Self-Assembled Nanoparticles of Silicon (IV)–NO Donor Phthalocyanine Conjugate for Tumor Photodynamic Therapy in Red Light
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Equipment
2.2. Synthesis of 4-(3-Hydroxypropoxy)-3-(phenylsulfonyl)-1,2,5-oxadiazole 2-Oxide (NO Donor)
2.3. Synthesis of SiPc–NO (C5)
2.4. Preparation and Characterization of Self-Assembled NPs
2.4.1. Preparation of Self-Assembled NPs
2.4.2. Characterization of Self-Assembled NPs
2.5. Stability of Self-Assembled NPs
2.6. In Vitro NO Release
2.7. Cell Counting Kit-8 Assay
2.8. Intracellular Uptake
2.8.1. Laser Confocal Scanning Microscope Method
2.8.2. Flow Cytometry Method
2.9. Reactive Oxygen Species Generation Ability
2.10. Scratch Assay
3. Results
3.1. Synthesis and Characterization
3.2. Preparation and Characterization of Self-Assembled NPs
3.3. Photophysical and Photochemical Properties
3.4. Cytotoxicity
3.5. Cell Uptake Assay
3.6. In Vitro NO Release
3.7. Reactive Oxygen Species Generation Ability
3.8. Cell Scratch Assay
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CCK-8 | Cell Counting Kit-8 |
DMSO | Dimethyl sulfoxide |
DMAP | 4-dimethylaminopyridine |
DTDP | 3,3′-dithiodipropionic acid |
DPBF | 1,3-diphenylisobenzofuran |
DSPE-PEG2K | Distearoyl phosphoethanolamine-PEG2000 |
DSPE-PEG2K-RGD | Distearoyl phosphoethanolamine-PEG2000-Arg-Gly-Asp |
DL | Drug loading |
DCF | 2′,7′-dichlorofluorescin |
DAF-FM | 3-amino,4-aminomethyl-2′,7′-difluorofluorescein, diacetate |
EDC | 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide |
EE | Encapsulation efficiency |
EtOAc | Ethyl acetate |
HRMS | High-resolution mass spectrometry |
HPD | Hematoporphyrin derivatives |
IR | Infrared spectroscopy |
IC50 | Half-maximal inhibitory concentration |
IARC | International Agency for Research on Cancer |
MCF-7 | Human breast cancer MCF-7 cells |
m-CPBA | 3-chloroperoxybenzoic acid |
NMR | Nuclear magnetic resonance |
NO | Nitric oxide |
NPs | Nanoparticles |
OD | Optical density |
PDT | Photodynamic therapy |
PS | Photosensitizer |
PBS | Phosphate-buffered saline |
RGD | Arg-Gly-Asp |
ROS | Reactive oxygen species |
SiPc | Porphyrin silicon |
SAN | Self-assembled nanoparticles |
UV | Ultraviolet |
4T1 | Mouse breast cancer cells |
References
- Yu, Z.; Bai, X.; Zhou, R.; Ruan, G.; Guo, M.; Han, W.; Jiang, S.; Yang, H. Differences in the Incidence and Mortality of Digestive Cancer between Global Cancer Observatory 2020 and Global Burden of Disease 2019. Int. J. Cancer 2024, 154, 615–625. [Google Scholar] [CrossRef]
- The Lancet. Global Cancer: Overcoming the Narrative of Despondency. Lancet 2023, 401, 319. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Li, M.; Wang, L.; Hu, Y.; Liu, W.; Long, Z.; Zhou, Z.; Yin, P.; Zhou, M. National and Subnational Trends in Cancer Burden in China, 2005–2020: An Analysis of National Mortality Surveillance Data. Lancet Public Health 2023, 8, e943–e955. [Google Scholar] [CrossRef]
- World Health Organization. Global Cancer Burden Growing, Amidst Mounting Need for Services; World Health Organization: Geneva, Switzerland, 2024.
