In-Depth Analysis of Egg-Tempera Paint Layers by Multiphoton Excitation Fluorescence Microscopy
Abstract
:1. Introduction
2. Samples
3. Methods
3.1. UV-Vis-NIR Fibre Optics Reflectance Spectroscopy
3.2. Vis-NIR Photoluminescence
3.3. Laser Induced Fluorescence
3.4. Optical Coherence Tomography
3.5. Nonlinear Optical Microscopy via Multi-Photon Excitation Fluorescence
4. Results
4.1. UV-Vis-NIR Fiber Optics Reflectance Spectroscopy
4.2. Vis-NIR photoluminescence
4.3. Laser Induced Fluorescence
4.4. Optical Coherence Tomography
4.5. Multi-photon Excitation Fluorescence
5. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zipfel, W.R.; Williams, R.M.; Webb, W.W. Nonlinear magic: Multiphoton microscopy in the biosciences. Nat. Biotechnol. 2003, 21, 1369–1377. [Google Scholar] [CrossRef]
- Filippidis, G.; Tserevelakis, G.; Selimis, A.; Fotakis, C. Nonlinear imaging techniques as non-destructive, high-resolution diagnostic tools for cultural heritage studies. Appl. Phys. A 2014, 118, 417–423. [Google Scholar] [CrossRef]
- Latour, G.; Echard, J.-P.; Didier, M.; Schanne-Klein, M.-C. In situ 3D characterization of historical coatings and wood using multimodal nonlinear optical microscopy. Opt. Express 2012, 20, 24623. [Google Scholar] [CrossRef] [Green Version]
- Psilodimitrakopoulos, S.; Gavgiotaki, E.; Melessanaki, K.; Tsafas, V.; Filippidis, G. Polarization Second Harmonic Generation Discriminates Between Fresh and Aged Starch-Based Adhesives Used in Cultural Heritage. Microsc. Microanal. 2016, 22, 1072–1083. [Google Scholar] [CrossRef]
- Filippidis, G.; Massaouti, M.; Selimis, A.; Gualda, E.J.; Manceau, J.-M.; Tzortzakis, S. Nonlinear imaging and THz diagnostic tools in the service of Cultural Heritage. Appl. Phys. A 2011, 106, 257–263. [Google Scholar] [CrossRef]
- Gueta, R.; Tal, E.; Silberberg, Y.; Rousso, I. The 3D structure of the tectorial membrane determined by second-harmonic imaging microscopy. J. Struct. Boil. 2007, 159, 103–110. [Google Scholar] [CrossRef]
- Dombeck, D.A.; Blanchard-Desce, M.; Webb, W.W. Optical Recording of Action Potentials with Second-Harmonic Generation Microscopy. J. Neurosci. 2004, 24, 999–1003. [Google Scholar] [CrossRef] [PubMed]
- Denk, W.; Strickler, J.; Webb, W. Two-photon laser scanning fluorescence microscopy. Science 1990, 248, 73–76. [Google Scholar] [CrossRef] [Green Version]
- Diaspro, A.; Bianchini, P.; Vicidomini, G.; Faretta, M.; Ramoino, P.; Usai, C. Multi-photon excitation microscopy. Biomed. Eng. Online 2006, 5, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filippidis, G.; Gualda, E.J.; Melessanaki, K.; Fotakis, C. Nonlinear imaging microscopy techniques as diagnostic tools for art conservation studies. Opt. Lett. 2008, 33, 240–242. [Google Scholar] [CrossRef] [PubMed]
- Mari, M.; Tsafas, V.; Melessanaki, K.; Filippidis, G. Applications of non-linear imaging microscopy techniques to cultural heritage objects. Insight - Non-Destr. Test. Cond. Monit. 2018, 60, 663–669. [Google Scholar] [CrossRef]
- Targowski, P.; Iwanicka, M. Optical Coherence Tomography: Its role in the non-invasive structural examination and conservation of cultural heritage objects—A review. Appl. Phys. A 2011, 106, 265–277. [Google Scholar] [CrossRef] [Green Version]
- Targowski, P.; Iwanicka, M.; Rouba, B.J.; Frosinini, C. OCT for Examination of Artwork. In Biomaterials; Springer Science and Business Media LLC: Berlin, Germany, 2015; pp. 2473–2495. [Google Scholar]
- Fontana, R.; Dal Fovo, A.; Striova, J.; Pezzati, L.; Pampaloni, E.; Raffaelli, M.; Barucci, M. Application of non-invasive optical monitoring methodologies to follow and record painting cleaning processes. Appl. Phys. A 2015, 121, 957–966. [Google Scholar] [CrossRef]
- Liang, H.; Cid, M.G.; Cucu, R.G.; Dobre, G.M.; Podoleanu, A.; Pedro, J.; Saunders, D. En-face optical coherence tomography—A novel application of non-invasive imaging to art conservation. Opt. Express 2005, 13, 6133. [Google Scholar] [CrossRef] [PubMed]
