Phytosociological Data in Assessment of Anthropogenic Changes in Vegetation of Rzeszów Reservoir
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmieder, K. European lake shores in danger-concepts for a sustainable development. Limnologica 2004, 34, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Rouillard, J.; Lago, M.; Abhold, K.; Röschel, L.; Kafyeke, T.; Mattheiß, V.; Klimmek, H. Protecting aquatic biodiversity in Europe: How much do EU environmental policies support ecosystem-based management? Ambio 2018, 47, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Dordević, B.; Dašić, T. Water storage reservoirs and their role in the development, utilization and protection of catchment. Spatium 2011, 24, 9–15. [Google Scholar] [CrossRef]
- Croce, A. Vascular flora of eight water reservoir areas in southern Italy. Check List 2015, 11, 1593. [Google Scholar] [CrossRef] [Green Version]
- Ignatius, A.R.; Rasmussen, T.C. Small reservoir effects on headwater water quality in the rural-urban fringe, Georgia Piedmont, USA. J. Hydrol. Reg. Stud. 2016, 8, 145–161. [Google Scholar] [CrossRef] [Green Version]
- Raposo, M.; Quinto-Canas, R.; Cano-Ortiz, A.; Spampinato, G.; Pinto-Gomes, C. Originalities of Willow of Salix atrocinerea Brot. in Mediterranean Europe. Sustainability 2020, 12, 8019. [Google Scholar] [CrossRef]
- Smith, D.L.; Gravel, V.; Yergeau, E. Editorial: Signaling in the Phytomicrobiome. Front. Plant Sci. 2017, 8, 611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fendrihan, S.; Pop, C.E. Biotechnological potential of plant associated microorganisms. Rom. Biotechnol. Lett. 2021, 26, 2700–2706. [Google Scholar] [CrossRef]
- Tanik, A.; Baykal, B.B.; Gonenc, I.E. The impact of agricultural pollutants in six drinking water reservoirs. Water Sci. Technol. 1999, 40, 11–17. [Google Scholar] [CrossRef]
- Egertson, C.J.; Kopaska, J.A.; Downing, J.A. A century of change in macrophyte abundance and composition in response to agricultural eutrophication. Hydrobiologia 2004, 524, 145–156. [Google Scholar] [CrossRef]
- Koszelnik, P. Atmospheric deposition as a source of nitrogen and phosphorus loads into the Rzeszow reservoir, SE Poland. Environ. Prot. Eng. 2007, 33, 157–165. [Google Scholar]
- Gruca-Rokosz, R.; Tomaszek, J.A.; Koszelnik, P.; Czerwieniec, E. Methane and carbon dioxide emission from some reservoirs in SE Poland. Limnol. Rev. 2010, 10, 15–21. [Google Scholar] [CrossRef]
- Gruca-Rokosz, R. Quantitative fluxes of the greenhouse gases CH4 and CO2 from the surfaces of selected Polish reservoirs. Atmosphere 2020, 11, 286. [Google Scholar] [CrossRef] [Green Version]
- Gołdyn, H. Changes in plant species diversity of aquatic ecosystems in the agricultural landscape in West Poland in the last 30 years. Biodivers. Conserv. 2010, 19, 61–80. [Google Scholar] [CrossRef]
- Sand-Jensen, K.; Bruun, H.H.; Baastrup-Spohr, L. Decade-long time delays in nutrient and plant species dynamics during eutrophication and reoligotrophication of Lake Fure 1900–2015. J. Ecol. 2017, 105, 690–700. [Google Scholar] [CrossRef] [Green Version]
- Duncan, R.P.; Clements, S.E.; Corlett, R.T.; Hahs, A.K.; McCarthy, M.A.; McDonnell, M.J.; Schartz, M.W.; Thompson, K.; Vesk, P.A.; Williams, N.S.G. Plant traits and extinction in urban areas: A meta-analysis of 11 cities. Glob. Ecol. Biogeogr. 2011, 20, 509–519. [Google Scholar] [CrossRef]
- Kozlowski, G.; Bondallaz, L. Urban aquatic ecosystems: Habitat loss and depletion of native macrophyte diversity during the 20th century in four Swiss cities. Urban Ecosyst. 2013, 16, 543–551. [Google Scholar] [CrossRef] [Green Version]
- Lukács, B.A.; Tóthmérész, B.; Borics, G.; Várbíró, G.; Juhász, P.; Kiss, B.; Müller, Z.; G-Tóth, L.; Erős, T. Macrophyte diversity of lakes in the Pannon Ecoregion (Hungary). Limnologica 2015, 53, 74–83. [Google Scholar] [CrossRef]
- Topuzović, M.; Pavlović, D. Physical organization of two reservoirs in Serbia as a crucial factor in development of their hydrophilic flora: A comparative study. Hydrobiologia 2004, 525, 239–243. [Google Scholar] [CrossRef]
- Chappuis, E.; Ballesteros, E.; Gacia, E. Distribution and richness of aquatic plants across Europe and Mediterranean countries: Patterns, environmental driving factors and comparison with total plant richness. J. Veg. Sci. 2012, 23, 985–997. [Google Scholar] [CrossRef]
- Azzella, M.M.; Rostai, L.; Iberite, M.; Bolpagni, R.; Blasi, C. Changes in aquatic plants in the Italian volcanic-lake system detected using current data and historical records. Aquat. Bot. 2014, 112, 41–47. [Google Scholar] [CrossRef]
