USLE K-Factor Method Selection for a Tropical Catchment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sediment Delivery Monitoring
2.3. Sediment Delivery Modelling
2.3.1. Soil Loss Estimates
2.3.2. Sediment Delivery Ratio Modelling
2.3.3. Sediment Delivery Estimates
3. Results and Discussion
3.1. Factors of the USLE
3.2. Sediment Delivery Ratio (SDR)
3.3. SDR-USLE Model Evaluation
3.4. Average Annual Soil Loss and Sediment Yield
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Galdino, S.; Sano, E.E.; Andrade, R.G.; Grego, C.R.; Nogueira, S.F.; Bragantini, C.; Flosi, A.H. Large-scale Modeling of Soil Erosion with RUSLE for Conservationist Planning of Degraded Cultivated Brazilian Pastures. Land Degrad. Dev. 2016, 27, 773–784. [Google Scholar] [CrossRef]
- Oliveira, P.T.S.; Alves Sobrinho, T.; Rodrigues, D.B.B.; Panachuki, E. Erosion Risk Mapping Applied to Environmental Zoning. Water Resour. Manag. 2011, 25, 1021–1036. [Google Scholar] [CrossRef]
- Walling, D.E. The Sediment Delivery Problem. J. Hydrol. 1983, 65. [Google Scholar] [CrossRef]
- De Vente, J.; Poesen, J.; Verstraeten, G.; Rompaey, A.V.; Govers, G. Spatially distributed modelling of soil erosion and sediment yield at regional scales in Spain. Glob. Planet. Chang. 2008, 60, 393–415. [Google Scholar] [CrossRef] [Green Version]
- Alatorre, L.C.; Beguería, S.; Lana-Renault, N.; Navas, A.; García-Ruiz, J.M. Soil erosion and sediment delivery in a mountain catchment under scenarios of land use change using a spatially distributed numerical model. Hydrol. Earth Syst. Sci. 2012, 16, 1321–1334. [Google Scholar] [CrossRef] [Green Version]
- Batista, P.V.G.; Silva, M.L.N.; Silva, B.P.C.; Curi, N.; Bueno, I.T.; Acérbi Júnior, F.W.; Davies, J.; Quinton, J. Modelling spatially distributed soil losses and sediment yield in the upper Grande River Basin—Brazil. Catena 2017, 157, 139–150. [Google Scholar] [CrossRef]
- Didoné, E.J.; Minella, J.P.G.; Merten, G.H. Quantifying soil erosion and sediment yield in a catchment in southern Brazil and implications for land conservation. J. Soils Sediments 2015, 15, 2334–2346. [Google Scholar] [CrossRef]
- Ferro, V.; Minacapilli, M. Sediment delivery processes at basin scale. Hydrol. Sci. J. 1995, 40, 703–717. [Google Scholar] [CrossRef] [Green Version]
- Fryirs, K. (Dis)Connectivity in catchment sediment cascades: A fresh look at the sediment delivery problem. Earth Surf. Process. Landf. 2013, 38, 30–46. [Google Scholar] [CrossRef]
- Jain, M.K.; Kothyari, U.C. Estimation of soil erosion and sediment yield using GIS. Hydrol. Sci. J. 2000, 45, 771–786. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.L.; Lee, K.H. Determining the Sediment Delivery Ratio Using the Sediment-Rating Curve and a Geographic Information System–Embedded Soil Erosion Model on a Basin Scale. J. Hydrol. Eng. 2010, 15, 834–843. [Google Scholar] [CrossRef]
- Lin, C.Y.; Lin, W.T.; Chou, W.C. Soil erosion prediction and sediment yield estimation: The Taiwan experience. Soil Tillage Res. 2002, 68, 143–152. [Google Scholar] [CrossRef]
- Lu, H.; Moran, C.J.; Prosser, I.P. Modelling sediment delivery ratio over the Murray Darling Basin. Environ. Model. Softw. 2006, 21, 1297–1308. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses. A Guide to Conservation Planning. In USDA Agriculture Handbook; USDA, Science and Education Administration: Hyattsville, MD, USA, 1978; Volume 537. [Google Scholar]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; Mccool, D.K.; Yoder, D.C. Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE). In USDA Agriculture Handbook; USDA, Science and Education Administration: Hyattsville, MD, USA, 1997; Volume 703. [Google Scholar]
