Implications for the Ergogenic Benefits of Self-Selected Music in Neurological Conditions: A Theoretical Review
Abstract
1. Introduction
2. Ergogenic Mechanisms of Self-Selected Music
2.1. Physiological
2.2. Psychological
3. Implications for Self-Selected Music as Medicine in Neurological Conditions
3.1. Dysautonomia
3.2. Somatosensory Dysfunction
3.3. Emotional Dysregulation and Affective Disturbance
3.4. Motor Impairments and Dyskinesia
4. Conclusions and Future Research
Author Contributions
Funding
Conflicts of Interest
References
- Ballmann, C.G. The Influence of Music Preference on Exercise Responses and Performance: A Review. J. Funct. Morphol. Kinesiol. 2021, 6, 33. [Google Scholar] [CrossRef]
- Terry, P.C.; Karageorghis, C.I.; Curran, M.L.; Martin, O.V.; Parsons-Smith, R.L. Effects of music in exercise and sport: A meta-analytic review. Psychol. Bull. 2020, 146, 91. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, T.; Sedlmeier, P.; Städtler, C.; Huron, D. The psychological functions of music listening. Front. Psychol. 2013, 4, 511. [Google Scholar] [CrossRef] [PubMed]
- Ballmann, C.G.; McCullum, M.J.; Rogers, R.R.; Marshall, M.R.; Williams, T.D. Effects of Preferred vs. Nonpreferred Music on Resistance Exercise Performance. J. Strength Cond. Res. 2021, 35, 1650–1655. [Google Scholar] [CrossRef]
- Meglic, C.E.; Orman, C.M.; Rogers, R.R.; Williams, T.D.; Ballmann, C.G. Influence of Warm-Up Music Preference on Anaerobic Exercise Performance in Division I NCAA Female Athletes. J. Funct. Morphol. Kinesiol. 2021, 6, 64. [Google Scholar] [CrossRef]
- Rogers, R.R.; Williams, T.D.; Nester, E.B.; Owens, G.M.; Ballmann, C.G. The Influence of Music Preference on Countermovement Jump and Maximal Isometric Performance in Active Females. J. Funct. Morphol. Kinesiol. 2023, 8, 34. [Google Scholar] [CrossRef]
- Ballmann, C.G.; Maynard, D.J.; Lafoon, Z.N.; Marshall, M.R.; Williams, T.D.; Rogers, R.R. Effects of Listening to Preferred versus Non-Preferred Music on Repeated Wingate Anaerobic Test Performance. Sports 2019, 7, 185. [Google Scholar] [CrossRef] [PubMed]
- Ballmann, C.G.; Cook, G.D.; Hester, Z.T.; Kopec, T.J.; Williams, T.D.; Rogers, R.R. Effects of Preferred and Non-Preferred Warm-Up Music on Resistance Exercise Performance. J. Funct. Morphol. Kinesiol. 2020, 6, 3. [Google Scholar] [CrossRef]
- Karow, M.C.; Rogers, R.R.; Pederson, J.A.; Williams, T.D.; Marshall, M.R.; Ballmann, C.G. Effects of Preferred and Nonpreferred Warm-Up Music on Exercise Performance. Percept. Mot. Skills 2020, 127, 912–924. [Google Scholar] [CrossRef]
- Vuong, V.; Hewan, P.; Perron, M.; Thaut, M.H.; Alain, C. The neural bases of familiar music listening in healthy individuals: An activation likelihood estimation meta-analysis. Neurosci. Biobehav. Rev. 2023, 154, 105423. [Google Scholar] [CrossRef]
- Wu, K.; Anderson, J.; Townsend, J.; Frazier, T.; Brandt, A.; Karmonik, C. Characterization of functional brain connectivity towards optimization of music selection for therapy: A fMRI study. Int. J. Neurosci. 2019, 129, 882–889. [Google Scholar] [CrossRef]
- Weineck, K.; Wen, O.X.; Henry, M.J. Neural synchronization is strongest to the spectral flux of slow music and depends on familiarity and beat salience. eLife 2022, 11, e75515. [Google Scholar] [CrossRef]