- Striova, J.; Dal Fovo, A.; Fontani, V.; Barucci, M.; Pampaloni, E.; Raffaelli, M.; Fontana, R. Modern acrylic paints probed by optical coherence tomography and infrared reflectography. Microchem. J. 2018, 138, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Iwanicka, M.; Sylwestrzak, M.; Targowski, P. Optical Coherence Tomography (OCT) for Examination of Artworks. In Advanced Characterization Techniques, Diagnostic Tools and Evaluation Methods in Heritage Science; Springer Science and Business Media LLC: Berlin, Germany, 2018; pp. 49–59. [Google Scholar]
- Liang, H.; Mari, M.; Cheung, C.S.; Kogou, S.; Johnson, P.; Filippidis, G. Optical coherence tomography and non-linear microscopy for paintings—A study of the complementary capabilities and laser degradation effects. Opt. Express 2017, 25, 19640. [Google Scholar] [CrossRef] [Green Version]
- Dal Fovo, A.; Sanz, M.; Mattana, S.; Oujja, M.; Marchetti, M.; Pavone, F.; Cicchi, R.; Fontana, R.; Castillejo, M. Safe limits for the application of nonlinear optical microscopies to cultural heritage: A new method for in-situ assessment. Microchem. J. 2020, 154, 104568. [Google Scholar] [CrossRef]
- Mari, M.; Filippidis, G. Non-Linear Microscopy: A Well-Established Technique for Biological Applications towards Serving as a Diagnostic Tool for in situ Cultural Heritage Studies. Sustainability 2020, 12, 1409. [Google Scholar] [CrossRef] [Green Version]
- Selimis, A.; Vounisiou, P.; Tserevelakis, G.; Melessanaki, K.; Pouli, P.; Filippidis, G.; Beltsios, C.; Georgiou, S.; Fotakis, C. In-depth assessment of modifications induced during the laser cleaning of modern paintings. SPIE Eur. Opt. Metrol. 2009, 7391, 73910. [Google Scholar] [CrossRef]
- Vounisiou, P.; Selimis, A.; Tserevelakis, G.; Melessanaki, K.; Pouli, P.; Filippidis, G.; Beltsios, C.; Georgiou, S.; Fotakis, C. The use of model probes for assessing in depth modifications induced during laser cleaning of modern paintings. Appl. Phys. A 2010, 100, 647–652. [Google Scholar] [CrossRef]
- Filippidis, G.; Mari, M.; Kelegkouri, L.; Philippidis, A.; Selimis, A.; Melessanaki, K.; Sygletou, M.; Fotakis, C. Assessment of In-Depth Degradation of Artificially Aged Triterpenoid Paint Varnishes Using Nonlinear Microscopy Techniques. Microsc. Microanal. 2014, 21, 510–517. [Google Scholar] [CrossRef]
- Oujja, M.; Psilodimitrakopoulos, S.; Carrasco, E.; Sanz, M.; Philippidis, A.; Selimis, A.; Pouli, P.; Filippidis, G.; Castillejo, M. Nonlinear imaging microscopy for assessing structural and photochemical modifications upon laser removal of dammar varnish on photosensitive substrates. Phys. Chem. Chem. Phys. 2017, 19, 22836–22843. [Google Scholar] [CrossRef] [Green Version]
- Faraldi, F.; Tserevelakis, G.; Filippidis, G.; Ingo, G.M.; Riccucci, C.; Fotakis, C. Multi photon excitation fluorescence imaging microscopy for the precise characterization of corrosion layers in silver-based artifacts. Appl. Phys. A 2013, 111, 177–181. [Google Scholar] [CrossRef]
- Villafana, T.E.; Brown, W.P.; Delaney, J.K.; Palmer, M.; Warren, W.S.; Fischer, M.C. Femtosecond pump-probe microscopy generates virtual cross-sections in historic artwork. Proc. Natl. Acad. Sci. USA 2014, 111, 1708–1713. [Google Scholar] [CrossRef] [Green Version]
- Dal Fovo, A.; Oujja, M.; Sanz, M.; Martínez-Hernández, A.; Cañamares, M.V.; Castillejo, M.; Fontana, R. Multianalytical non-invasive characterization of phthalocyanine acrylic paints through spectroscopic and non-linear optical techniques. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2019, 208, 262–270. [Google Scholar] [CrossRef]
- Dal Fovo, A.; Striova, J.; Pampaloni, E.; Barucci, M.; Raffaelli, M.; Mercatelli, R.; Pezzati, L.; Cicchi, R. Nonlinear optical imaging techniques (NLO) for painting investigation. Lasers Conserv. Artworks XI 2017. [Google Scholar] [CrossRef]
