Previous Issue
Volume 17, September
 
 

Future Internet, Volume 17, Issue 10 (October 2025) – 10 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
46 pages, 1763 KB  
Article
Healing Intelligence: A Bio-Inspired Metaheuristic Optimization Method Using Recovery Dynamics
by Vasileios Charilogis and Ioannis G. Tsoulos
Future Internet 2025, 17(10), 441; https://doi.org/10.3390/fi17100441 (registering DOI) - 27 Sep 2025
Abstract
BioHealing Optimization (BHO) is a bio-inspired metaheuristic that operationalizes the injury–recovery paradigm through an iterative loop of recombination, stochastic injury, and guided healing. The algorithm is further enhanced by adaptive mechanisms, including scar map, hot-dimension focusing, RAGE/hyper-RAGE bursts (Rapid Aggressive Global Exploration), and [...] Read more.
BioHealing Optimization (BHO) is a bio-inspired metaheuristic that operationalizes the injury–recovery paradigm through an iterative loop of recombination, stochastic injury, and guided healing. The algorithm is further enhanced by adaptive mechanisms, including scar map, hot-dimension focusing, RAGE/hyper-RAGE bursts (Rapid Aggressive Global Exploration), and healing-rate modulation, enabling a dynamic balance between exploration and exploitation. Across 17 benchmark problems with 30 runs, each under a fixed budget of 1.5·105 function evaluations, BHO achieves the lowest overall rank in both the “best-of-runs” (47) and the “mean-of-runs” (48), giving an overall rank sum of 95 and an average rank of 2.794. Representative first-place results include Frequency-Modulated Sound Waves, the Lennard–Jones potential, and Electricity Transmission Pricing. In contrast to prior healing-inspired optimizers such as Wound Healing Optimization (WHO) and Synergistic Fibroblast Optimization (SFO), BHO uniquely integrates (i) an explicit tri-phasic architecture (DE/best/1/bin recombination → Gaussian/Lévy injury → guided healing), (ii) per-dimension stateful adaptation (scar map, hot-dims), and (iii) stagnation-triggered bursts (RAGE/hyper-RAGE). These features provide a principled exploration–exploitation separation that is absent in WHO/SFO. Full article
19 pages, 1715 KB  
Article
Enhanced Position Estimation via RSSI Offset Correction in BLE Fingerprinting-Based Indoor Positioning
by Jingshi Qian, Nobuyoshi Komuro, Won-Suk Kim and Younghwan Yoo
Future Internet 2025, 17(10), 440; https://doi.org/10.3390/fi17100440 - 26 Sep 2025
Abstract
Since GPS (Global Positioning System) cannot meet accuracy requirements indoors, indoor Location-Based Services (LBSs) have become increasingly important. BLE (Bluetooth Low Energy) offers cost and accuracy advantages. Typically, the position fingerprinting method is used for indoor positioning. However, due to irregular reflection and [...] Read more.
Since GPS (Global Positioning System) cannot meet accuracy requirements indoors, indoor Location-Based Services (LBSs) have become increasingly important. BLE (Bluetooth Low Energy) offers cost and accuracy advantages. Typically, the position fingerprinting method is used for indoor positioning. However, due to irregular reflection and absorption, the indoor environment introduces various offsets in Bluetooth RSSI (Received Signal Strength Indicator). This study analyzed the RSSI space and proposed a pre-processing workflow to improve position estimation accuracy by correcting offsets in RSSI space for BLE fingerprinting methods using machine learning. Experiments performed using different position estimation methods showed that the corrected data achieved a 6% improvement over the filter-only result. This study also evaluated the effects of different pre-processing and post-processing filters on positioning accuracy. Experiments were also conducted using a published dataset and showed similar results. Full article
(This article belongs to the Special Issue Wireless Sensor Networks and Internet of Things)
21 pages, 2253 KB  
Article
Legal Judgment Prediction in the Saudi Arabian Commercial Court
by Ashwaq Almalki, Safa Alsafari and Noura M. Alotaibi
Future Internet 2025, 17(10), 439; https://doi.org/10.3390/fi17100439 (registering DOI) - 26 Sep 2025
Abstract
Legal judgment prediction is an emerging application of artificial intelligence in the legal domain, offering significant potential to enhance legal decision support systems. Such systems can improve judicial efficiency, reduce burdens on legal professionals, and assist in early-stage case assessment. This study focused [...] Read more.
Legal judgment prediction is an emerging application of artificial intelligence in the legal domain, offering significant potential to enhance legal decision support systems. Such systems can improve judicial efficiency, reduce burdens on legal professionals, and assist in early-stage case assessment. This study focused on predicting whether a legal case would be Accepted or Rejected using only the Fact section of court rulings. A key challenge lay in processing long legal documents, which often exceeded the input length limitations of transformer-based models. To address this, we proposed a two-step methodology: first, each document was segmented into sentence-level inputs compatible with AraBERT—a pretrained Arabic transformer model—to generate sentence-level predictions; second, these predictions were aggregated to produce a document-level decision using several methods, including Mean, Max, Confidence-Weighted, and Positional aggregation. We evaluated the approach on a dataset of 19,822 real-world cases collected from the Saudi Arabian Commercial Court. Among all aggregation methods, the Confidence-Weighted method applied to the AraBERT-based classifier achieved the highest performance, with an overall accuracy of 85.62%. The results demonstrated that combining sentence-level modeling with effective aggregation methods provides a scalable and accurate solution for Arabic legal judgment prediction, enabling full-length document processing without truncation. Full article
(This article belongs to the Special Issue Deep Learning and Natural Language Processing—3rd Edition)
Show Figures