- Lau, K.H.; Tan, A.M.; Shi, Y. New and Emerging Targeted Therapies for Advanced Breast Cancer. Int. J. Mol. Sci. 2022, 23, 2288. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Song, B.; Shankar, S.; Guller, A.; Deng, W. Recent Advances in Liposome Formulations for Breast Cancer Therapeutics. Cell. Mol. Life Sci. 2021, 78, 5225–5243. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ng, D.K.P.; Fong, W.-P. Antitumor Immunity Induced by the Photodynamic Action of BAM-SiPc, a Silicon (IV) Phthalocyanine Photosensitizer. Cell. Mol. Immunol. 2019, 16, 676–678. [Google Scholar] [CrossRef]
- Li, X.; Lovell, J.F.; Yoon, J.; Chen, X. Clinical Development and Potential of Photothermal and Photodynamic Therapies for Cancer. Nat. Rev. Clin. Oncol. 2020, 17, 657–674. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, T.J.; Kaufman, J.E.; Goldfarb, A.; Weishaupt, K.R.; Boyle, D.; Mittleman, A. Photoradiation Therapy for the Treatment of Malignant Tumors. Cancer Res. 1978, 38, 2628–2635. [Google Scholar]
- Zheng, Y.; Ye, J.; Li, Z.; Chen, H.; Gao, Y. Recent Progress in Sono-Photodynamic Cancer Therapy: From Developed New Sensitizers to Nanotechnology-Based Efficacy-Enhancing Strategies. Acta Pharm. Sin. B 2021, 11, 2197–2219. [Google Scholar] [CrossRef]
- Donohoe, C.; Senge, M.O.; Arnaut, L.G.; Gomes-da-Silva, L.C. Cell Death in Photodynamic Therapy: From Oxidative Stress to Anti-Tumor Immunity. Biochim. Biophys. Acta Rev. Cancer 2019, 1872, 188308. [Google Scholar] [CrossRef]
- Novaes, G.; Blank, M.; Yoshimura, T.; Ribeiro, M.; Pereira, R. Methylene Blue-Mediated Antimicrobial Photodynamic Therapy on Chicken Semen. Photodiagn. Photodyn. Ther. 2023, 41, 103290. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Xu, M.; Chen, X.; Luo, Y. Spotlight on Porphyrins: Classifications, Mechanisms and Medical Applications. Biomed. Pharmacother. 2023, 164, 114933. [Google Scholar] [CrossRef] [PubMed]
- Lesar, A.; Mušković, M.; Begić, G.; Lončarić, M.; Tomić Linšak, D.; Malatesti, N.; Gobin, I. Cationic Porphyrins as Effective Agents in Photodynamic Inactivation of Opportunistic Plumbing Pathogen Legionella Pneumophila. Int. J. Mol. Sci. 2020, 21, 5367. [Google Scholar] [CrossRef]
- Zheng, B.-Y.; Yang, X.-Q.; Zhao, Y.; Zheng, Q.-F.; Ke, M.-R.; Lin, T.; Chen, R.-X.; Ho, K.K.K.; Kumar, N.; Huang, J.-D. Synthesis and Photodynamic Activities of Integrin-Targeting Silicon(IV) Phthalocyanine-cRGD Conjugates. Eur. J. Med. Chem. 2018, 155, 24–33. [Google Scholar] [CrossRef]
- Li, Z.; Liao, X.; Xu, N.; Xu, Z.; Chen, Y.; Zhong, Q.; Chang, J. Preparation and Photodynamic Antimicrobial Activity of Tetra(4-Carboxyphenoxy)-Phthalocyaninatozinc(II) Loaded Gelatin Microspheres. Leather Sci. Eng. 2023, 33, 24–30. [Google Scholar]
- Negi, M.; Dixit, T.; Venkatesh, V. Ligand Dictated Photosensitization of Iridium(III) Dithiocarbamate Complexes for Photodynamic Therapy. Inorg. Chem. 2023, 62, 20080–20095. [Google Scholar] [CrossRef]