- Dupuis, G.; Menu, M. Quantitative characterisation of pigment mixtures used in art by fibre-optics diffuse-reflectance spectroscopy. Appl. Phys. A. 2006, 83, 469–474. [Google Scholar] [CrossRef]
- Romani, A.; Clementi, C.; Miliani, C.; Favaro, G. Fluorescence Spectroscopy: A Powerful Technique for the Noninvasive Characterization of Artwork. Accounts Chem. Res. 2010, 43, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Anglos, D.; Solomidou, M.; Zergioti, I.; Zafiropulos, V.; Papazoglou, T.; Fotakis, C. Laser-Induced Fluorescence in Artwork Diagnostics: An Application in Pigment Analysis. Appl. Spectrosc. 1996, 50, 1331–1334. [Google Scholar] [CrossRef]
- Targowski, P.; Kowalska, M.; Sylwestrzak, M.; Iwanicka, M. OCT for Examination of Cultural Heritage Objects; Wang, M., Ed.; IntechOpen: London, UK; Rijeka, Croatia, 2020; in press. [Google Scholar] [CrossRef]
- Psilodimitrakopoulos, S.; Mouchliadis, L.; Paradisanos, I.; Lemonis, A.; Kioseoglou, G.; Stratakis, E. Ultrahigh-resolution non-linear optical imaging of the armchair orientation in 2D transition metal dichalcogenides. Light-Sci Appl. 2018, 7, 18005. [Google Scholar] [CrossRef] [Green Version]
- Psilodimitrakopoulos, S.; Mouchliadis, L.; Paradisanos, I.; Kourmoulakis, G.; Lemonis, A.; Kioseoglou, G.; Stratakis, E. Twist Angle mapping in layered WS2 by Polarization-Resolved Second Harmonic Generation. Sci. Rep. 2019, 9, 14285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchetti, M.; Baria, E.; Cicchi, R.; Pavone, F. Custom Multiphoton/Raman Microscopy Setup for Imaging and Characterization of Biological Samples. Methods Protoc. 2019, 2, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mercatelli, R.; Mattana, S.; Capozzoli, L.; Ratto, F.; Rossi, F.; Pini, R.; Fioretto, D.; Pavone, F.S.; Caponi, S.; Cicchi, R. Morpho-mechanics of human collagen superstructures revealed by all-optical correlative micro-spectroscopies. Commun. Boil. 2019, 2, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Long, J.; Gu, Q.; Lin, H.; Lin, H.; Wang, X. Photoinduced Reactions between Pb3O4 and Organic Dyes in Aqueous Solution under Visible Light. Inorg. Chem. 2012, 51, 12594–12596. [Google Scholar] [CrossRef] [PubMed]
- Rosi, F.; Grazia, C.; Gabrieli, F.; Romani, A.; Paolantoni, M.; Vivani, R.; Brunetti, B.G.; Colomban, P.; Miliani, C. UV–Vis-NIR and micro Raman spectroscopies for the non destructive identification of Cd 1−x Zn x S solid solutions in cadmium yellow pigments. Microchem. J. 2016, 124, 856–867. [Google Scholar] [CrossRef]
- Grazia, C.; Rosi, F.; Gabrieli, F.; Romani, A.; Paolantoni, M.; Vivani, R.; Brunetti, B.G.; Colomban, P.; Miliani, C. UV–Vis-NIR and microRaman spectroscopies for investigating the composition of ternary CdS 1−x Se x solid solutions employed as artists’ pigments. Microchem. J. 2016, 125, 279–289. [Google Scholar] [CrossRef]
- Accorsi, G.; Verri, G.; Bolognesi, M.; Armaroli, N.; Clementi, C.; Miliani, C.; Romani, A. The exceptional near-infrared luminescence properties of cuprorivaite (Egyptian blue). Chem. Commun. 2009, 23, 3392. [Google Scholar] [CrossRef]
- Pozza, G.; Ajo, D.; Chiari, G.; De Zuane, F.; Favaro, M. Photoluminescence of the inorganic pigments Egyptian blue, Han blue and Han purple. J. Cult. Herit. 2000, 1, 393–398. [Google Scholar] [CrossRef]
- Mounier, A.; Lazare, S.; Le Bourdon, G.; Aupetit, C.; Servant, L.; Daniel, F. LEDμSF: A new portable device for fragile artworks analyses. Application on medieval pigments. Microchem. J. 2016, 126, 480–487. [Google Scholar] [CrossRef]
- De La Rie, E.R. Fluorescence of paint and varnish layers (Part 1). Stud. Conserv. 1982, 27, 1–7. [Google Scholar] [CrossRef]
