google Scholar] [CrossRef]
- Fang, M.-T.; Su, Y.-F.; An, H.-R.; Zhang, P.-Z.; Deng, G.-F.; Liu, H.-M.; Mao, Z.; Zeng, J.-F.; Li, G.; Yang, Q.-T.; et al. Decreased mortality seen in rifampicin/multidrug-resistant tuberculous meningitis treated with linezolid in Shenzhen, China. BMC Infect. Dis. 2021, 21, 1015. [Google Scholar] [CrossRef] [PubMed]
- Shapey, J.; Toma, A.; Saeed, S.R. Physiology of cerebrospinal fluid circulation. Curr. Opin. Otolaryngol. Head. Neck Surg. 2019, 27, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Iliff, J.J.; Wang, M.; Liao, Y.; Plogg, B.A.; Peng, W.; Gundersen, G.A.; Benveniste, H.; Vates, G.E.; Deane, R.; Goldman, S.A.; et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 2012, 4, 147ra111. [Google Scholar] [CrossRef] [PubMed]
- Naseri Kouzehgarani, G.; Feldsien, T.; Engelhard, H.H.; Mirakhur, K.K.; Phipps, C.; Nimmrich, V.; Clausznitzer, D.; Lefebvre, D.R. Harnessing cerebrospinal fluid circulation for drug delivery to brain tissues. Adv. Drug Deliv. Rev. 2021, 173, 20–59. [Google Scholar] [CrossRef] [PubMed]
- Nau, R.; Sörgel, F.; Eiffert, H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin. Microbiol. Rev. 2010, 23, 858–883. [Google Scholar] [CrossRef] [PubMed]
- Albanèse, J.; Léone, M.; Bruguerolle, B.; Ayem, M.L.; Lacarelle, B.; Martin, C. Cerebrospinal fluid penetration and pharmacokinetics of vancomycin administered by continuous infusion to mechanically ventilated patients in an intensive care unit. Antimicrob. Agents Chemother. 2000, 44, 1356–1358. [Google Scholar] [CrossRef] [PubMed]
- Lutsar, I.; McCracken, G.H., Jr.; Friedland, I.R. Antibiotic Pharmacodynamics in Cerebrospinal Fluid. Clin. Infect. Dis. 1998, 27, 1117–1129. [Google Scholar] [CrossRef] [PubMed]
- Lin Wu, F.L.; Liu, S.S.; Yang, T.Y.; Win, M.F.; Lin, S.W.; Huang, C.F.; Wang, K.C.; Shen, L.J. A Larger Dose of Vancomycin Is Required in Adult Neurosurgical Intensive Care Unit Patients Due to Augmented Clearance. Ther. Drug Monit. 2015, 37, 609–618. [Google Scholar] [CrossRef]
- Nau, R.; Blei, C.; Eiffert, H. Intrathecal Antibacterial and Antifungal Therapies. Clin. Microbiol. Rev. 2020, 33, 10–1128. [Google Scholar] [CrossRef]
- Courchesne, E.; Chisum, H.J.; Townsend, J.; Cowles, A.; Covington, J.; Egaas, B.; Harwood, M.; Hinds, S.; Press, G.A. Normal brain development and aging: Quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology 2000, 216, 672–682. [Google Scholar] [CrossRef]
- Fleischhack, G.; Jaehde, U.; Bode, U. Pharmacokinetics following intraventricular administration of chemotherapy in patients with neoplastic meningitis. Clin. Pharmacokinet. 2005, 44, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Lebret, A.; Hodel, J.; Rahmouni, A.; Decq, P.; Petit, E. Cerebrospinal fluid volume analysis for hydrocephalus diagnosis and clinical research. Comput. Med. Imaging Graph. 2013, 37, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Gerber, J.; Tumani, H.; Kolenda, H.; Nau, R. Lumbar and ventricular CSF protein, leukocytes, and lactate in suspected bacterial CNS infections. Neurology 1998, 51, 1710–1714. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, W.R.; Young, D.F.; Mehta, B.M. Methotrexate: Distribution in cerebrospinal fluid after intravenous, ventricular and lumbar injections. N. Engl. J. Med. 1975, 293, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, A.B.; McGee, Z.A. Aminoglycoside therapy of gram-negative bacillary meningitis. N. Engl. J. Med. 1975, 293, 1215–1220. [Google Scholar] [CrossRef] [PubMed]
- Ichie, T.; Urano, K.; Suzuki, D.; Okada, T.; Kobayashi, N.; Hayashi, H.; Sugiura, Y.; Yamamura, K.; Sugiyama, T. Influence of cerebral fluid drainage on the pharmacokinetics of vancomycin in neurosurgical patients. Pharmazie 2015, 70, 404–409. [Google Scholar] [PubMed]
- Li, X.; Wang, X.; Wu, Y.; Sun, S.; Chen, K.; Lu, Y.; Wang, Q.; Zhao, Z. Plasma and cerebrospinal fluid population pharmacokinetic modeling and simulation of meropenem after intravenous and intrathecal administration in postoperative neurosurgical patients. Diagn. Microbiol. Infect. Dis. 2019, 93, 386–392. [Google Scholar] [CrossRef]
- Li, X.; Sun, S.; Wang, Q.; Zhao, Z. Population Pharmacokinetics of Combined Intravenous and Local Intrathecal Administration of Meropenem in Aneurysm Patients with Suspected Intracranial Infections After Craniotomy. Eur. J. Drug Metab. Pharmacokinet. 2018, 43, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, C.; Ståhlberg, F.; Thomsen, C.; Henriksen, O.; Herning, M.; Owman, C. Circadian variation in human cerebrospinal fluid production measured by magnetic resonance imaging. Am. J. Physiol. 1992, 262, R20–R24. [Google Scholar] [CrossRef]
- Klein, O.; Demoulin, B.; Jean Auque, R.T.; Audibert, G.; Sainte-Rose, C.; Marchal, J.C.; Marchal, F. Cerebrospinal fluid outflow and intracranial pressure in hydrocephalic patients with external ventricular drainage. Acta Neurol. Scand. 2010, 122, 140–147. [Google Scholar] [CrossRef]