- Bacon, C.; Myers, T.; Karageorghis, C. Effect of music-movement synchrony on exercise oxygen consumption. J. Sports Med. Phys. Fit. 2012, 52, 359. [Google Scholar]
- Sarasso, P.; Barbieri, P.; Del Fante, E.; Bechis, L.; Neppi-Modona, M.; Sacco, K.; Ronga, I. Preferred music listening is associated with perceptual learning enhancement at the expense of self-focused attention. Psychon. Bull. Rev. 2022, 29, 2108–2121. [Google Scholar] [CrossRef]
- Etani, T.; Miura, A.; Kawase, S.; Fujii, S.; Keller, P.E.; Vuust, P.; Kudo, K. A review of psychological and neuroscientific research on musical groove. Neurosci. Biobehav. Rev. 2024, 158, 105522. [Google Scholar] [CrossRef]
- Stupacher, J.; Hove, M.J.; Novembre, G.; Schütz-Bosbach, S.; Keller, P.E. Musical groove modulates motor cortex excitability: A TMS investigation. Brain Cogn. 2013, 82, 127–136. [Google Scholar] [CrossRef]
- Ballmann, C.G.; Favre, M.L.; Phillips, M.T.; Rogers, R.R.; Pederson, J.A.; Williams, T.D. Effect of Pre-Exercise Music on Bench Press Power, Velocity, and Repetition Volume. Percept. Mot. Skills 2021, 128, 1183–1196. [Google Scholar] [CrossRef]
- Yamashita, S.; Iwai, K.; Akimoto, T.; Sugawara, J.; Kono, I. Effects of music during exercise on RPE, heart rate and the autonomic nervous system. J. Sports Med. Phys. Fit. 2006, 46, 425. [Google Scholar]
- Jia, T.; Ogawa, Y.; Miura, M.; Ito, O.; Kohzuki, M. Music attenuated a decrease in parasympathetic nervous system activity after exercise. PLoS ONE 2016, 11, e0148648. [Google Scholar] [CrossRef]
- Urakawa, K.; Yokoyama, K. Music can enhance exercise-induced sympathetic dominancy assessed by heart rate variability. Tohoku J. Exp. Med. 2005, 206, 213–218. [Google Scholar] [CrossRef]
- Jezova, D.; Hlavacova, N.; Makatsori, A.; Duncko, R.; Loder, I.; Hinghofer-Szalkay, H. Increased anxiety induced by listening to unpleasant music during stress exposure is associated with reduced blood pressure and ACTH responses in healthy men. Neuroendocrinology 2013, 98, 144–150. [Google Scholar] [CrossRef]
- Centala, J.; Pogorel, C.; Pummill, S.W.; Malek, M.H. Listening to fast-tempo music delays the onset of neuromuscular fatigue. J. Strength Cond. Res. 2020, 34, 617–622. [Google Scholar] [CrossRef]
- Rhoads, K.J.; Sosa, S.R.; Rogers, R.R.; Kopec, T.J.; Ballmann, C.G. Sex differences in response to listening to self-selected music during repeated high-intensity sprint exercise. Sexes 2021, 2, 60–68. [Google Scholar] [CrossRef]
- Boone, T.; Linderman, J.K.; Astorino, T.; Baker, J.; Dalleck, L.; Drury, D.; Engals, D.H.; Goulet, E.; Gotshall, R.; Knight-Maloney, M. Cardiovascular responses to music tempo during steady-state exercise. J. Exerc. Physiol. Online 2009, 12, 50–56. [Google Scholar]
- Ghaderi, M.; Nikbakht, H.; Chtourou, H.; Jafari, M.; Chamari, K. Listening to motivational music: Lactate and cortisol response to a single circuit resistance exercise for young male athletes. S. Afr. J. Res. Sport Phys. Educ. Recreat. 2015, 37, 33–45. [Google Scholar]
- Eliakim, M.; Bodner, E.; Eliakim, A.; Nemet, D.; Meckel, Y. Effect of motivational music on lactate levels during recovery from intense exercise. J. Strength Cond. Res. 2012, 26, 80–86. [Google Scholar] [CrossRef]