Graphical abstract

19 pages, 3113 KB  
Article
Research on a Dense Pedestrian-Detection Algorithm Based on an Improved YOLO11
by Liang Wu, Xiang Li, Ping Ma and Yicheng Cai
Future Internet 2025, 17(10), 438; https://doi.org/10.3390/fi17100438 - 26 Sep 2025
Abstract
Pedestrian detection, as a core function of an intelligent vision system, plays a key role in obstacle avoidance during driverless navigation, intelligent traffic monitoring, and other fields. In this paper, we optimize the YOLO11 detection algorithm to solve the problem of insufficient accuracy [...] Read more.
Pedestrian detection, as a core function of an intelligent vision system, plays a key role in obstacle avoidance during driverless navigation, intelligent traffic monitoring, and other fields. In this paper, we optimize the YOLO11 detection algorithm to solve the problem of insufficient accuracy of pedestrian detection in complex scenes. The C3K2-lighter module is constructed by replacing the Bottleneck in the C3K2 module with the FasterNet Block, which significantly enhances feature extraction for long-distance pedestrians in dense scenes. In addition, it incorporates the Triplet Attention Module to establish correlations between local features and the global context, thereby effectively mitigating omission problems caused by occlusion. The Variable Focus Loss Function (VFL) is additionally introduced to optimize target classification by quantifying the variance in features between the predicted frame and the ground-truth frame. The improved model, YOLO11-Improved, achieves a synergistic optimization of detection accuracy and computational efficiency, increasing the AP value by 3.7% and the precision by 2.8% and reducing the parameter volume by 0.5 M while maintaining real-time performance. Full article
Show Figures

Figure 1

18 pages, 812 KB  
Article
Deep Reinforcement Learning for Adaptive Robotic Grasping and Post-Grasp Manipulation in Simulated Dynamic Environments
by Henrique C. Ferreira and Ramiro S. Barbosa
Future Internet 2025, 17(10), 437; https://doi.org/10.3390/fi17100437 - 26 Sep 2025
Abstract
This article presents a deep reinforcement learning (DRL) approach for adaptive robotic grasping in dynamic environments. We developed UR5GraspingEnv, a PyBullet-based simulation environment integrated with OpenAI Gym, to train a UR5 robotic arm with a Robotiq 2F-85 gripper. Soft Actor-Critic (SAC) and Proximal [...] Read more.
This article presents a deep reinforcement learning (DRL) approach for adaptive robotic grasping in dynamic environments. We developed UR5GraspingEnv, a PyBullet-based simulation environment integrated with OpenAI Gym, to train a UR5 robotic arm with a Robotiq 2F-85 gripper. Soft Actor-Critic (SAC) and Proximal Policy Optimization (PPO) were implemented to learn robust grasping policies for randomly positioned objects. A tailored reward function, combining distance penalties, grasp, and pose rewards, optimizes grasping and post-grasping tasks, enhanced by domain randomization. SAC achieves an 87% grasp success rate and 75% post-grasp success, outperforming PPO 82% and 68%, with stable convergence over 100,000 timesteps. The system addresses post-grasping manipulation and sim-to-real transfer challenges, advancing industrial and assistive applications. Results demonstrate the feasibility of learning stable and goal-driven policies for single-arm robotic manipulation using minimal supervision. Both PPO and SAC yield competitive performance, with SAC exhibiting superior adaptability in cluttered or edge cases. These findings suggest that DRL, when carefully designed and monitored, can support scalable learning in manipulation tasks. Full article
(This article belongs to the Special Issue Artificial Intelligence and Control Systems for Industry 4.0 and 5.0)
Show Figures