- Clementi, C.; Rosi, F.; Romani, A.; Vivani, R.; Brunetti, B.G.; Miliani, C. Photoluminescence Properties of Zinc Oxide in Paints: A Study of the Effect of Self-Absorption and Passivation. Appl. Spectrosc. 2012, 66, 1233–1241. [Google Scholar] [CrossRef]
- Nevin, A.; Anglos, D. Assisted Interpretation of Laser-Induced Fluorescence Spectra of Egg-Based Binding Media Using Total Emission Fluorescence Spectroscopy. Laser Chem. 2006, 2006, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Nevin, A.; Cather, S.; Anglos, D.; Fotakis, C. Analysis of protein-based binding media found in paintings using laser induced fluorescence spectroscopy. Anal. Chim. Acta 2006, 573, 341–346. [Google Scholar] [CrossRef]
- Pelagotti, A.; Pezzati, L.; Bevilacqua, N.; Vascotto, V.; Reillon, V.; Daffara, C. A study of UV fluorescence emission of painting materials. In Proceedings of the Art’05–8th International Conference on Non Destructive Investigations and Microanalysis for the Diagnostics and Conservation of the Cultural and Environmental Heritage, Lecce, Italy, 15–19 May 2005. [Google Scholar]
- Thoury, M.; Delaney, J.K.; De La Rie, E.R.; Palmer, M.; Morales, K.; Krueger, J. Near-Infrared Luminescence of Cadmium Pigments: In Situ Identification and Mapping in Paintings. Appl. Spectrosc. 2011, 65, 939–951. [Google Scholar] [CrossRef]
- Borgia, I.; Fantoni, R.; Flamini, C.; Di Palma, T.M.; Guidoni, A.G.; Mele, A. Luminescence from pigments and resins for oil paintings induced by laser excitation. Appl. Surf. Sci. 1998, 127, 95–100. [Google Scholar] [CrossRef]
- Lopez, M.; Bai, X.; Koch-Dandolo, C.; Serfaty, S.; Wilkie-Chancellier, N.; Detalle, V. Nd:YAG vs Er:YAG: A comparative study of laser varnish removal on easel paintings. Opt. Arts Archit. Archaeol. VII 2019, 1105804. [Google Scholar] [CrossRef]
- White, G.W. Improving the accuracy of vertical measurements under the microscope. Microscope 1970, 18, 51–59. [Google Scholar]
- Pouli, P.; Emmony, D. The effect of Nd:YAG laser radiation on medieval pigments. J. Cult. Herit. 2000, 1, S181–S188. [Google Scholar] [CrossRef]
- Comelli, D.; MacLennan, D.; Ghirardello, M.; Phenix, A.; Patterson, C.S.; Khanjian, H.; Gross, M.; Valentini, G.; Trentelman, K.; Nevin, A. Degradation of Cadmium Yellow Paint: New Evidence from Photoluminescence Studies of Trap States in Picasso’s Femme (Époque des “Demoiselles d’Avignon”). Anal. Chem. 2019, 91, 3421–3428. [Google Scholar] [CrossRef]
- Berke, H. The invention of blue and purple pigments in ancient times. Chem. Soc. Rev. 2007, 36, 15–30. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dal Fovo, A.; Sanz, M.; Oujja, M.; Fontana, R.; Mattana, S.; Cicchi, R.; Targowski, P.; Sylwestrzak, M.; Romani, A.; Grazia, C.; et al. In-Depth Analysis of Egg-Tempera Paint Layers by Multiphoton Excitation Fluorescence Microscopy. Sustainability 2020, 12, 3831. https://doi.org/10.3390/su12093831
Dal Fovo A, Sanz M, Oujja M, Fontana R, Mattana S, Cicchi R, Targowski P, Sylwestrzak M, Romani A, Grazia C, et al. In-Depth Analysis of Egg-Tempera Paint Layers by Multiphoton Excitation Fluorescence Microscopy. Sustainability. 2020; 12(9):3831. https://doi.org/10.3390/su12093831
Chicago/Turabian StyleDal Fovo, Alice, Mikel Sanz, Mohamed Oujja, Raffaella Fontana, Sara Mattana, Riccardo Cicchi, Piotr Targowski, Marcin Sylwestrzak, Aldo Romani, Chiara Grazia, and et al. 2020. "In-Depth Analysis of Egg-Tempera Paint Layers by Multiphoton Excitation Fluorescence Microscopy" Sustainability 12, no. 9: 3831. https://doi.org/10.3390/su12093831
APA StyleDal Fovo, A., Sanz, M., Oujja, M., Fontana, R., Mattana, S., Cicchi, R., Targowski, P., Sylwestrzak, M., Romani, A., Grazia, C., Filippidis, G., Psilodimitrakopoulos, S., Lemonis, A., & Castillejo, M. (2020). In-Depth Analysis of Egg-Tempera Paint Layers by Multiphoton Excitation Fluorescence Microscopy. Sustainability, 12(9), 3831. https://doi.org/10.3390/su12093831