- Anache, J.A.A.; Wendland, E.C.; Oliveira, P.T.S.; Flanagan, D.C.; Nearing, M.A. Runoff and soil erosion plot-scale studies under natural rainfall: A meta-analysis of the Brazilian experience. CATENA 2017, 152, 29–39. [Google Scholar] [CrossRef]
- Anache, J.A.A.; Flanagan, D.C.; Srivastava, A.; Wendland, E.C. Land use and climate change impacts on runoff and soil erosion at the hillslope scale in the Brazilian Cerrado. Sci. Total Environ. 2018, 622–623, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Couto, A.A.; Da Conceição, F.T.; Fernandes, A.M.; Spatti, E.P.; Lupinacci, C.M.; Moruzzi, R.B. Land use changes associated with the expansion of sugar cane crops and their influences on soil removal in a tropical watershed in São Paulo State (Brazil). Catena 2019, 172, 313–323. [Google Scholar] [CrossRef]
- Gomes, L.; Simões, S.; Dalla Nora, E.; De Sousa-Neto, E.; Forti, M.; Ometto, J. Agricultural Expansion in the Brazilian Cerrado: Increased Soil and Nutrient Losses and Decreased Agricultural Productivity. Land 2019, 8, 12. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schutt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panagos, P.; Borrelli, P.; Meusburger, K.; Yu, B.; Klik, A.; Jae Lim, K.; Yang, J.E.; Ni, J.; Miao, C.; Chattopadhyay, N.; et al. Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Sci. Rep. 2017, 7, 4175. [Google Scholar] [CrossRef]
- Kinnell, P.I.A. A comparison of the abilities of the USLE-M, RUSLE2 and WEPP to model event erosion from bare fallow areas. Sci. Total Environ. 2017, 596-597, 32–42. [Google Scholar] [CrossRef]
- Nearing, M.A.; Romkens, M.J.M.; Norton, L.D.; Stott, D.E.; Rhoton, F.E.; Laflen, J.M.; Flanagan, D.C.; Alonso, C.V.; Binger, R.L.; Dabney, S.M.; et al. Measurements and Models of Soil Loss Rates. Science 2000, 290, 1300–1301. [Google Scholar] [CrossRef]
- Lin, B.-S.; Chen, C.-K.; Thomas, K.; Hsu, C.-K.; Ho, H.-C. Improvement of the K-Factor of USLE and Soil Erosion Estimation in Shihmen Reservoir Watershed. Sustainability 2019, 11, 355. [Google Scholar] [CrossRef]
- Bertoni, J.; Lombardi Neto, F. Conservação do Solo, 5th ed.; Ícone: São Paulo, Brazil, 2005; p. 355. [Google Scholar]
- Borselli, L.; Torri, D.; Poesen, J.; Iaquinta, P. A robust algorithm for estimating soil erodibility in different climates. Catena 2012, 97, 85–94. [Google Scholar] [CrossRef]
- Dumas, J. Relation entre l’érodibilité des sols et leurs caractéristiques analytiques. Cahiers Orstom Série Pédologie Bondy 1965, 3, 307–333. [Google Scholar]
- El-Swaify, S.A.; Dangler, E.W. Erodibilities of selected tropical soils in relation to structural and hydrologic parameters. In Proceedings of the National Conference on Soil Erosion, West Lafayette, Indiana, 24–26 May 1976; pp. 105–110. [Google Scholar]
- Middleton, H.E. Properties of Soils which Influence Soil Erosion; USDA Technical Bulletin; United States Department of Agriculture: Washington, DC, USA, 1930; Volume 178. [Google Scholar]
- Römkens, M.J.M.; Roth, C.B.; Nelson, D.W. Erodibility of selected clay subsoils in relation to physical and chemical properties. Soil Sci. Soc. Am. 1977, 41, 954–960. [Google Scholar] [CrossRef]