- Li, M.J.; Chen, Q.W.; Zhang, X.Z. Biomimetic Biological Self-Luminous Nanosystem for Photodynamic Therapy. Chin. Sci. Bull. 2023, 68, 4055–4062. [Google Scholar] [CrossRef]
- Tong, Q.L.; Chen, M.T.; Lin, H.Z.; Cheng, Q.X.; Lu, W.X. Recent Progress in Delivery Systems for Photosensitizers and Anti-Cancer Photodynamic Therapy. Acta Pharm. Sin. 2023, 58, 2320–2333. [Google Scholar]
- Giordani, S. Modulation of Efficient Diiodo-BODIPY in Vitro Phototoxicity to Cancer Cells by Carbon Nano-Onions. Front. Chem. 2020, 8, 573211. [Google Scholar]
- Yuan, M.; Fang, X.; Liu, J.; Yang, K.; Xiao, S.; Yang, S.; Du, W.; Song, J. NIR-II Self-Luminous Molecular Probe for In Vivo Inflammation Tracking and Cancer PDT Effect Self-Evaluating. Small 2023, 19, e2206666. [Google Scholar] [CrossRef]
- He, L.; Yu, X.; Li, W. Recent Progress and Trends in X-Ray-Induced Photodynamic Therapy with Low Radiation Doses. ACS Nano 2022, 16, 19691–19721. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Sun, M.; Li, D.; Li, C.; Luo, C.; Wang, Z.; Zhang, W.; Yang, Z.; Feng, Y.; Wang, S.; et al. Cytochrome P450 Enzyme-Mediated Auto-Enhanced Photodynamic Cancer Therapy of Co-Nanoassembly between Clopidogrel and Photosensitizer. Theranostics 2020, 10, 5550–5564. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Zhang, J.; Luo, L.; Yu, Y.; Sun, T. Nitric Oxide and Tumors: From Small-Molecule Donor to Combination Therapy. ACS Biomater. Sci. Eng. 2023, 9, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Ciccone, V.; Filippelli, A.; Bacchella, C.; Monzani, E.; Morbidelli, L. The Nitric Oxide Donor [Zn(PipNONO)Cl] Exhibits Antitumor Activity through Inhibition of Epithelial and Endothelial Mesenchymal Transitions. Cancers 2022, 14, 4240. [Google Scholar] [CrossRef]
- Fan, Y.; Wu, W.; Luo, T.; Hu, Y.; Zhang, Q.; Zhang, J.; Xia, X. Cross-Linking of S-Nitrosothiolated AIEgens inside Cancer Cells to Monitor NO Release and Reverse Chemo-Resistance. Chem. Commun. 2021, 57, 12520–12523. [Google Scholar] [CrossRef]
- Hu, X.; Gao, X.; Gao, G.; Wang, Y.; Cao, H.; Li, D.; Hua, H. Discovery of β-Carboline-(Phenylsulfonyl)Furoxan Hybrids as Potential Anti-Breast Cancer Agents. Bioorg. Med. Chem. Lett. 2021, 40, 127952. [Google Scholar] [CrossRef]
- Zhao, Z.; Shan, X.; Zhang, H.; Shi, X.; Huang, P.; Sun, J.; He, Z.; Luo, C.; Zhang, S. Nitric Oxide-Driven Nanotherapeutics for Cancer Treatment. J. Control. Release 2023, 362, 151–169. [Google Scholar] [CrossRef]
- Krishnan, N.; Fang, R.H.; Zhang, L. Engineering of Stimuli-Responsive Self-Assembled Biomimetic Nanoparticles. Adv. Drug Deliv. Rev. 2021, 179, 114006. [Google Scholar] [CrossRef] [PubMed]
- Gu, G.; Chen, C.; Zhang, S.; Yin, B.; Wang, J. Self-Assembly Dual-Responsive NO Donor Nanoparticles for Effective Cancer Therapy. ACS Appl. Mater. Interfaces 2021, 13, 50682–50694. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, T.; Huang, B.; Zheng, F.; Huang, Y.; Li, Y.; Peng, Y.; Chen, L. Chlorophenyl Thiophene Silicon Phthalocyanine: Synthesis, Two-Photon Bioimaging-Guided Lysosome Target, and in Vitro Photodynamic Efficacy. Front. Pharmacol. 2023, 14, 1168393. [Google Scholar] [CrossRef]