- Muller, A.E.; van Vliet, P.; Koch, B.C.P. Clinical Experience with Off-Label Intrathecal Administration of Selected Antibiotics in Adults: An Overview with Pharmacometric Considerations. Antibiotics 2023, 12, 1291. [Google Scholar] [CrossRef] [PubMed]
- Wright, P.F.; Kaiser, A.B.; Bowman, C.M.; McKee, K.T., Jr.; Trujillo, H.; McGee, Z.A. The pharmacokinetics and efficacy of an aminoglycoside administered into the cerebral ventricles in neonates: Implications for further evaluation of this route of therapy in meningitis. J. Infect. Dis. 1981, 143, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Ooie, T.; Suzuki, H.; Terasaki, T.; Sugiyama, Y. Kinetics of quinolone antibiotics in rats: Efflux from cerebrospinal fluid to the circulation. Pharm. Res. 1996, 13, 1065–1068. [Google Scholar] [CrossRef] [PubMed]
- Reesor, C.; Chow, A.W.; Kureishi, A.; Jewesson, P.J. Kinetics of intraventricular vancomycin in infections of cerebrospinal fluid shunts. J. Infect. Dis. 1988, 158, 1142–1143. [Google Scholar] [CrossRef] [PubMed]
- Imberti, R.; Cusato, M.; Accetta, G.; Marinò, V.; Procaccio, F.; Del Gaudio, A.; Iotti, G.A.; Regazzi, M. Pharmacokinetics of colistin in cerebrospinal fluid after intraventricular administration of colistin methanesulfonate. Antimicrob. Agents Chemother. 2012, 56, 4416–4421. [Google Scholar] [CrossRef] [PubMed]
- Norrby, S.R. Role of cephalosporins in the treatment of bacterial meningitis in adults. Overview with special emphasis on ceftazidime. Am. J. Med. 1985, 79, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Jongmans, C.; Muller, A.E.; Van Den Broek, P.; Cruz De Almeida, B.M.; Van Den Berg, C.; Van Oldenrijk, J.; Bos, P.K.; Koch, B.C.P. An Overview of the Protein Binding of Cephalosporins in Human Body Fluids: A Systematic Review. Front. Pharmacol. 2022, 13, 900551. [Google Scholar] [CrossRef] [PubMed]
- Ziaka, M.; Markantonis, S.L.; Fousteri, M.; Zygoulis, P.; Panidis, D.; Karvouniaris, M.; Makris, D.; Zakynthinos, E. Combined intravenous and intraventricular administration of colistin methanesulfonate in critically ill patients with central nervous system infection. Antimicrob. Agents Chemother. 2013, 57, 1938–1940. [Google Scholar] [CrossRef]
- Nau, R.; Seele, J.; Djukic, M.; Eiffert, H. Pharmacokinetics and pharmacodynamics of antibiotics in central nervous system infections. Curr. Opin. Infect. Dis. 2018, 31, 57–68. [Google Scholar] [CrossRef]
- Ruslami, R.; Gafar, F.; Yunivita, V.; Parwati, I.; Ganiem, A.R.; Aarnoutse, R.E.; Wilffert, B.; Alffenaar, J.C.; Nataprawira, H.M. Pharmacokinetics and safety/tolerability of isoniazid, rifampicin and pyrazinamide in children and adolescents treated for tuberculous meningitis. Arch. Dis. Child. 2022, 107, 70–77. [Google Scholar] [CrossRef]
- Donald, P.R. Antituberculosis drug-induced hepatotoxicity in children. Pediatr. Rep. 2011, 3, e16. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, J.; Heysell, S.K. Understanding pharmacokinetics to improve tuberculosis treatment outcome. Expert. Opin. Drug Metab. Toxicol. 2014, 10, 813–823. [Google Scholar] [CrossRef]
- Pardridge, W.M. Drug transport across the blood-brain barrier. J. Cereb. Blood Flow. Metab. 2012, 32, 1959–1972. [Google Scholar] [CrossRef]
- Sullins, A.K.; Abdel-Rahman, S.M. Pharmacokinetics of Antibacterial Agents in the CSF of Children and Adolescents. Pediatric Drugs 2013, 15, 93–117. [Google Scholar] [CrossRef] [PubMed]
- Peloquin, C.A.; Jaresko, G.S.; Yong, C.L.; Keung, A.C.; Bulpitt, A.E.; Jelliffe, R.W. Population pharmacokinetic modeling of isoniazid, rifampin, and pyrazinamide. Antimicrob. Agents Chemother. 1997, 41, 2670–2679. [Google Scholar] [CrossRef] [PubMed]
- Donald, P.R. Cerebrospinal fluid concentrations of antituberculosis agents in adults and children. Tuberculosis 2010, 90, 279–292. [Google Scholar] [CrossRef]
- Rastogi, N.; Labrousse, V.; Goh, K.S. In vitro activities of fourteen antimicrobial agents against drug susceptible and resistant clinical isolates of Mycobacterium tuberculosis and comparative intracellular activities against the virulent H37Rv strain in human macrophages. Curr. Microbiol. 1996, 33, 167–175. [Google Scholar] [CrossRef]
- Kohli, M.; Schiller, I.; Dendukuri, N.; Dheda, K.; Denkinger, C.M.; Schumacher, S.G.; Steingart, K.R. Xpert(®) MTB/RIF assay for extrapulmonary tuberculosis and rifampicin resistance. Cochrane Database Syst. Rev. 2018, 8, Cd012768. [Google Scholar] [CrossRef]
- Rifampin. Tuberculosis 2008, 88, 151–154. [CrossRef]
- Sousa, M.; Pozniak, A.; Boffito, M. Pharmacokinetics and pharmacodynamics of drug interactions involving rifampicin, rifabutin and antimalarial drugs. J. Antimicrob. Chemother. 2008, 62, 872–878. [Google Scholar] [CrossRef]
- Cresswell, F.V.; Meya, D.B.; Kagimu, E.; Grint, D.; Te Brake, L.; Kasibante, J.; Martyn, E.; Rutakingirwa, M.; Quinn, C.M.; Okirwoth, M.; et al. High-Dose Oral and Intravenous Rifampicin for the Treatment of Tuberculous Meningitis in Predominantly Human Immunodeficiency Virus (HIV)-Positive Ugandan Adults: A Phase II Open-Label Randomized Controlled Trial. Clin. Infect. Dis. 2021, 73, 876–884. [Google Scholar] [CrossRef] [PubMed]