- Bentouati, E.; Romdhani, M.; Khemila, S.; Chtourou, H.; Souissi, N. The Effects of Listening to Non-preferred or Self-Selected Music during Short-Term Maximal Exercise at Varied Times of Day. Percept. Mot. Skills 2023, 130, 539–554. [Google Scholar] [CrossRef]
- Karageorghis, C.I.; Terry, P.C. The psychophysical effects of music in sport and exercise: A review. J. Sport Behav. 1997, 20, 54. [Google Scholar]
- Hsu, D.Y.; Huang, L.; Nordgren, L.F.; Rucker, D.D.; Galinsky, A.D. The music of power: Perceptual and behavioral consequences of powerful music. Soc. Psychol. Personal. Sci. 2015, 6, 75–83. [Google Scholar] [CrossRef]
- Chtourou, H.; Jarraya, M.; Aloui, A.; Hammouda, O.; Souissi, N. The effects of music during warm-up on anaerobic performances of young sprinters. Sci. Sports 2012, 27, e85–e88. [Google Scholar] [CrossRef]
- Biagini, M.S.; Brown, L.E.; Coburn, J.W.; Judelson, D.A.; Statler, T.A.; Bottaro, M.; Tran, T.T.; Longo, N.A. Effects of self-selected music on strength, explosiveness, and mood. J. Strength Cond. Res. 2012, 26, 1934–1938. [Google Scholar] [CrossRef]
- Nakamura, P.M.; Pereira, G.; Papini, C.B.; Nakamura, F.Y.; Kokubun, E. Effects of preferred and nonpreferred music on continuous cycling exercise performance. Percept. Mot. Skills 2010, 110, 257–264. [Google Scholar] [CrossRef]
- Moss, S.L.; Enright, K.; Cushman, S. The influence of music genre on explosive power, repetitions to failure and mood responses during resistance exercise. Psychol. Sport Exerc. 2018, 37, 128–138. [Google Scholar] [CrossRef]
- Jones, L.; Karageorghis, C.I.; Ekkekakis, P. Can high-intensity exercise be more pleasant? Attentional dissociation using music and video. J. Sport Exerc. Psychol. 2014, 36, 528–541. [Google Scholar] [CrossRef]
- Bigliassi, M.; Karageorghis, C.I.; Bishop, D.T.; Nowicky, A.V.; Wright, M.J. Cerebral effects of music during isometric exercise: An fMRI study. Int. J. Psychophysiol. 2018, 133, 131–139. [Google Scholar] [CrossRef]
- Thompson, W.F.; Schellenberg, E.G.; Husain, G. Arousal, mood, and the Mozart effect. Psychol. Sci. 2001, 12, 248–251. [Google Scholar] [CrossRef]
- Kilpatrick, M.; Kraemer, R.; Bartholomew, J.; Acevedo, E.; Jarreau, D. Affective responses to exercise are dependent on intensity rather than total work. Med. Sci. Sports Exerc. 2007, 39, 1417. [Google Scholar] [CrossRef]
- Carraro, A.; Paoli, A.; Gobbi, E. Affective response to acute resistance exercise: A comparison among machines and free weights. Sport Sci. Health 2018, 14, 283–288. [Google Scholar] [CrossRef]
- Hutchinson, J.C.; Jones, L.; Vitti, S.N.; Moore, A.; Dalton, P.C.; O’Neil, B.J. The influence of self-selected music on affect-regulated exercise intensity and remembered pleasure during treadmill running. Sport Exerc. Perform. Psychol. 2018, 7, 80. [Google Scholar] [CrossRef]
- Elliott, D.; Carr, S.; Savage, D. Effects of Motivational Music on Work Output and Affective Responses During Sub-maximal Cycling of a Standardized Perceived Intensity. J. Sport Behav. 2004, 27, 134. [Google Scholar]
- Lingham, J.; Theorell, T. Self-selected “favourite” stimulative and sedative music listening–how does familiar and preferred music listening affect the body? Nord. J. Music Ther. 2009, 18, 150–166. [Google Scholar] [CrossRef]