- Chen, X.; Moonshi, S.S.; Nguyen, N.-T.; Ta, H.T. Preparation of Protein-Loaded Nanoparticles Based on Poly(Succinimide)-Oleylamine for Sustained Protein Release: A Two-Step Nanoprecipitation Method. Nanotechnology 2024, 35, 055101. [Google Scholar] [CrossRef]
- Xu, Q.; Hou, J.; Rao, J.; Li, G.-H.; Liu, Y.-L.; Zhou, J. PEG Modification Enhances the in Vivo Stability of Bioactive Proteins Immobilized on Magnetic Nanoparticles. Biotechnol. Lett. 2020, 42, 1407–1418. [Google Scholar] [CrossRef] [PubMed]
- Khatua, S.; Simal-Gandara, J.; Acharya, K. Understanding Immune-Modulatory Efficacy in Vitro. Chem. -Biol. Interact. 2022, 352, 109776. [Google Scholar] [CrossRef] [PubMed]
- Abou-Salim, M.A.; Shaaban, M.A.; Abd El Hameid, M.K.; Alanazi, M.M.; Halaweish, F.; Elshaier, Y.A.M.M. Utilizing Estra-1,3,5,16-Tetraene Scaffold: Design and Synthesis of Nitric Oxide Donors as Chemotherapeutic Resistance Combating Agents in Liver Cancer. Molecules 2023, 28, 2754. [Google Scholar] [CrossRef]
- Yang, F.; Xiao, Y.; Ding, J.-H.; Jin, X.; Ma, D.; Li, D.-Q.; Shi, J.-X.; Huang, W.; Wang, Y.-P.; Jiang, Y.-Z.; et al. Ferroptosis Heterogeneity in Triple-Negative Breast Cancer Reveals an Innovative Immunotherapy Combination Strategy. Cell Metab. 2023, 35, 84–100.e8. [Google Scholar] [CrossRef]
- Wang, C.; Sun, Y.; Huang, S.; Wei, Z.; Tan, J.; Wu, C.; Chen, Q.; Zhang, X. Self-Immolative Photosensitizers for Self-Reported Cancer Phototheranostics. J. Am. Chem. Soc. 2023, 145, 13099–13113. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, W.-X. Uptake, Intracellular Dissolution, and Cytotoxicity of Silver Nanowires in Cell Models. Chemosphere 2021, 281, 130762. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Wang, H.-X.; Leong, K. Determination of Cellular Uptake and Endocytic Pathways. Bio-Protoc. 2019, 9, e3169. [Google Scholar] [CrossRef]
- Auti, A.; Alessio, N.; Ballini, A.; Dioguardi, M.; Cantore, S.; Scacco, S.; Vitiello, A.; Quagliuolo, L.; Rinaldi, B.; Santacroce, L.; et al. Protective Effect of Resveratrol against Hypoxia-Induced Neural Oxidative Stress. J. Pers. Med. 2022, 12, 1202. [Google Scholar] [CrossRef]
- Luo, W.; Wang, J.; Xu, W.; Ma, C.; Wan, F.; Huang, Y.; Yao, M.; Zhang, H.; Qu, Y.; Ye, D.; et al. LncRNA RP11-89 Facilitates Tumorigenesis and Ferroptosis Resistance through PROM2-Activated Iron Export by Sponging miR-129-5p in Bladder Cancer. Cell Death Dis. 2021, 12, 1043. [Google Scholar] [CrossRef]
- Chugunova, E.; Gazizov, A.; Islamov, D.; Burilov, A.; Tulesinova, A.; Kharlamov, S.; Syakaev, V.; Babaev, V.; Akylbekov, N.; Appazov, N.; et al. The Reactivity of Azidonitrobenzofuroxans towards 1,3-Dicarbonyl Compounds: Unexpected Formation of Amino Derivative via the Regitz Diazo Transfer and Tautomerism Study. Int. J. Mol. Sci. 2021, 22, 9646. [Google Scholar] [CrossRef] [PubMed]