Figure 1

19 pages, 1363 KB  
Article
Evaluation Study of Pavement Condition Using Digital Twins and Deep Learning on IMU Signals
by Luis-Dagoberto Gurrola-Mijares, José-Manuel Mejía-Muñoz, Oliverio Cruz-Mejía, Abraham-Leonel López-León and Leticia Ortega-Máynez
Future Internet 2025, 17(10), 436; https://doi.org/10.3390/fi17100436 - 26 Sep 2025
Abstract
Traditional road asset management relies on periodic, often inefficient, inspections. Digital Twins offer a paradigm shift towards proactive, data-driven maintenance by creating a real-time virtual replica of physical infrastructure. This paper proposes a comprehensive, formalized framework for a highway Digital Twin, structured into [...] Read more.
Traditional road asset management relies on periodic, often inefficient, inspections. Digital Twins offer a paradigm shift towards proactive, data-driven maintenance by creating a real-time virtual replica of physical infrastructure. This paper proposes a comprehensive, formalized framework for a highway Digital Twin, structured into three integrated components: a Physical Space, which defines key performance indicators through mathematical state vectors; a Data Interconnection layer for real-time data processing; and a Virtual Space equipped with hybrid models. We provide a formal definition of these state vectors and a dynamic synchronization mechanism between the physical and virtual spaces. In this study, we focused on pavement condition assessment by using a data-driven component using accessible technology. This study show the synergy between the Digital Twin and deep learning, specifically by integrating advanced analytical models within the Virtual Space for intelligent pavement condition assessment. To validate this approach, a case study was conducted to classify road surface anomalies using low-cost Inertial Measurement Unit (IMU) data. We evaluated several machine learning classifiers and introduced a novel parallel Gated Recurrent Unit network. The results demonstrate that our proposed architecture achieved superior performance, with an accuracy of 89.5% and an F1-score of 0.875, significantly outperforming traditional methods. The findings validate the viability of the proposed Digital Twin framework and highlight its potential to achieve high-precision pavement monitoring using low-cost sensor data, a critical step towards intelligent road infrastructure management. Full article
(This article belongs to the Special Issue Advances in Smart Environments and Digital Twin Technologies)
Show Figures

Figure 1

29 pages, 509 KB  
Review
A Review of Automatic Fake News Detection: From Traditional Methods to Large Language Models
by Repede Ștefan Emil and Brad Remus
Future Internet 2025, 17(10), 435; https://doi.org/10.3390/fi17100435 - 25 Sep 2025
Abstract
In the current digital era, the spread of fake news presents serious difficulties. This study offers a thorough analysis of recent developments in false news automatic detection techniques, from traditional methods to the most recent developed models like large language models. The review [...] Read more.
In the current digital era, the spread of fake news presents serious difficulties. This study offers a thorough analysis of recent developments in false news automatic detection techniques, from traditional methods to the most recent developed models like large language models. The review identifies four perspectives on automatic detection of fake news that are oriented towards knowledge, style, propagation, and source of the misinformation. This paper describes how automatic detection methods use data science techniques such as deep learning, large language models, and traditional machine learning. In addition to discussing the shortcomings of existing approaches, such as the absence of datasets, this paper emphasizes the multidimensional function of large language models in creating and identifying fake news while underlining the necessity for textual, visual, and audio common analysis, multidisciplinary collaboration, and greater model transparency. Full article
(This article belongs to the Special Issue Generative Artificial Intelligence in Smart Societies)
Show Figures

Figure 1

31 pages, 792 KB  
Review
An Overview on the Landscape of Self-Adaptive Cloud Design and Operation Patterns: Goals, Strategies, Tooling, Evaluation, and Dataset Perspectives
by Apostolos Angelis and George Kousiouris
Future Internet 2025, 17(10), 434; https://doi.org/10.3390/fi17100434 - 24 Sep 2025
Viewed by 186
Abstract
Cloud-native applications have significantly advanced the development and scalability of online services through the use of microservices and modular architectures. However, achieving adaptability, resilience, and efficient performance management within cloud environments remains a key challenge. This work systematically reviews 111 publications from the [...] Read more.
Cloud-native applications have significantly advanced the development and scalability of online services through the use of microservices and modular architectures. However, achieving adaptability, resilience, and efficient performance management within cloud environments remains a key challenge. This work systematically reviews 111 publications from the last eight years on self-adaptive cloud design and operations patterns, classifying them by objectives, control scope, decision-making approach, automation level, and validation methods. Our analysis reveals that performance optimization dominates research goals, followed by cost reduction and security enhancement, with availability and reliability underexplored. Reactive feedback loops prevail, while proactive approaches—often leveraging machine learning—are increasingly applied to predictive resource provisioning and application management. Resource-oriented adaptation strategies are common, but direct application-level reconfiguration remains scarce, representing a promising research gap. We further catalog tools, platforms, and more than 30 publicly accessible datasets used in validation, and that dataset usage is fragmented without a de facto standard. Finally, we map the research findings on a generic application and system-level design for self-adaptive applications, including a proposal for a federated learning approach for SaaS application Agents. This blueprint aims to guide future work toward more intelligent, context-aware cloud automation. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