- Boeree, M.J.; Diacon, A.H.; Dawson, R.; Narunsky, K.; du Bois, J.; Venter, A.; Phillips, P.P.; Gillespie, S.H.; McHugh, T.D.; Hoelscher, M.; et al. A dose-ranging trial to optimize the dose of rifampin in the treatment of tuberculosis. Am. J. Respir. Crit. Care Med. 2015, 191, 1058–1065. [Google Scholar] [CrossRef] [PubMed]
- Curci, G.; Bergamini, N.; Delli Veneri, F.; Ninni, A.; Nitti, V. Half-life of rifampicin after repeated administration of different doses in humans. Chemotherapy 1972, 17, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Nitti, V. Antituberculosis activity of rifampin. Report of studies performed and in progress (1966–1971). Chest 1972, 61, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Svensson, R.J.; Aarnoutse, R.E.; Diacon, A.H.; Dawson, R.; Gillespie, S.H.; Boeree, M.J.; Simonsson, U.S.H. A Population Pharmacokinetic Model Incorporating Saturable Pharmacokinetics and Autoinduction for High Rifampicin Doses. Clin. Pharmacol. Ther. 2018, 103, 674–683. [Google Scholar] [CrossRef] [PubMed]
- Furesz, S.; Scotti, R.; Pallanza, R.; Mapelli, E. Rifampicin: A new rifamycin. 3. Absorption, distribution, and elimination in man. Arzneimittelforschung 1967, 17, 534–537. [Google Scholar] [PubMed]
- Nau, R.; Sörgel, F.; Prange, H.W. Pharmacokinetic optimisation of the treatment of bacterial central nervous system infections. Clin. Pharmacokinet. 1998, 35, 223–246. [Google Scholar] [CrossRef]
- Mezochow, A.; Thakur, K.T.; Zentner, I.; Subbian, S.; Kagan, L.; Vinnard, C. Attainment of target rifampicin concentrations in cerebrospinal fluid during treatment of tuberculous meningitis. Int. J. Infect. Dis. 2019, 84, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Sloan, D.J.; McCallum, A.D.; Schipani, A.; Egan, D.; Mwandumba, H.C.; Ward, S.A.; Waterhouse, D.; Banda, G.; Allain, T.J.; Owen, A.; et al. Genetic Determinants of the Pharmacokinetic Variability of Rifampin in Malawian Adults with Pulmonary Tuberculosis. Antimicrob. Agents Chemother. 2017, 61, 10–1128. [Google Scholar] [CrossRef]
- Jeanes, C.W.; Jessamine, A.G.; Eidus, L. Treatment of chronic drug-resistant pulmonary tuberculosis with rifampin and ethambutol. Can. Med. Assoc. J. 1972, 106, 884–888. [Google Scholar]
- Acocella, G. Clinical pharmacokinetics of rifampicin. Clin. Pharmacokinet. 1978, 3, 108–127. [Google Scholar] [CrossRef] [PubMed]
- Nau, R.; Prange, H.W.; Menck, S.; Kolenda, H.; Visser, K.; Seydel, J.K. Penetration of rifampicin into the cerebrospinal fluid of adults with uninflamed meninges. J. Antimicrob. Chemother. 1992, 29, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Ruslami, R.; Ganiem, A.R.; Dian, S.; Apriani, L.; Achmad, T.H.; van der Ven, A.J.; Borm, G.; Aarnoutse, R.E.; van Crevel, R. Intensified regimen containing rifampicin and moxifloxacin for tuberculous meningitis: An open-label, randomised controlled phase 2 trial. Lancet Infect. Dis. 2013, 13, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Yunivita, V.; Dian, S.; Ganiem, A.R.; Hayati, E.; Hanggono Achmad, T.; Purnama Dewi, A.; Teulen, M.; Meijerhof-Jager, P.; van Crevel, R.; Aarnoutse, R.; et al. Pharmacokinetics and safety/tolerability of higher oral and intravenous doses of rifampicin in adult tuberculous meningitis patients. Int. J. Antimicrob. Agents 2016, 48, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Shang, P.; Xia, Y.; Liu, F.; Wang, X.; Yuan, Y.; Hu, D.; Tu, D.; Chen, Y.; Deng, P.; Cheng, S.; et al. Incidence, clinical features and impact on anti-tuberculosis treatment of anti-tuberculosis drug induced liver injury (ATLI) in China. PLoS ONE 2011, 6, e21836. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, S.; Davis, A.; Stek, C.; Chirehwa, M.; Botha, S.; Daroowala, R.; Bremer, M.; Maxebengula, M.; Koekemoer, S.; Goliath, R.; et al. Plasma Pharmacokinetics of High-Dose Oral versus Intravenous Rifampicin in Patients with Tuberculous Meningitis: A Randomized Controlled Trial. Antimicrob. Agents Chemother. 2021, 65, e0014021. [Google Scholar] [CrossRef]
- Ellard, G.A.; Humphries, M.J.; Allen, B.W. Cerebrospinal fluid drug concentrations and the treatment of tuberculous meningitis. Am. Rev. Respir. Dis. 1993, 148, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Te Brake, L.; Dian, S.; Ganiem, A.R.; Ruesen, C.; Burger, D.; Donders, R.; Ruslami, R.; van Crevel, R.; Aarnoutse, R. Pharmacokinetic/pharmacodynamic analysis of an intensified regimen containing rifampicin and moxifloxacin for tuberculous meningitis. Int. J. Antimicrob. Agents 2015, 45, 496–503. [Google Scholar] [CrossRef]
- Savic, R.M.; Ruslami, R.; Hibma, J.E.; Hesseling, A.; Ramachandran, G.; Ganiem, A.R.; Swaminathan, S.; McIlleron, H.; Gupta, A.; Thakur, K.; et al. Pediatric tuberculous meningitis: Model-based approach to determining optimal doses of the anti-tuberculosis drugs rifampin and levofloxacin for children. Clin. Pharmacol. Ther. 2015, 98, 622–629. [Google Scholar] [CrossRef]
- Davis, A.; Meintjes, G.; Wilkinson, R.J. Treatment of Tuberculous Meningitis and Its Complications in Adults. Curr. Treat. Options Neurol. 2018, 20, 5. [Google Scholar] [CrossRef]