- Brownley, K.A.; McMurray, R.G.; Hackney, A.C. Effects of music on physiological and affective responses to graded treadmill exercise in trained and untrained runners. Int. J. Psychophysiol. 1995, 19, 193–201. [Google Scholar] [CrossRef]
- Calik-Kutukcu, E.; Saglam, M.; Vardar-Yagli, N.; Cakmak, A.; Inal-Ince, D.; Bozdemir-Ozel, C.; Sonbahar-Ulu, H.; Arikan, H.; Yalcin, E.; Karakaya, J. Listening to motivational music while walking elicits more positive affective response in patients with cystic fibrosis. Complement. Ther. Clin. Pract. 2016, 23, 52–58. [Google Scholar] [CrossRef]
- Goldstein, D.S. Dysautonomia in Parkinson’s disease: Neurocardiological abnormalities. Lancet Neurol. 2003, 2, 669–676. [Google Scholar] [CrossRef]
- Hovaguimian, A. Dysautonomia: Diagnosis and management. Neurol. Clin. 2023, 41, 193–213. [Google Scholar] [CrossRef]
- Van Iterson, E.H.; Laffin, L.J.; Mayuga, K.A.; Centeno, E.H.; Ahmed, T.; Cho, L.; Ahmed, H.M. High Submaximal exercise heart rate impacts exercise intolerance in the postural orthostatic tachycardia syndrome. J. Cardiopulm. Rehabil. Prev. 2020, 40, 195–201. [Google Scholar] [CrossRef]
- Abbate, G.; Hogwood, A.; Thomas, G.; MARKLEY, R.; Priday, A.; Arena, R.; Abbate, A.; Canada, J. Determinants of Exercise Intolerance in Postural Orthostatic Tachycardia Syndrome: A Systematic Review. Circulation 2024, 150, A4136159. [Google Scholar] [CrossRef]
- Low, D.A.; Vichayanrat, E.; Iodice, V.; Mathias, C.J. Exercise hemodynamics in Parkinson’s disease and autonomic dysfunction. Park. Relat. Disord. 2014, 20, 549–553. [Google Scholar] [CrossRef]
- Mavridis, I.N. Music and the nucleus accumbens. Surg. Radiol. Anat. 2015, 37, 121–125. [Google Scholar] [CrossRef]
- Menon, V.; Levitin, D.J. The rewards of music listening: Response and physiological connectivity of the mesolimbic system. Neuroimage 2005, 28, 175–184. [Google Scholar] [CrossRef]
- Salimpoor, V.N.; Benovoy, M.; Larcher, K.; Dagher, A.; Zatorre, R.J. Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat. Neurosci. 2011, 14, 257–262. [Google Scholar] [CrossRef] [PubMed]
- McCrary, J.M.; Altenmüller, E. Mechanisms of music impact: Autonomic tone and the physical activity roadmap to advancing understanding and evidence-based policy. Front. Psychol. 2021, 12, 727231. [Google Scholar] [CrossRef] [PubMed]
- Harada, T.; Moriwaki, Y.; Ito, S.; Ishizaki, F.; Yamamoto, R.; Niyada, K.; Miyazaki, H.; Nitta, Y.; Aoi, S.; Ikeda, H. Influences of high-resolution music box sounds on the peripheral vascular system. Int. Med. J. 2016, 23, 709–711. [Google Scholar]
- Bigliassi, M.; Barreto-Silva, V.; Kanthack, T.F.D.; Altimari, L.R. Music and cortical blood flow: A functional near-infrared spectroscopy (fNIRS) study. Psychol. Neurosci. 2014, 7, 545. [Google Scholar] [CrossRef]
- Karageorghis, C.I.; Priest, D.-L. Music in the exercise domain: A review and synthesis (Part I). Int. Rev. Sport Exerc. Psychol. 2012, 5, 44–66. [Google Scholar] [CrossRef]
- Szmedra, L.; Bacharach, D. Effect of music on perceived exertion, plasma lactate, norepinephrine and cardiovascular hemodynamics during treadmill running. Int. J. Sports Med. 1998, 19, 32–37. [Google Scholar] [CrossRef]