- Roth, C.B.; Nelson, D.W.; Römkens, M.J. Prediction of Subsoil Erodibility Using Chemical, Mineralogical and Physical Parameters; United States Government Publishing Office: Washington, DC, USA, 1974. [Google Scholar]
- Stavi, I.; Lal, R. Variability of soil physical quality and erodibility in a water-eroded cropland. Catena 2011, 84, 148–155. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Johnson, C.B.; Cross, B.V. A soil erodibility nomograph for farmland and constrution sites. J. Soil Water Conserv. 1971, 26, 189–193. [Google Scholar]
- Wischmeier, W.H.; Mannering, J.V. Relation of soil properties to its erodibility. Soil Sci. Soc. Am. 1969, 33, 131–137. [Google Scholar] [CrossRef]
- Young, R.A.; Mutchler, C.K. Erodibility of some Minnesota soils. J. Soil Water Conserv. 1977, 32, 180–182. [Google Scholar]
- Burt, T.P.; Mcdonnell, J.J. Whither field hydrology? The need for discovery science and outrageous hydrological hypotheses. Water Resour. Res. 2015, 51, 5919–5928. [Google Scholar] [CrossRef] [Green Version]
- Swarnkar, S.; Malini, A.; Tripathi, S.; Sinha, R. Assessment of uncertainties in soil erosion and sediment yield estimates at ungauged basins: An application to the Garra River basin, India. Hydrol. Earth Syst. Sci. 2018, 22, 2471–2485. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. The clay ratio as a criterion of susceptibility of soils to erosion. J. Am. Soc. Agron. 1935, 27, 738–741. [Google Scholar] [CrossRef]
- Embrapa/Cnps. Sistema Brasileiro de Classificação de Solos; Embrapa Produção de Informação/Rio de Janeiro: EMBRAPA Solo: Brasília, Brazil, 1999. [Google Scholar]
- Carvalho, N.O. Hidrossedimentologia Prática; Editora Interciência: Rio de Janeiro, Brazil, 2008. [Google Scholar]
- Trindade, A.L.F.; Oliveira, P.T.S.; Anache, J.A.A.; Wendland, E. Variabilidade espacial da erosividade das chuvas no Brasil. Pesquisa Agropecuária Brasileira, 2016, 51, 1918–1928. [Google Scholar] [CrossRef]
- Alves Sobrinho, T.; Gómez, J.A.; Macpherson, H.G. A portable rainfall and overland flow simulator. Soil Use Manag. 2008, 24, 163–170. [Google Scholar] [CrossRef]
- Foster, G.R.; Meyer, L.D.; Onstad, C.A. A runoff erosivity factor and variable slope length exponents for soil loss estimates. Trans. ASAE 1977, 20, 683–687. [Google Scholar] [CrossRef]
- Mccool, D.K.; Brown, L.C.; Foster, G.R.; Mutchler, C.K.; Meyer, L.D. Revised slope steepness factor for the Universal Soil Loss Equation. Trans. ASAE 1987, 30, 1387–1396. [Google Scholar] [CrossRef]
- Gómez, J.A.; Nearing, M.A. Runoff and sediment losses from rough and smooth soil surfaces in a laboratory experiment. Catena 2005, 59, 253–266. [Google Scholar] [CrossRef]
- Chiu, Y.-J.; Lee, H.-Y.; Wang, T.-L.; Yu, J.; Lin, Y.-T.; Yuan, Y. Modeling Sediment Yields and Stream Stability Due to Sediment-Related Disaster in Shihmen Reservoir Watershed in Taiwan. Water 2019, 11, 332. [Google Scholar] [CrossRef]
- Chou, W.-C. Modelling Watershed Scale Soil Loss Prediction and Sediment Yield Estimation. Water Resour. Manag. 2010, 24, 2075–2090. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models Part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Sorooshian, S.; Duan, Q.; Gupta, V.K. Calibration of rainfall-runoff models: Application of global optimization to the Sacramento Soil Moisture Accounting Model. Water Resour. Res. 1993, 29, 1185–1194. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. On the use of dimensioned measures of error to evaluate the performance of spatial interpolators. Int. J. Geogr. Inf. Sci. 2006, 20, 89–102. [Google Scholar] [CrossRef]