- Liang, Z.; Liao, W.; Chen, Q.; Li, H.; Ye, M.; Zou, J.; Deng, G.; Zhang, P. Pharmacokinetics of Antituberculosis Drugs in Plasma and Cerebrospinal Fluid in a Patient with Pre-Extensive Drug Resistant Tuberculosis Meningitis. Infect. Drug Resist. 2023, 16, 1669–1676. [Google Scholar] [CrossRef] [PubMed]
- Azarmi, M.; Maleki, H.; Nikkam, N.; Malekinejad, H. Transcellular brain drug delivery: A review on recent advancements. Int. J. Pharm. 2020, 586, 119582. [Google Scholar] [CrossRef] [PubMed]
- Pajouhesh, H.; Lenz, G.R. Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2005, 2, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Isoniazid. Tuberculosis 2008, 88, 112–116. [CrossRef] [PubMed]
- Lakshminarayana, S.B.; Huat, T.B.; Ho, P.C.; Manjunatha, U.H.; Dartois, V.; Dick, T.; Rao, S.P. Comprehensive physicochemical, pharmacokinetic and activity profiling of anti-TB agents. J. Antimicrob. Chemother. 2015, 70, 857–867. [Google Scholar] [CrossRef] [PubMed]
- Mitchison, D.A. Role of individual drugs in the chemotherapy of tuberculosis. Int. J. Tuberc. Lung Dis. 2000, 4, 796–806. [Google Scholar]
- Djukic, M.; Munz, M.; Sörgel, F.; Holzgrabe, U.; Eiffert, H.; Nau, R. Overton’s rule helps to estimate the penetration of anti-infectives into patients’ cerebrospinal fluid. Antimicrob. Agents Chemother. 2012, 56, 979–988. [Google Scholar] [CrossRef]
- Shin, S.G.; Roh, J.K.; Lee, N.S.; Shin, J.G.; Jang, I.J.; Park, C.W.; Myung, H.J. Kinetics of isoniazid transfer into cerebrospinal fluid in patients with tuberculous meningitis. J. Korean Med. Sci. 1990, 5, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Myrianthefs, P.; Markantonis, S.L.; Vlachos, K.; Anagnostaki, M.; Boutzouka, E.; Panidis, D.; Baltopoulos, G. Serum and cerebrospinal fluid concentrations of linezolid in neurosurgical patients. Antimicrob. Agents Chemother. 2006, 50, 3971–3976. [Google Scholar] [CrossRef]
- Upton, C.M.; Steele, C.I.; Maartens, G.; Diacon, A.H.; Wiesner, L.; Dooley, K.E. Pharmacokinetics of bedaquiline in cerebrospinal fluid (CSF) in patients with pulmonary tuberculosis (TB). J. Antimicrob. Chemother. 2022, 77, 1720–1724. [Google Scholar] [CrossRef]
- Smith, A.G.C.; Gujabidze, M.; Avaliani, T.; Blumberg, H.M.; Collins, J.M.; Sabanadze, S.; Bakuradze, T.; Avaliani, Z.; Kempker, R.R.; Kipiani, M. Clinical outcomes among patients with tuberculous meningitis receiving intensified treatment regimens. Int. J. Tuberc. Lung Dis. 2021, 25, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Getahun, M.; Blumberg, H.M.; Ameni, G.; Beyene, D.; Kempker, R.R. Minimum inhibitory concentrations of rifampin and isoniazid among multidrug and isoniazid resistant Mycobacterium tuberculosis in Ethiopia. PLoS ONE 2022, 17, e0274426. [Google Scholar] [CrossRef] [PubMed]
- Pellegrino, E.D.; Petrik, F.G.; Horton, R. The treatment of tuberculous meningitis in infants with streptomycin and isonicotinic acid hydrazide (isoniazid); a preliminary report of six patients under the age of two years treated without intrathecal medication. Dis. Chest 1954, 26, 146–165. [Google Scholar] [CrossRef] [PubMed]
- Sifontes, J.E.; Berio, C.L.; Rivera, K.R.; Grana, J. Isoniazid by the intrathecal route in the therapy of tuberculous meningitis. Bol. De La Asoc. Medica De Puerto Rico 1955, 47, 1–19. [Google Scholar]
- Lee, E.L.; Robinson, M.J.; Thong, M.L.; Puthucheary, S.D. Rifamycin in neonatal flavobacteria meningitis. Arch. Dis. Child. 1976, 51, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Swift, P.N. Intrathecal isoniazid in tuberculous meningitis. Arch. Dis. Child. 1956, 31, 328–332. [Google Scholar] [CrossRef]
- Danielides, I.C.; Constantoulakis, M.; Daikos, G.K. Hepatitis on high dose isoniazid: Reintroduction of the drug in severe tuberculous meningitis. Am. J. Gastroenterol. 1983, 78, 378. [Google Scholar]
- Takahashi, T.; Ogawa, K.; Sawada, S.; Nakayama, T.; Mizutani, T. A case of refractory tuberculous meningitis markedly improved by intrathecal administration of isoniazid (INH). Rinsho Shinkeigaku 2003, 43, 20–25. [Google Scholar] [PubMed]
- Lin, J.; Zhou, H.; Zhang, N.; Yin, B.; Sheng, H.S. Effects of the implantation of Ommaya reservoir in children with tuberculous meningitis hydrocephalus: A preliminary study. Childs Nerv. Syst. 2012, 28, 1003–1008. [Google Scholar] [CrossRef]
- Nakatani, Y.; Suto, Y.; Fukuma, K.; Yamawaki, M.; Sakata, R.; Takahashi, S.; Nakayasu, H.; Nakashima, K. Intrathecal Isoniazid for Refractory Tuberculous Meningitis with Cerebral Infarction. Intern. Med. 2017, 56, 953–957. [Google Scholar] [CrossRef]
- Li, D.; Lv, P.; Lv, Y.; Ma, D.; Yang, J. Magnetic resonance imaging characteristics and treatment aspects of ventricular tuberculosis in adult patients. Acta Radiol. 2017, 58, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Azuma, J.; Ohno, M.; Kubota, R.; Yokota, S.; Nagai, T.; Tsuyuguchi, K.; Okuda, Y.; Takashima, T.; Kamimura, S.; Fujio, Y.; et al. NAT2 genotype guided regimen reduces isoniazid-induced liver injury and early treatment failure in the 6-month four-drug standard treatment of tuberculosis: A randomized controlled trial for pharmacogenetics-based therapy. Eur. J. Clin. Pharmacol. 2013, 69, 1091–1101. [Google Scholar] [CrossRef] [PubMed]