- Archana, R.; Mukilan, R. Beneficial effect of preferential music on exercise induced changes in heart rate variability. J. Clin. Diagn. Res. JCDR 2016, 10, CC09. [Google Scholar] [CrossRef] [PubMed]
- Selvarajah, D.; Wilkinson, I.D.; Fang, F.; Sankar, A.; Davies, J.; Boland, E.; Harding, J.; Rao, G.; Gandhi, R.; Tracey, I. Structural and functional abnormalities of the primary somatosensory cortex in diabetic peripheral neuropathy: A multimodal MRI study. Diabetes 2019, 68, 796–806. [Google Scholar] [CrossRef]
- Conte, A.; Khan, N.; Defazio, G.; Rothwell, J.C.; Berardelli, A. Pathophysiology of somatosensory abnormalities in Parkinson disease. Nat. Rev. Neurol. 2013, 9, 687–697. [Google Scholar] [CrossRef]
- Mross, K.; Jankowska, M.; Meller, A.; Machowska-Sempruch, K.; Nowacki, P.; Masztalewicz, M.; Pawlukowska, W. Sensory integration disorders in patients with multiple sclerosis. J. Clin. Med. 2022, 11, 5183. [Google Scholar] [CrossRef]
- Zhai, Y.; Su, M.; Ma, C.; Wu, W.; Xu, F.; Jia, X.; Zhang, Y. Rehabilitation for somatosensory disorders. Front. Neurosci. 2024, 18, 1462821. [Google Scholar] [CrossRef] [PubMed]
- Amann, M.; Proctor, L.T.; Sebranek, J.J.; Eldridge, M.W.; Pegelow, D.F.; Dempsey, J.A. Somatosensory feedback from the limbs exerts inhibitory influences on central neural drive during whole body endurance exercise. J. Appl. Physiol. 2008, 105, 1714–1724. [Google Scholar] [CrossRef] [PubMed]
- Foxe, J.J.; Wylie, G.R.; Martinez, A.; Schroeder, C.E.; Javitt, D.C.; Guilfoyle, D.; Ritter, W.; Murray, M.M. Auditory-somatosensory multisensory processing in auditory association cortex: An fMRI study. J. Neurophysiol. 2002, 88, 540–543. [Google Scholar] [CrossRef] [PubMed]
- Koelsch, S.; Cheung, V.K.; Jentschke, S.; Haynes, J.-D. Neocortical substrates of feelings evoked with music in the ACC, insula, and somatosensory cortex. Sci. Rep. 2021, 11, 10119. [Google Scholar] [CrossRef]
- Peckel, M.; Pozzo, T.; Bigand, E. The impact of the perception of rhythmic music on self-paced oscillatory movements. Front. Psychol. 2014, 5, 1037. [Google Scholar] [CrossRef]
- Proksch, S.; Comstock, D.C.; Médé, B.; Pabst, A.; Balasubramaniam, R. Motor and predictive processes in auditory beat and rhythm perception. Front. Hum. Neurosci. 2020, 14, 578546. [Google Scholar] [CrossRef]
- Thaut, M.H.; Rice, R.R.; Braun Janzen, T.; Hurt-Thaut, C.P.; McIntosh, G.C. Rhythmic auditory stimulation for reduction of falls in Parkinson’s disease: A randomized controlled study. Clin. Rehabil. 2019, 33, 34–43. [Google Scholar] [CrossRef]
- Bella, S.D.; Dotov, D.; Bardy, B.; de Cock, V.C. Individualization of music-based rhythmic auditory cueing in Parkinson’s disease. Ann. N. Y. Acad. Sci. 2018, 1423, 308–317. [Google Scholar] [CrossRef]
- Antioch, I.; Furuta, T.; Uchikawa, R.; Okumura, M.; Otogoto, J.; Kondo, E.; Sogawa, N.; Ciobica, A.; Tomida, M. Favorite music mediates pain-related responses in the anterior cingulate cortex and skin pain thresholds. J. Pain Res. 2020, 13, 2729–2737. [Google Scholar] [CrossRef]
- Valevicius, D.; Lépine Lopez, A.; Diushekeeva, A.; Lee, A.C.; Roy, M. Emotional responses to favorite and relaxing music predict music-induced hypoalgesia. Front. Pain Res. 2023, 4, 1210572. [Google Scholar] [CrossRef]