- Almagro, A.; Oliveira, P.T.S.; Nearing, M.A.; Hagemann, S. Projected climate change impacts in rainfall erosivity over Brazil. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Risse, L.M.; Nearing, M.A.; Laflen, J.M.; Nicks, A.D. Error Assessment in the Universal Soil Loss Equation. Soil Sci. Soc. Am. J. 1993, 57, 825–833. [Google Scholar] [CrossRef]
- Oliveira, P.T.S.; Nearing, M.A.; Wendland, E. Orders of magnitude increase in soil erosion associated with land use change from native to cultivated vegetation in a Brazilian savannah environment. Earth Surf. Process. Landf. 2015, 40, 1524–1532. [Google Scholar] [CrossRef]
- Montgomery, D.R. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 13268–13272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duraes, M.F.; Mello, C.R.; Beskow, S. Sediment yield in Paraopeba River Basin—MG, Brazil. Int. J. River Basin Manag. 2016, 14, 367–377. [Google Scholar] [CrossRef]
- Colman, C.B.; Garcia, K.M.P.; Pereira, R.B.; Shinma, E.A.; Lima, F.E.; Gomes, A.O.; Oliveira, P.T.S. Different approaches to estimate the sediment yield in a tropical watershed. Rbrh 2018, 23. [Google Scholar] [CrossRef]
- Benavidez, R.; Jackson, B.; Maxwell, D.; Norton, K. A review of the (Revised) Universal Soil Loss Equation ((R)USLE): With a view to increasing its global applicability and improving soil loss estimates. Hydrol. Earth Syst. Sci. 2018, 22, 6059–6086. [Google Scholar] [CrossRef]
- Buttafuoco, G.; Conforti, M.; Aucelli, P.P.C.; Robustelli, G.; Scarciglia, F. Assessing spatial uncertainty in mapping soil erodibility factor using geostatistical stochastic simulation. Environ.Earth Sci. 2011, 66, 1111–1125. [Google Scholar] [CrossRef]
- Avalos, F.a.P.; Silva, M.L.N.; Batista, P.V.G.; Pontes, L.M.; De Oliveira, M.S. Digital soil erodibility mapping by soilscape trending and kriging. Land Degrad. Dev. 2018, 29, 3021–3028. [Google Scholar] [CrossRef]
- Wang, G.; Gertner, G.; Liu, X.; Anderson, A. Uncertainty assessment of soil erodibility factor for revised universal soil loss equation. CATENA 2001, 46, 1–14. [Google Scholar] [CrossRef]
- Torri, D.; Poesen, J.; Borselli, L. Predictability and uncertainty of the soil erodibility factor using a global dataset. CATENA 1997, 31, 1–22. [Google Scholar] [CrossRef]
- Parysow, P.; Wang, G.; Gertner, G.; Anderson, A.B. Spatial uncertainty analysis for mapping soil erodibility based on joint sequential simulation. CATENA 2003, 53, 65–78. [Google Scholar] [CrossRef]
- Anache, J.A.A.; Bacchi, C.G.V.; Panachuki, E.; Alves Sobrinho, T. Assessment of methods for predicting soil erodibility in soil loss modeling. Geociências 2015, 34, 32–40. [Google Scholar]
- Singh, M.J.; Khera, K.L. Nomographic estimation and evaluation of soil erodibility under simulated and natural rainfall conditions. Land Degrad. Dev. 2009, 20, 471–480. [Google Scholar] [CrossRef]
- Dawdy, D.R.; Lichty, R.W.; Bergmann, J.M. A Rainfall-Runoff Simulation Model for Estimation of Flood Peaks for Small Drainage Basins. In Synthesis in Hydrology; Geological Survey Professional: Washington, DC, USA, 1972; Volume 2042. [Google Scholar]