- Huysseune, A.; Larsen, U.G.; Larionova, D.; Matthiesen, C.L.; Petersen, S.V.; Muller, M.; Witten, P.E. Bone Formation in Zebrafish: The Significance of DAF-FM DA Staining for Nitric Oxide Detection. Biomolecules 2023, 13, 1780. [Google Scholar] [CrossRef]
- Azevedo, R.D.S.; Falcão, K.V.G.; Assis, C.R.D.; Martins, R.M.G.; Araújo, M.C.; Yogui, G.T.; Neves, J.L.; Seabra, G.M.; Maia, M.B.S.; Amaral, I.P.G.; et al. Effects of Pyriproxyfen on Zebrafish Brain Mitochondria and Acetylcholinesterase. Chemosphere 2021, 263, 128029. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.; Yang, Z.; Zhan, F.; Huang, Y.; Lin, S. SIRT1 Is Transcriptionally Repressed by YY1 and Suppresses Ferroptosis in Rheumatoid Arthritis. Adv. Rheumatol. 2023, 63, 9. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yang, Y.; He, Y.; Feng, C.; Ou, H.; Yang, J.; Chen, Y.; You, F.; Shao, B.; Bao, J.; et al. Erxian Decoction Alleviates Cisplatin-Induced Premature Ovarian Failure in Rats by Reducing Oxidation Levels in Ovarian Granulosa Cells. J. Ethnopharmacol. 2023, 304, 116046. [Google Scholar] [CrossRef] [PubMed]
- Radstake, W.E.; Gautam, K.; Van Rompay, C.; Vermeesen, R.; Tabury, K.; Verslegers, M.; Baatout, S.; Baselet, B. Comparison of in Vitro Scratch Wound Assay Experimental Procedures. Biochem. Biophys. Rep. 2023, 33, 101423. [Google Scholar] [CrossRef]
- Balko, S.; Kerr, E.; Buchel, E.; Logsetty, S.; Raouf, A. A Robust and Standardized Approach to Quantify Wound Closure Using the Scratch Assay. Methods Protoc. 2023, 6, 87. [Google Scholar] [CrossRef]
- Liao, S.; Cai, M.; Zhu, R.; Fu, T.; Du, Y.; Kong, J.; Zhang, Y.; Qu, C.; Dong, X.; Ni, J.; et al. Antitumor Effect of Photodynamic Therapy/Sonodynamic Therapy/Sono-Photodynamic Therapy of Chlorin E6 and Other Applications. Mol. Pharm. 2023, 20, 875–885. [Google Scholar] [CrossRef]
NPs | IC50 (μM) | |
---|---|---|
4T1 | MCF-7 | |
SiPc–NO@NPs | 0.9141 | 0.6394 |
SiPc–NO@RGD NPs | 0.5311 | 0.2975 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aikelamu, K.; Bai, J.; Zhang, Q.; Huang, J.; Wang, M.; Zhong, C. Self-Assembled Nanoparticles of Silicon (IV)–NO Donor Phthalocyanine Conjugate for Tumor Photodynamic Therapy in Red Light. Pharmaceutics 2024, 16, 1166. https://doi.org/10.3390/pharmaceutics16091166
Aikelamu K, Bai J, Zhang Q, Huang J, Wang M, Zhong C. Self-Assembled Nanoparticles of Silicon (IV)–NO Donor Phthalocyanine Conjugate for Tumor Photodynamic Therapy in Red Light. Pharmaceutics. 2024; 16(9):1166. https://doi.org/10.3390/pharmaceutics16091166
Chicago/Turabian StyleAikelamu, Kadireya, Jingya Bai, Qian Zhang, Jiamin Huang, Mei Wang, and Chunhong Zhong. 2024. "Self-Assembled Nanoparticles of Silicon (IV)–NO Donor Phthalocyanine Conjugate for Tumor Photodynamic Therapy in Red Light" Pharmaceutics 16, no. 9: 1166. https://doi.org/10.3390/pharmaceutics16091166
APA StyleAikelamu, K., Bai, J., Zhang, Q., Huang, J., Wang, M., & Zhong, C. (2024). Self-Assembled Nanoparticles of Silicon (IV)–NO Donor Phthalocyanine Conjugate for Tumor Photodynamic Therapy in Red Light. Pharmaceutics, 16(9), 1166. https://doi.org/10.3390/pharmaceutics16091166