- Lopes-Silva, J.P.; Lima-Silva, A.E.; Bertuzzi, R.; Silva-Cavalcante, M.D. Influence of music on performance and psychophysiological responses during moderate-intensity exercise preceded by fatigue. Physiol. Behav. 2015, 139, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Belden, A.; Quinci, M.A.; Geddes, M.; Donovan, N.J.; Hanser, S.B.; Loui, P. Functional organization of auditory and reward systems in aging. J. Cogn. Neurosci. 2023, 35, 1570–1592. [Google Scholar] [CrossRef]
- De Asis, J.M.; Silbersweig, D.A.; Pan, H.; Young, R.C.; Stern, E. Neuroimaging studies of fronto-limbic dysfunction in geriatric depression. Clin. Neurosci. Res. 2003, 2, 324–330. [Google Scholar] [CrossRef]
- Magalhães, M.L.; Andrade, M.; Lourenço, A.; Soares, G. Functional Neurologic Disorders: The Role of Limbic System. Eur. Psychiatry 2024, 67, S352–S353. [Google Scholar] [CrossRef]
- Chinaglia, G.; Alvarez, F.J.; Probst, A.; Palacios, J. Mesostriatal and mesolimbic dopamine uptake binding sites are reduced in Parkinson’s disease and progressive supranuclear palsy: A quantitative autoradiographic study using [3H] mazindol. Neuroscience 1992, 49, 317–327. [Google Scholar] [CrossRef]
- Nyberg, E.M.; Tanabe, J.; Honce, J.M.; Krmpotich, T.; Shelton, E.; Hedeman, J.; Berman, B.D. Morphologic changes in the mesolimbic pathway in Parkinson’s disease motor subtypes. Park. Relat. Disord. 2015, 21, 536–540. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Shlobin, N.A.; Jung, Y.; Zhang, K.K.; Warsi, N.; Kulkarni, A.V.; Ibrahim, G.M. Nucleus accumbens: A systematic review of neural circuitry and clinical studies in healthy and pathological states. J. Neurosurg. 2022, 138, 337–346. [Google Scholar] [CrossRef]
- Bowles, L.; Curtis, J.; Davies, C.; Lengerich, A.; Bugajski, A. The effect of music on mood, motivation, and exercise among patients in a cardiac rehabilitation program: A pilot study. Nurs. Forum. 2019, 54, 340–344. [Google Scholar] [CrossRef]
- Clark, I.N.; Baker, F.A.; Peiris, C.L.; Shoebridge, G.; Taylor, N.F. Participant-selected music and physical activity in older adults following cardiac rehabilitation: A randomized controlled trial. Clin. Rehabil. 2017, 31, 329–339. [Google Scholar] [CrossRef]
- Amann, M.; Venturelli, M.; Ives, S.J.; McDaniel, J.; Layec, G.; Rossman, M.J.; Richardson, R.S. Peripheral fatigue limits endurance exercise via a sensory feedback-mediated reduction in spinal motoneuronal output. J. Appl. Physiol. 2013, 115, 355–364. [Google Scholar] [CrossRef]
- Winward, C.; Sackley, C.; Meek, C.; Izadi, H.; Barker, K.; Wade, D.; Dawes, H. Weekly exercise does not improve fatigue levels in Parkinson’s disease. Mov. Disord. 2012, 27, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, H.; Matsugi, A.; Nikaido, Y.; Hasegawa, N.; Kawasaki, T.; Okada, Y. Advances in rehabilitation for motor symptoms in neurodegenerative disease. Front. Hum. Neurosci. 2023, 17, 1107061. [Google Scholar] [CrossRef]