20 pages, 4847 KB  
Article
Deep Learning-Based Approach to Automated Monitoring of Defects and Soiling on Solar Panels
by Ahmed Hamdi, Hassan N. Noura and Joseph Azar
Future Internet 2025, 17(10), 433; https://doi.org/10.3390/fi17100433 - 23 Sep 2025
Viewed by 145
Abstract
The reliable operation of photovoltaic (PV) systems is often compromised by surface soiling and structural damage, which reduce energy efficiency and complicate large-scale monitoring. To address this challenge, we propose a two-tiered image-classification framework that combines Vision Transformer (ViT) models, lightweight convolutional neural [...] Read more.
The reliable operation of photovoltaic (PV) systems is often compromised by surface soiling and structural damage, which reduce energy efficiency and complicate large-scale monitoring. To address this challenge, we propose a two-tiered image-classification framework that combines Vision Transformer (ViT) models, lightweight convolutional neural networks (CNNs), and knowledge distillation (KD). In Tier 1, a DINOv2 ViT-Base model is fine-tuned to provide robust high-level categorization of solar-panel images into three classes: Normal, Soiled, and Damaged. In Tier 2, two enhanced EfficientNetB0 models are introduced: (i) a KD-based student model distilled from a DINOv2 ViT-S/14 teacher, which improves accuracy from 96.7% to 98.67% for damage classification and from 90.7% to 92.38% for soiling classification, and (ii) an EfficientNetB0 augmented with Multi-Head Self-Attention (MHSA), which achieves 98.73% accuracy for damage and 93.33% accuracy for soiling. These results demonstrate that integrating transformer-based representations with compact CNN architectures yields a scalable and efficient solution for automated monitoring of the condition of PV systems, offering high accuracy and real-time applicability in inspections on solar farms. Full article
Show Figures

Figure 1

21 pages, 491 KB  
Article
Minimal Overhead Modelling of Slow DoS Attack Detection for Resource-Constrained IoT Networks
by Andy Reed, Laurence S. Dooley and Soraya Kouadri Mostefaoui
Future Internet 2025, 17(10), 432; https://doi.org/10.3390/fi17100432 - 23 Sep 2025
Viewed by 84
Abstract
The increasing deployment of internet of things(IoT) systems across critical domains has broadened the threat landscape, and being the catalyst for a variety of security concerns, including very stealthy slow denial of service (slow DoS) attacks. These exploit the hypertext transfer protocol’s (HTTP) [...] Read more.
The increasing deployment of internet of things(IoT) systems across critical domains has broadened the threat landscape, and being the catalyst for a variety of security concerns, including very stealthy slow denial of service (slow DoS) attacks. These exploit the hypertext transfer protocol’s (HTTP) application-layer protocol to either close down service requests or degrade responsiveness while closely mimicking legitimate traffic. Current available datasets fail to capture the more stealthy operational profiles of slow DoS attacks or account for the presence of genuine slow nodes (SN), which are devices experiencing high latency. These can significantly degrade detection accuracy since slow DoS attacks closely emulate SN. This paper addresses these problems by synthesising a realistic HTTP slow DoS dataset derived from a live IoT network, that incorporates both stealth-tuned slow DoS traffic and legitimate SN traffic, with the three main slow DoS variants of slow GET, slow Read, and slow POST being critically evaluated under these network conditions. A limited packet capture (LPC) strategy is adopted which focuses on just two metadata attributes, namely packet length (lp) and packet inter-arrival time (Δt). Using a resource lightweight decision tree classifier, the proposed model achieves over 96% accuracy while incurring minimal computational overheads. Experimental results in a live IoT network reveal the negative classification impact of including SN traffic, thereby underscoring the importance of modelling stealthy attacks and SN latency in any slow DoS detection framework. Finally, a MPerf (Modelling Performance) is presented which quantifies and balances detection accuracy against processing costs to facilitate scalable deployment of low-cost detection models in resource-constrained IoT networks. This represents a practical solution to improving IoT resilience against stealthy slow DoS attacks whilst pragmatically balancing the resource-constraints of IoT nodes. By analysing the impact of SN on detection performance, a robust reliable model has been developed which can both measure and fine tune the accuracy-efficiency nexus. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop