Special Issue on Assessing the Modern Bioenergy Potential and Strategies for Sustainable Development: Transformations through Nexus, Policy, and Innovations
1. Overview
2. A Short Review of the Contributions to This Special Issue
2.1. Assessment of Modern Bioenergy: Conditions and Synergies
2.2. Water–Energy Nexus: Trade-Offs and Synergies
2.3. Investments in Modern Biofuels: Failures and Transformations
2.4. Promoting Biofuel Industry: Interdisciplinary PESTLE Analysis Approach
2.5. Innovation in Biofuel Projects—A Participatory Framework
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Reid, W.V.; Ali, M.K.; Field, C.B. The future of bioenergy. Glob. Chang. Biol. 2020, 26, 274–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souza, G.M.; Ballester, M.V.R.; de Brito Cruz, C.H.; Chum, H.; Dale, B.; Dale, V.H.; Fernandes, E.C.M.; Foust, T.; Karp, A.; Lynd, L.; et al. The role of bioenergy in a climate-changing world. Environ. Dev. 2017, 23, 57–64. [Google Scholar] [CrossRef]
- Popp, J.; Lakner, Z.; Harangi-Rákos, M.; Fári, M. The effect of bioenergy expansion: Food, energy, and environment. Renew. Sustain. Energy Rev. 2014, 32, 559–578. [Google Scholar] [CrossRef] [Green Version]
- REN21. REN21 Global Status Report—Renewables. 2020. Available online: https://www.ren21.net/gsr-2020/ (accessed on 1 January 2021).
- IEA. 2020. World Energy Outlook 2020; International Energy Agency (IEA): Paris, France, 2020; Available online: https://www.iea.org/reports/world-energy-outlook-2020 (accessed on 25 December 2020).
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R.; et al. Global warming of 1.5°C An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways. In The Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2018. [Google Scholar]
- Faaij, A. Modern biomass conversion technologies. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 343–375. [Google Scholar] [CrossRef] [Green Version]
- Khatiwada, D.; Purohit, P.; Ackom, E.K. Mapping Bioenergy Supply and Demand in Selected Least Developed Countries (LDCs): Exploratory Assessment of Modern Bioenergy’s Contribution to SDG7. Sustainability 2019, 11, 7091. [Google Scholar] [CrossRef] [Green Version]
- Silveira, S.; Johnson, F.X. Navigating the transition to sustainable bioenergy in Sweden and Brazil: Lessons learned in a European and International context. Energy Res. Soc. Sci. 2016, 13, 180–193. [Google Scholar] [CrossRef]
- Khatiwada, D.; Leduc, S.; Silveira, S.; McCallum, I. Optimizing ethanol and bioelectricity production in sugarcane biorefineries in Brazil. Renew. Energy 2016, 85, 371–386. [Google Scholar] [CrossRef]
- Howells, M.; Hermann, S.; Welsch, M.; Bazilian, M.; Segerström, R.; Alfstad, T.; Gielen, D.; Rogner, H.; Fischer, G.; van Velthuizen, H.; et al. Integrated analysis of climate change, land-use, energy and water strategies. Nat. Clim. Chang. 2013, 3, 621–626. [Google Scholar] [CrossRef]
- Miraji, M.; Li, X.; Liu, J.; Zheng, C. Evaluation of Water and Energy Nexus in Wami Ruvu River Basin, Tanzania. Sustainability 2019, 11, 3109. [Google Scholar] [CrossRef] [Green Version]
- Nygaard, I.; Bolwig, S. The rise and fall of foreign private investment in the jatropha biofuel value chain in Ghana. Environ. Sci. Policy 2018, 84, 224–234. [Google Scholar] [CrossRef] [Green Version]
- Purohit, P.; Dhar, S. Biofuel Roadmap for India; UNEP DTU Partnership: Copenhagen, Denmark, 2015. [Google Scholar]
- Antwi-Bediako, R.; Otsuki, K.; Zoomers, A.; Amsalu, A. Global Investment Failures and Transformations: A Review of Hyped Jatropha Spaces. Sustainability 2019, 11, 3371. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Sun, Y.; Jin, L. PESTEL analysis of the development of the waste-to-energy incineration industry in China. Renew. Sustain. Energy Rev. 2017, 80, 276–289. [Google Scholar] [CrossRef]
- Achinas, S.; Horjus, J.; Achinas, V.; Euverink, G.J.W. A PESTLE Analysis of Biofuels Energy Industry in Europe. Sustainability 2019, 11, 5981. [Google Scholar] [CrossRef] [Green Version]
- Postal, A.M.; Benatti, G.; Palmeros Parada, M.; Asveld, L.; Osseweijer, P.; Da Silveira, J.M.F.J. The Role of Participation in the Responsible Innovation Framework for Biofuels Projects: Can It Be Assessed? Sustainability 2020, 12, 10581. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khatiwada, D.; Purohit, P. Special Issue on Assessing the Modern Bioenergy Potential and Strategies for Sustainable Development: Transformations through Nexus, Policy, and Innovations. Sustainability 2021, 13, 374. https://doi.org/10.3390/su13010374
Khatiwada D, Purohit P. Special Issue on Assessing the Modern Bioenergy Potential and Strategies for Sustainable Development: Transformations through Nexus, Policy, and Innovations. Sustainability. 2021; 13(1):374. https://doi.org/10.3390/su13010374
Chicago/Turabian StyleKhatiwada, Dilip, and Pallav Purohit. 2021. "Special Issue on Assessing the Modern Bioenergy Potential and Strategies for Sustainable Development: Transformations through Nexus, Policy, and Innovations" Sustainability 13, no. 1: 374. https://doi.org/10.3390/su13010374
APA StyleKhatiwada, D., & Purohit, P. (2021). Special Issue on Assessing the Modern Bioenergy Potential and Strategies for Sustainable Development: Transformations through Nexus, Policy, and Innovations. Sustainability, 13(1), 374. https://doi.org/10.3390/su13010374