- Sheridan, G.J.; Noske, P.J.; Lane, P.N.J.; Sherwin, C.B. Using rainfall simulation and site measurements to predict annual interrill erodibility and phosphorus generations rates from unsealed forest roads: Validation against in-situ erosion measurements. Catena 2008, 73, 49–62. [Google Scholar] [CrossRef]
- Sadeghi, S.H.R.; Bashari Seghaleh, M.; Rangavar, A.S. Plot sizes dependency of runoff and sediment yield estimates from a small watershed. Catena 2013, 102, 55–61. [Google Scholar] [CrossRef]
- Munn, J.R.; Huntington, G.L. A Portable Rainfall Simulator for Erodibility and Infiltration Measurements on Rugged Terrain1. Soil Sci. Soc. Am. J. 1976, 40, 622–624. [Google Scholar] [CrossRef]
Soil Class | CS (a) | FS (b) | Silt | Clay | OC (c) | OM (d) | M (e) | s (f) | p (g) |
---|---|---|---|---|---|---|---|---|---|
NVe (1) | 9.7 | 14.8 | 11.3 | 64.3 | 1.1 | 2.0 | 933.1 | 3.0 | 4.0 |
NVe (2) | 12.3 | 14.7 | 21.5 | 51.5 | 3.8 | 6.6 | 1751.5 | 3.0 | 4.0 |
NVe (3) | 19.2 | 19.9 | 11.5 | 49.5 | 0.6 | 1.0 | 1583.2 | 3.0 | 4.0 |
LVe (4) | 14.2 | 13.1 | 21.1 | 51.7 | 2.9 | 4.9 | 1651.2 | 1.0 | 4.0 |
LVd (5) | 11.2 | 19.7 | 14.1 | 55.0 | 2.0 | 3.5 | 1521.0 | 1.0 | 3.0 |
CXbe (6) | 11.3 | 29.0 | 18.4 | 41.4 | 0.4 | 0.7 | 2777.1 | 2.0 | 4.0 |
GXbe (7) | 12.1 | 21.0 | 20.5 | 46.4 | 1.9 | 3.3 | 2224.4 | 3.0 | 4.0 |
Soil Class | K-Factor (Mg ha h ha−1 MJ−1 mm−1) | Area | ||||
---|---|---|---|---|---|---|
Bouyoucos [38] | Wischmeier and Smith [14] | Renard, Foster, Weesies, Mccool and Yoder [15] | Rainfall Simulator [42] | (ha) | % | |
NVe (1) | 0.006 | 0.014 | 0.045 | 0.021 | 36.2 | 13.4 |
NVe (2) | 0.009 | 0.015 | 0.046 | 0.021 | 63.7 | 23.7 |
NVe (3) | 0.010 | 0.021 | 0.048 | 0.021 | 1.0 | 0.4 |
LVe (4) | 0.009 | 0.008 | 0.046 | 0.003 | 78.9 | 29.3 |
LVd (5) | 0.008 | 0.006 | 0.046 | 0.002 | 36.3 | 13.5 |
CXbe (6) | 0.014 | 0.030 | 0.049 | - | 28.6 | 10.6 |
GXbe (7) | 0.012 | 0.023 | 0.047 | - | 24.2 | 9.0 |
K-Factor Method in SY Estimation | R2 | NSE | RMSE | PBIAS |
---|---|---|---|---|
Bouyoucos [38] | 0.72 | 0.52 | 8.96 | 43.91 |
Wischmeier and Smith [14] | 0.72 | 0.71 | 6.88 | 16.71 |
Renard, Foster, Weesies, Mccool and Yoder [15] | 0.72 | −3.17 | 26.28 | −176.73 |
Rainfall Simulator [42] | 0.72 | 0.49 | 9.22 | 46.46 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, V.S.; Ceddia, M.B.; Antunes, M.A.H.; Carvalho, D.F.; Anache, J.A.A.; Rodrigues, D.B.B.; Oliveira, P.T.S. USLE K-Factor Method Selection for a Tropical Catchment. Sustainability 2019, 11, 1840. https://doi.org/10.3390/su11071840
Marques VS, Ceddia MB, Antunes MAH, Carvalho DF, Anache JAA, Rodrigues DBB, Oliveira PTS. USLE K-Factor Method Selection for a Tropical Catchment. Sustainability. 2019; 11(7):1840. https://doi.org/10.3390/su11071840
Chicago/Turabian StyleMarques, Valter S., Marcos B. Ceddia, Mauro A. H. Antunes, Daniel F. Carvalho, Jamil A. A. Anache, Dulce B. B. Rodrigues, and Paulo Tarso S. Oliveira. 2019. "USLE K-Factor Method Selection for a Tropical Catchment" Sustainability 11, no. 7: 1840. https://doi.org/10.3390/su11071840
APA StyleMarques, V. S., Ceddia, M. B., Antunes, M. A. H., Carvalho, D. F., Anache, J. A. A., Rodrigues, D. B. B., & Oliveira, P. T. S. (2019). USLE K-Factor Method Selection for a Tropical Catchment. Sustainability, 11(7), 1840. https://doi.org/10.3390/su11071840