- Motta, I.; Calcagno, A.; Bonora, S. Pharmacokinetics and pharmacogenetics of anti-tubercular drugs: A tool for treatment optimization? Expert. Opin. Drug Metab. Toxicol. 2018, 14, 59–82. [Google Scholar] [CrossRef] [PubMed]
- Jing, W.; Zong, Z.; Tang, B.; Wang, J.; Zhang, T.; Wen, S.; Xue, Y.; Chu, N.; Zhao, W.; Huang, H. Population Pharmacokinetic Analysis of Isoniazid among Pulmonary Tuberculosis Patients from China. Antimicrob. Agents Chemother. 2020, 64, e01736-19. [Google Scholar] [CrossRef] [PubMed]
- Walsh, K.F.; Vilbrun, S.C.; Souroutzidis, A.; Delva, S.; Joissaint, G.; Mathurin, L.; Ocheretina, O.; Cremieux, P.; Pape, J.W.; Koenig, S.P. Improved Outcomes With High-dose Isoniazid in Multidrug-resistant Tuberculosis Treatment in Haiti. Clin. Infect. Dis. 2019, 69, 717–719. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, K.R.; Theron, D.; Victor, T.C.; Streicher, E.M.; Warren, R.M.; Murray, M.B. Treatment outcomes of isoniazid-resistant tuberculosis patients, Western Cape Province, South Africa. Clin. Infect. Dis. 2011, 53, 369–372. [Google Scholar] [CrossRef]
- Begley, D.J. Delivery of therapeutic agents to the central nervous system: The problems and the possibilities. Pharmacol. Ther. 2004, 104, 29–45. [Google Scholar] [CrossRef]
- Lee, E.L.; Robinson, M.J.; Thong, M.L.; Puthucheary, S.D.; Ong, T.H.; Ng, K.K. Intraventricular chemotherapy in neonatal meningitis. J. Pediatr. 1977, 91, 991–995. [Google Scholar] [CrossRef] [PubMed]
- Rios, I.; Klimek, J.J.; Maderazo, E.; Quintiliani, R. Flavobacterium meningosepticum meningitis: Report of selected aspects. Antimicrob. Agents Chemother. 1978, 14, 444–447. [Google Scholar] [CrossRef]
- Boo, N.Y.; Lim, V.K.; Yakin, F.M.; Sakijan, A.S. Management of Flavobacterium meningitis in the neonates: Experience with 18 consecutive cases. Singapore Med. J. 1989, 30, 177–183. [Google Scholar]
- Bruun, B.; Jensen, E.T.; Lundstrøm, K.; Andersen, G.E. Flavobacterium meningosepticum infection in a neonatal ward. Eur. J. Clin. Microbiol. Infect. Dis. 1989, 8, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Senbaga, N.; Davies, E.M. Inadvertent intrathecal administration of rifampicin. Br. J. Clin. Pharmacol. 2005, 60, 116. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Wang, L.; Wen, L.; Wang, J.; Li, M. Intrathecal therapy for tuberculous meningitis: Propensity-matched cohort study. Neurol. Sci. 2022, 43, 2693–2698. [Google Scholar] [CrossRef] [PubMed]
- Mrowczynski, O.D.; Langan, S.T.; Rizk, E.B. Intra-cerebrospinal fluid antibiotics to treat central nervous system infections: A review and update. Clin. Neurol. Neurosurg. 2018, 170, 140–158. [Google Scholar] [CrossRef] [PubMed]
- Engström, A.J.E.; Ivarsson, C.A.; Aldergård, Å.; Henningsson, R.N. Analgesic effects of intrathecal morphine and bupivacaine during robotic-assisted surgery: A prospective randomized controlled study. Pain. Pract. 2023, 23, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Florez-Perdomo, W.A.; Escobar-Cardona, D.; Janjua, T.; Agrawal, A.; Vasquez, H.; Lozada-Martinez, I.D.; Moscote-Salazar, L.R. Antibiotic therapy by intrathecal or intraventricular approach for postsurgical meningitis or ventriculitis: A systematic review and meta-analysis. Egypt. J. Neurosurg. 2023, 38, 20. [Google Scholar] [CrossRef]
- Lewin, J.J., 3rd; Cook, A.M.; Gonzales, C.; Merola, D.; Neyens, R.; Peppard, W.J.; Brophy, G.M.; Kurczewski, L.; Giarratano, M.; Makii, J.; et al. Current Practices of Intraventricular Antibiotic Therapy in the Treatment of Meningitis and Ventriculitis: Results from a Multicenter Retrospective Cohort Study. Neurocrit Care 2019, 30, 609–616. [Google Scholar] [CrossRef]
- Li, X.; Sun, S.; Ling, X.; Chen, K.; Wang, Q.; Zhao, Z. Plasma and cerebrospinal fluid population pharmacokinetics of vancomycin in postoperative neurosurgical patients after combined intravenous and intraventricular administration. Eur. J. Clin. Pharmacol. 2017, 73, 1599–1607. [Google Scholar] [CrossRef]
- Perier, F.; Couffin, S.; Martin, M.; Bardon, J.; Cook, F.; Mounier, R. Multidrug-Resistant Acinetobacter baumannii Ventriculostomy-Related Infection, Treated by a Colistin, Tigecycline, and Intraventricular Fibrinolysis. World Neurosurg. 2019, 121, 111–116. [Google Scholar] [CrossRef]
- Dodou, K. Intrathecal route of drug delivery can save lives or improve quality of life. Pharm. J. 2012, 289, 501. [Google Scholar]
- Clifford, H.E.; Stewart, G.T. Intraventricular administration of a new derivative of polymyxin B in meningitis due to Ps. pyocyanea. Lancet 1961, 2, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez Guardado, A.; Blanco, A.; Asensi, V.; Pérez, F.; Rial, J.C.; Pintado, V.; Bustillo, E.; Lantero, M.; Tenza, E.; Alvarez, M.; et al. Multidrug-resistant Acinetobacter meningitis in neurosurgical patients with intraventricular catheters: Assessment of different treatments. J. Antimicrob. Chemother. 2008, 61, 908–913. [Google Scholar] [CrossRef] [PubMed]