- Forman-Hoffman, V.L.; Ault, K.L.; Anderson, W.L.; Weiner, J.M.; Stevens, A.; Campbell, V.A.; Armour, B.S. Disability status, mortality, and leading causes of death in the United States community population. Med. Care 2015, 53, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Wajda, D.A.; Mirelman, A.; Hausdorff, J.M.; Sosnoff, J.J. Intervention modalities for targeting cognitive-motor interference in individuals with neurodegenerative disease: A systematic review. Expert Rev. Neurother. 2017, 17, 251–261. [Google Scholar] [CrossRef]
- Prieto-Avalos, G.; Sánchez-Morales, L.N.; Alor-Hernández, G.; Sánchez-Cervantes, J.L. A review of commercial and non-commercial wearables devices for monitoring motor impairments caused by neurodegenerative diseases. Biosensors 2022, 13, 72. [Google Scholar] [CrossRef]
- Kirmani, B.F.; Shapiro, L.A.; Shetty, A.K. Neurological and neurodegenerative disorders: Novel concepts and treatment. Aging Dis. 2021, 12, 950. [Google Scholar] [CrossRef] [PubMed]
- Lozano, A.M.; Lipsman, N.; Bergman, H.; Brown, P.; Chabardes, S.; Chang, J.W.; Matthews, K.; McIntyre, C.C.; Schlaepfer, T.E.; Schulder, M. Deep brain stimulation: Current challenges and future directions. Nat. Rev. Neurol. 2019, 15, 148–160. [Google Scholar] [CrossRef]
- Sihvonen, A.J.; Särkämö, T.; Leo, V.; Tervaniemi, M.; Altenmüller, E.; Soinila, S. Music-based interventions in neurological rehabilitation. Lancet Neurol. 2017, 16, 648–660. [Google Scholar] [CrossRef]
- Mazzoni, P.; Shabbott, B.; Cortés, J.C. Motor control abnormalities in Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2012, 2, a009282. [Google Scholar] [CrossRef]
- Gordon, C.L.; Cobb, P.R.; Balasubramaniam, R. Recruitment of the motor system during music listening: An ALE meta-analysis of fMRI data. PLoS ONE 2018, 13, e0207213. [Google Scholar] [CrossRef]
- De Bartolo, D.; Morone, G.; Giordani, G.; Antonucci, G.; Russo, V.; Fusco, A.; Marinozzi, F.; Bini, F.; Spitoni, G.; Paolucci, S. Effect of different music genres on gait patterns in Parkinson’s disease. Neurol. Sci. 2020, 41, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Simpkins, C.; Yang, F. Muscle power is more important than strength in preventing falls in community-dwelling older adults. J. Biomech. 2022, 134, 111018. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ballmann, C.G.; Rogers, R.R.; Porrill, S.L.; Washmuth, N.B. Implications for the Ergogenic Benefits of Self-Selected Music in Neurological Conditions: A Theoretical Review. Neurol. Int. 2025, 17, 106. https://doi.org/10.3390/neurolint17070106
Ballmann CG, Rogers RR, Porrill SL, Washmuth NB. Implications for the Ergogenic Benefits of Self-Selected Music in Neurological Conditions: A Theoretical Review. Neurology International. 2025; 17(7):106. https://doi.org/10.3390/neurolint17070106
Chicago/Turabian StyleBallmann, Christopher G., Rebecca R. Rogers, Sophia L. Porrill, and Nicholas B. Washmuth. 2025. "Implications for the Ergogenic Benefits of Self-Selected Music in Neurological Conditions: A Theoretical Review" Neurology International 17, no. 7: 106. https://doi.org/10.3390/neurolint17070106
APA StyleBallmann, C. G., Rogers, R. R., Porrill, S. L., & Washmuth, N. B. (2025). Implications for the Ergogenic Benefits of Self-Selected Music in Neurological Conditions: A Theoretical Review. Neurology International, 17(7), 106. https://doi.org/10.3390/neurolint17070106