- Allinson, R.R.; Stach, P.E. Intrathecal Drug Therapy. Drug Intell. Clin. Pharm. 1978, 12, 347–359. [Google Scholar] [CrossRef]
- Cook, A.M.; Mieure, K.D.; Owen, R.D.; Pesaturo, A.B.; Hatton, J. Intracerebroventricular administration of drugs. Pharmacotherapy 2009, 29, 832–845. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, A.J., Jr. Intracerebroventricular drug administration. Transl. Clin. Pharmacol. 2017, 25, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Huynh, L.; Agossah, C.; Lelong-Boulouard, V.; Marie, J.; Brossier, D.; Goyer, I. Therapeutic drug monitoring of intravenous anti-tuberculous therapy: Management of an 8-month-old child with tuberculous meningitis. Paediatr. Int. Child Health 2021, 41, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Peloquin, C.A. Therapeutic drug monitoring in the treatment of tuberculosis. Drugs 2002, 62, 2169–2183. [Google Scholar] [CrossRef]
- Peloquin, C. The Role of Therapeutic Drug Monitoring in Mycobacterial Infections. Microbiol. Spectr. 2017, 5, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- LeBras, M.; Chow, I.; Mabasa, V.H.; Ensom, M.H. Systematic Review of Efficacy, Pharmacokinetics, and Administration of Intraventricular Aminoglycosides in Adults. Neurocrit Care 2016, 25, 492–507. [Google Scholar] [CrossRef]
- Tucker, E.W.; Guglieri-Lopez, B.; Ordonez, A.A.; Ritchie, B.; Klunk, M.H.; Sharma, R.; Chang, Y.S.; Sanchez-Bautista, J.; Frey, S.; Lodge, M.A.; et al. Noninvasive (11)C-rifampin positron emission tomography reveals drug biodistribution in tuberculous meningitis. Sci. Transl. Med. 2018, 10, eaau0965. [Google Scholar] [CrossRef]
- Chusri, S.; Sakarunchai, I.; Kositpantawong, N.; Panthuwong, S.; Santimaleeworagun, W.; Pattharachayakul, S.; Singkhamanan, K.; Doi, Y. Outcomes of adjunctive therapy with intrathecal or intraventricular administration of colistin for post-neurosurgical meningitis and ventriculitis due to carbapenem-resistant acinetobacter baumannii. Int. J. Antimicrob. Agents 2018, 51, 646–650. [Google Scholar] [CrossRef] [PubMed]
- Khawcharoenporn, T.; Apisarnthanarak, A.; Mundy, L.M. Intrathecal colistin for drug-resistant Acinetobacter baumannii central nervous system infection: A case series and systematic review. Clin. Microbiol. Infect. 2010, 16, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Roitberg, B.Z.; Khan, N.; Alp, M.S.; Hersonskey, T.; Charbel, F.T.; Ausman, J.I. Bedside external ventricular drain placement for the treatment of acute hydrocephalus. Br. J. Neurosurg. 2001, 15, 324–327. [Google Scholar] [CrossRef] [PubMed]
- Wiesel, J.; Rose, D.N.; Silver, A.L.; Sacks, H.S.; Bernstein, R.H. Lumbar puncture in asymptomatic late syphilis. An analysis of the benefits and risks. Arch. Intern. Med. 1985, 145, 465–468. [Google Scholar] [CrossRef] [PubMed]
- Almoshari, Y. Osmotic Pump Drug Delivery Systems-A Comprehensive Review. Pharmaceuticals 2022, 15, 1430. [Google Scholar] [CrossRef] [PubMed]
- Meng, E.; Hoang, T. MEMS-enabled implantable drug infusion pumps for laboratory animal research, preclinical, and clinical applications. Adv. Drug Deliv. Rev. 2012, 64, 1628–1638. [Google Scholar] [CrossRef] [PubMed]
- 6-Drug delivery systems. In Strategies to Modify the Drug Release from Pharmaceutical Systems; Bruschi, M.L. (Ed.) Woodhead Publishing: Sawston, UK, 2015; pp. 87–194. [Google Scholar]
- Wright, J.C.; Tao Leonard, S.; Stevenson, C.L.; Beck, J.C.; Chen, G.; Jao, R.M.; Johnson, P.A.; Leonard, J.; Skowronski, R.J. An in vivo/in vitro comparison with a leuprolide osmotic implant for the treatment of prostate cancer. J. Control Release 2001, 75, 1–10. [Google Scholar] [CrossRef]
- Wright, J.C. Critical variables associated with nonbiodegradable osmotically controlled implants. AAPS J. 2010, 12, 437–442. [Google Scholar] [CrossRef]
- Stevenson, C.L.; Theeuwes, F.; Wright, J.C. Osmotic implantable delivery systems. In Handbook of Pharmaceutical Controlled Release Technology; CRC Press: Boca Raton, FL, USA, 2000; pp. 225–254. [Google Scholar]
- Stevenson, C.; Fereira, P.; Tan, M.; Ayer, R.; Dehnad, H.; Berry, S. Glucagon like peptide suspension stability and delivery from a DUROS® implant. Proc. Int. Symp. Control. Rel. Bioact. Mater. 2000, 27, 986–987. [Google Scholar]
- Dehnad, H.; Berry, S.; Fereira, P.; Ayer, R.; O’Brien, A.; Chen, G.; Priebe, D.; Matsuura, J.; Muchnik, A.; Kang, L. Functionality of osmotically driven, implantable therapeutic systems (DUROS® implants): Effect of osmotic pressure and delivery of suspension formulations of peptides and proteins. Proc. Int. Symp. Control. Rel. Bioact. Mater. 2000, 27, 1016–1017. [Google Scholar]
- Rohloff, C.M.; Alessi, T.R.; Yang, B.; Dahms, J.; Carr, J.P.; Lautenbach, S.D. DUROS technology delivers peptides and proteins at consistent rate continuously for 3 to 12 months. J. Diabetes Sci. Technol. 2008, 2, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Thorat, M.S.; Sapkale, A.; Prasad, V.; Singh, C. Overview of past and current osmotic drug delivery systems. Int. J. Pharm. Chem. Sci. 2012, 1, 743–753. [Google Scholar]
- Fowler, J.E., Jr. Patient-reported experience with the Viadur 12-month leuprolide implant for prostate cancer. Urology 2001, 58, 430–434. [Google Scholar] [CrossRef] [PubMed]
- Bomgaars, L.; Geyer, J.R.; Franklin, J.; Dahl, G.; Park, J.; Winick, N.J.; Klenke, R.; Berg, S.L.; Blaney, S.M. Phase I trial of intrathecal liposomal cytarabine in children with neoplastic meningitis. J. Clin. Oncol. 2004, 22, 3916–3921. [Google Scholar] [CrossRef]
- Phuphanich, S.; Maria, B.; Braeckman, R.; Chamberlain, M. A pharmacokinetic study of intra-CSF administered encapsulated cytarabine (DepoCyt) for the treatment of neoplastic meningitis in patients with leukemia, lymphoma, or solid tumors as part of a phase III study. J. Neurooncol. 2007, 81, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Peyrl, A.; Sauermann, R.; Traunmueller, F.; Azizi, A.A.; Gruber-Olipitz, M.; Gupper, A.; Slavc, I. Pharmacokinetics and safety of intrathecal liposomal cytarabine in children aged <3 years. Clin. Pharmacokinet. 2009, 48, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Peyrl, A.; Sauermann, R.; Chocholous, M.; Azizi, A.A.; Jäger, W.; Höferl, M.; Slavc, I. Pharmacokinetics and toxicity of intrathecal liposomal cytarabine in children and adolescents following age-adapted dosing. Clin. Pharmacokinet. 2014, 53, 165–173. [Google Scholar] [CrossRef]
- Khang, M.; Bindra, R.S.; Mark Saltzman, W. Intrathecal delivery and its applications in leptomeningeal disease. Adv. Drug Deliv. Rev. 2022, 186, 114338. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, Y.; Zhang, Q.; Zhang, L. Nanoparticle-Hydrogel: A Hybrid Biomaterial System for Localized Drug Delivery. Ann. Biomed. Eng. 2016, 44, 2049–2061. [Google Scholar] [CrossRef]
- Baumann, M.D.; Kang, C.E.; Tator, C.H.; Shoichet, M.S. Intrathecal delivery of a polymeric nanocomposite hydrogel after spinal cord injury. Biomaterials 2010, 31, 7631–7639. [Google Scholar] [CrossRef]
- Chvatal, S.A.; Kim, Y.T.; Bratt-Leal, A.M.; Lee, H.; Bellamkonda, R.V. Spatial distribution and acute anti-inflammatory effects of Methylprednisolone after sustained local delivery to the contused spinal cord. Biomaterials 2008, 29, 1967–1975. [Google Scholar] [CrossRef] [PubMed]
- Ramer, L.M.; Ramer, M.S.; Steeves, J.D. Setting the stage for functional repair of spinal cord injuries: A cast of thousands. Spinal Cord. 2005, 43, 134–161. [Google Scholar] [CrossRef] [PubMed]
- Romero, M.I.; Rangappa, N.; Garry, M.G.; Smith, G.M. Functional regeneration of chronically injured sensory afferents into adult spinal cord after neurotrophin gene therapy. J. Neurosci. 2001, 21, 8408–8416. [Google Scholar] [CrossRef] [PubMed]
- Householder, K.T.; Dharmaraj, S.; Sandberg, D.I.; Wechsler-Reya, R.J.; Sirianni, R.W. Fate of nanoparticles in the central nervous system after intrathecal injection in healthy mice. Sci. Rep. 2019, 9, 12587. [Google Scholar] [CrossRef] [PubMed]
- Khaing, Z.Z.; Ehsanipour, A.; Hofstetter, C.P.; Seidlits, S.K. Injectable Hydrogels for Spinal Cord Repair: A Focus on Swelling and Intraspinal Pressure. Cells Tissues Organs 2016, 202, 67–84. [Google Scholar] [CrossRef]
- Lin, W.; Xu, T.; Wang, Z.; Chen, J. Sustained intrathecal delivery of amphotericin B using an injectable and biodegradable thermogel. Drug Deliv. 2021, 28, 499–509. [Google Scholar] [CrossRef]
Category | Drug | Adult Dose (WHO) in (mg/kg) | Child Dose (WHO) in (mg/kg) | Duration (WHO) | CSF Penetration (CSF/Plasma%) | Adverse Effects |
---|---|---|---|---|---|---|
First-line drugs for DS-TBM | RIF | 15 (10–20); max. 600 mg | 10 (8–12); max. 600 mg | 12 months | 10–20% | Hepatotoxicity, orange urine, many drug interactions |
INH | 10 (7–15); max. 300 mg | 5 (4–6); max. 300 mg | 12 months | 80–90% | Hepatotoxicity, peripheral neuropathy, lupus-like syndrome, confusion, seizures | |
PZA | 35 (30–40) mg/k | 25 (20–30) mg/kg | First 2 months | 90–100% | Hepatotoxicity, arthralgia, gout | |
ETB | 20 (15–25) mg/kg | 15 (15–20) mg/kg | First 2 months | 20–30% | Dose-related retrobulbar neuritis, more common in renal impaired | |
STM | 15–30; max. 1 g IV/ IM | 15 (12–18); max. 1 g | First 2 months | 10–20% | Nephrotoxicity and ototoxicity | |
Core second-line drugs for MDR-TBM | LVX | <5 Ys: 15–20, ≥5 Ys: 10–15 | 10–15 (mg/kg) | During treatment | 70–80% | Nausea, headache, tremor, confusion, tendon rupture (rare) |
MXF | 10–20: max. 400 mg NWE | 400 mg/d | During treatment | 70–80% | Nausea, headache, tremor, confusion, tendon rupture (rare) | |
AMK | 15–30 mg/kg; max. 1 g IV or IM | 15; max. 1 g IV or IM | Intensive phase only | 10–20% | Nephrotoxicity and ototoxicity | |
KAN | 15–30 mg/kg; max. 1 g IV or IM | 15; max. 1 g IV or IM | Intensive phase only | 10–20% | Nephrotoxicity and ototoxicity | |
CM | 15–30 mg/kg; max. 1 g IV or IM | 15; max. 1 g IV or IM | Intensive phase only | No Data | Nephrotoxicity and ototoxicity | |
ETO | 15–20 mg/kg; max. 1 g | 15–20; max. 1 g | During treatment | 80–90% | Anorexia, nausea, vomiting, gynaecomastia, hypothyroidism, confusion, seizures | |
CYC | 10–20 mg/kg; max. 1 g | 10–15; max. 1 g | During treatment | 80–90% | CNS toxicity | |
LNZ | 10 mg/kg; max. 600 mg | 600 mg/d | During treatment | 30–70% | Myelosuppression, optic neuropathy; use with pyridoxine. | |
Other drugs for MDR-TB, in TBM | CFZ | 1 mg/kg | 100–200 mg/d | NA | No Data | skin discoloration (orange/red) and sun sensitivity. |
100 mg/d | - | NA | 0 [92] | NA | ||
PAS | 200–300 mg/kg | 8–12 g | NA | No Data | Vomiting, diarrhea, reversible hypothyroidism (increased risk with ethionamide) | |
BDQ | Not determined | 400 mg 1x/d for 2 wks, then 200 mg 3x/wks for 22 wks | NA | No Data | Nausea, vomiting, arthralgia, QT prolongation | |
Dlm | Not determined | 200 mg | NA | No Data | Nausea, vomiting, and dizziness rarely; QT prolongation |
Drug | Adm. Route | Sample # | Dose | Pathogen Type and Drug Susc. | MIC in µg/mL | Ser Conc. in µg/mL (Mean ± SD) | CSF Conc. in µg/mL (Mean ± SD) | Tmax in CSF | CSF/Serum Ratio | References |
---|---|---|---|---|---|---|---|---|---|---|
RIF. | PO | 1 | NA | INH-R, BDP RIF-R | 1 | NA | NA | NA | NA | [103] |
PO | 19 | 10.7 ± 0.5 mg/kg | NA | NA | 11.5 ± 1.0 | 0.39 ± 0.06 | NA | 0.04 ± 0.01 | [88] | |
PO | 10 | 11.1 ± 0.5 mg/kg | NA | NA | 10.6 ± 1.4 | 0.38 ± 0.06 | NA | 0.04 ± 0.01 | [88] | |
PO | 7 | 10.1 ± 0.6 mg/kg | NA | NA | 10.1 ± 1.1 | 0.78 ± 0.13 | NA | 0.08 ± 0.02 | [88] | |
PO | 7 | 10.5 ± 0.8 mg/kg | NA | NA | 4.7 ± 0.6 | 0.47 ± 0.06 | NA | 0.11 ± 0.03 | [88] | |
PO | 26 | 450 mg/d | NA | NA | Cmax (6.3 mg/L) | Cmax (0.21 mg/L) | 2 | NA | [84] | |
IV | 26 | 600 mg/d | NA | NA | Cmax (22.1 mg/L) | Cmax (0.60 mg/L) | 2 | NA | [84] | |
PO | 1 | NA | Pre-XDR-TBM, R | >16 | NA | NA | NA | NA | [92] | |
In Vitro | - | NA | S. Strain | 0.2–0.4 | NA | NA | NA | NA | [68] | |
PO | 20 | NA | NA | NA | 9.4 (2.9–23.7) | 0.2 (0.1–0.4) CCSF0–2 | NA | NA | [61] | |
PO | 20 | NA | NA | NA | 9.4 (2.9–23.7) | 0.4 (0.1–1.4) CCSF0–8 | NA | NA | [61] | |
INH | PO | 1 | NA | Mod. RS to INH | 2–4 | NA | NA | NA | NA | [103] |
PO | 19 | 8.5 ± 0.4 mg/kg | NA | NA | 4.4 ± 0.5 | 1.9 ± 0.3 | NA | 0.47 ± 0.04 | [88] | |
PO | 8 | 9.1 ± 0.6 mg/kg | NA | NA | 2.6 ± 0.8 | 3.2 ± 0.8 | NA | 1.31 ± 0.13 | [88] | |
PO | 9 | 9.0 ± 0.8 mg/kg | NA | NA | 2.1 ± 0.6 | 1.8 ± 0.5 | NA | 1.03 ± 0.14 | [88] | |
PO | 8 | 7.5 ± 0.9 mg/kg | NA | NA | 1.0 ± 0.3 | 1.8 ± 0.5 | NA | 2.12 ± 0.25 | [88] | |
PO | 1 | 600 mg/d | Pre-XDR-TBM, R | 0.06 | 9.86 Cmax | 11.57 Cmax | NA | 1.51 | [92] | |
In Vitro | NA | S. Strain | 0.02–0.04 | NA | NA | NA | NA | [68] | ||
PO | 6 Child | 2.5–3.3 mg/kg tid–qid | S. Strain | - | 4.84 ± 2.31 | 3.18 ± 1.27 | - | - | [65,104] | |
PO | 20 | NA | NA | NA | 4.6 (1.0–10.0) 4.7 (2.5–13.6) | 1.4 (0.5–6.1) 1.3 (1.2–4.3) | NA | NA | [61] | |
RFB | PO | 1 | NA | RFB sus. | ≤0.250–0.5 | NA | NA | NA | NA | [103] |
PO | 1 | NA | Pre-XDR-TBM, R | 8 | NA | NA | NA | NA | [92] | |
LVX | PO | 1 | 10–15 mg/kg | NA | NA | NA | NA | NA | NA | [11] |
OFX | In Vitro | - | - | - | (0.5–1.0) | - | - | - | - | [68] |
AMK | IV or IM | 1 | 15 mg/kg | NA | NA | NA | 10–20% of Ser conc. | NA | NA | [11] |
IV or IM | 1 | - | - | 0.5 | - | - | - | - | [92] | |
Mfx | PO | 1 | 400 mg | NA | NA | NA | 70–80% of Ser conc. | NA | NA | [11] |
PO | 1 | 400 mg/d | Pre-XDR-TBM, R | 4 | 2.11 | 0.62 | - | 0.48 | [92] | |
CYC | PO | 1 | 10–15 mg/kg | NA | NA | NA | 80–90% of Ser Conc. | NA | NA | [11] |
PO | 1 | 500 mg/d | Pre-XDR-TBM, R | 16 | 36.28 Cmax | 20.62 Cmax | - | - | [92] | |
LNZ | PO | 1 | 600 mg | NA | NA | NA | 30–70% of Ser conc. | NA | NA | [11] |
PO | 14 | 600 mg 2x/d | NA | NA | 18.6 ± 9.6 | 10.8 ± 5.7 | 101.6 ± 59.6 μg·h/mL | 0.66 | [100] | |
PO | 1 | 600 mg 2x/d | Pre-XDR-TBM, R | - | 31.81 | 15.72 | - | - | [92] | |
CFZ | PO | 1 | 100–200 mg | NA | NA | NA | Probably low | NA | NA | [11] |
PO | 1 | 100 mg/d | Pre-XDR-TBM, R | - | 0.35 | 0 | - | - | [92] | |
BDQ | PO | 7 | 400 mg 1x/d for 2 wks, then 200 mg 3x/wk for 22 wks. | NA | >30 ng/mL | 1.1442 (Cmax = 1.832) | 0.00149 (Cmax = 0.00379) | 5 h | 0.12 | [101] |
PO | 1 | 400 mg 1x/d for 2 wks then 200 mg 3x/wk for 22 wks. | NA | NA | NA | Probably very low | NA | NA | [11] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madadi, A.K.; Sohn, M.-J. Comprehensive Therapeutic Approaches to Tuberculous Meningitis: Pharmacokinetics, Combined Dosing, and Advanced Intrathecal Therapies. Pharmaceutics 2024, 16, 540. https://doi.org/10.3390/pharmaceutics16040540
Madadi AK, Sohn M-J. Comprehensive Therapeutic Approaches to Tuberculous Meningitis: Pharmacokinetics, Combined Dosing, and Advanced Intrathecal Therapies. Pharmaceutics. 2024; 16(4):540. https://doi.org/10.3390/pharmaceutics16040540
Chicago/Turabian StyleMadadi, Ahmad Khalid, and Moon-Jun Sohn. 2024. "Comprehensive Therapeutic Approaches to Tuberculous Meningitis: Pharmacokinetics, Combined Dosing, and Advanced Intrathecal Therapies" Pharmaceutics 16, no. 4: 540. https://doi.org/10.3390/pharmaceutics16040540
APA StyleMadadi, A. K., & Sohn, M.-J. (2024). Comprehensive Therapeutic Approaches to Tuberculous Meningitis: Pharmacokinetics, Combined Dosing, and Advanced Intrathecal Therapies. Pharmaceutics, 16(4), 540. https://doi.org/10.3390/pharmaceutics16040540