- Gołdyn, H.; Arczyńska-Chudy, E.; Pińskwar, P.; Jezierska-Madziar, M. Natural and anthropogenic transformations of water and marsh vegetation in Lake Zbęchy (Wielkopolska Region). Oceanol. Hydrobiol. Stud. 2008, 37, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Capers, R.S.; Selsky, R.; Bugbee, G.J. The relative importance of local conditions and regional processes in structuring aquatic plant communities. Freshw. Biol. 2009, 55, 952–966. [Google Scholar] [CrossRef]
- Baláži, P.; Hrivnák, R.; Ot’ahelová, H. The relationship between macrophyte assemblages and selected environmental variables in reservoirs of Slovakia examined for the purpose of ecological assessment. Pol. J. Ecol. 2014, 62, 541–558. [Google Scholar] [CrossRef]
- Bornette, G.; Puijalon, S. Response of aquatic plants to abiotic factors: A review. Aquat. Sci. 2011, 73, 1–14. [Google Scholar] [CrossRef]
- Dar, N.A.; Pandit, A.K.; Ganai, B.A. Factors affecting the distribution patterns of aquatic macrophytes. Limnol. Rev. 2014, 14, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Dodson, S.I.; Arnott, S.E.; Cottingham, K.L. The relationship in lake communities between primary productivity and species richness. Ecology 2000, 81, 2662–2679. [Google Scholar] [CrossRef]
- Vestergaard, O.; Sand-Jensen, K. Aquatic macrophyte richness in Danish lakes in relation to alkalinity, transparency and lake area. Can. J. Fish. Aquat. Sci. 2000, 57, 2022–2031. [Google Scholar] [CrossRef]
- Sun, J.; Hunter, P.D.; Tyler, A.N.; Willby, N.J. The influence of hydrological and land use indicators on macrophyte richness in lakes—A comparison of catchment and landscape buffers across multiple scales. Ecol. Indic. 2018, 89, 227–239. [Google Scholar] [CrossRef]
- Kłosowski, S. The relationships between environmental factors and the submerged Potametea associations in lakes of north-eastern Poland. Hydrobiologia 2006, 560, 15–29. [Google Scholar] [CrossRef]
- Lacoul, P.; Freedman, B. Environmental influences on aquatic plants in freshwater ecosystems. Environ. Rev. 2006, 14, 89–136. [Google Scholar] [CrossRef]
- Svitok, M.; Hrivnák, R.; Oťaheľová, H.; Dúbravková, D.; Paľove-Balang, P.; Slobodník, V. The Importance of Local and Regional Factors on the Vegetation of Created Wetlands in Central Europe. Wetlands 2011, 31, 663–674. [Google Scholar] [CrossRef]
- Penning, W.E.; Mjelde, M.; Dudley, B.; Hellsten, S.; Hanganu, J.; Kolada, A.; van den Berg, M.; Poikane, S.; Phillips, G.; Willby, N.; et al. Classifying aquatic macrophytes as indicators of eutrophication in European lakes. Aquat. Ecol. 2008, 42, 237–251. [Google Scholar] [CrossRef]
- Kolada, A. The use of helophytes in assessing eutrophication of temperate lowland lakes: Added value? Aquat. Bot. 2016, 129, 44–54. [Google Scholar] [CrossRef]
- Bolpagni, R.; Laini, A.; Azella, M.M. Short-term dynamics of submerged aquatic vegetation diversity and abundance in deep lakes. App. Veg. Sci. 2016, 19, 711–723. [Google Scholar] [CrossRef]
- Wypych, A.; Ustrnul, Z.; Schmatz, D.R. Long-term variability of air temperature and precipitation conditions in the Polish Carpathians. J. Mt. Sci. 2018, 15, 237–253. [Google Scholar] [CrossRef]
- Rivas-Martínez, S.; Rivas Sáenz, S.; Penas, A. Worldwide bioclimatic classification system. Glob. Geobot. 2011, 1, 1–634. [Google Scholar] [CrossRef]
- Tutiempo. Available online: http://en.tutiempo.net/ (accessed on 5 May 2019).
- Gruca-Rokosz, R. Stan troficzny zbiornika zaporowego Rzeszów. JCEEA 2013, 30, 279–291. (In Polish) [Google Scholar] [CrossRef]
- Kwiatkowska, M. Roślinność wodna i nadbrzeżna Zalewu Rzeszowskiego. Ann. UMCS Sect. C 1995, 50, 145–171. [Google Scholar]
- Braun-Blanquet, J. Pflanzensoziologie. Grundzüge der Vegetationskunde, 3rd ed.; Springer: Berlin, Germany, 1964. [Google Scholar]
- Mirek, Z.; Piękoś-Mirkowa, H.; Zając, A.; Zając, M. Flowering plants and pteridophytes of Poland–A checklist. In Biodiversity of Poland; Mirek, Z., Ed.; W. Szafer Institute of Botany, Polish Academy of Sciences: Krakow, Poland, 2002; Volume 1. [Google Scholar]
- Szweykowski, J. An annotated checklist of Polish liverworts and hornworst. In Biodiversity of Poland; Mirek, Z., Ed.; W. Szafer Institute of Botany, Polish Academy of Sciences: Krakow, Poland, 2006; Volume 4. [Google Scholar]
- Matuszkiewicz, W. Przewodnik do Oznaczania Zbiorowisk Roślinnych; PWN: Warszawa, Poland, 2005. [Google Scholar]
- ter Braak, C.J.F.; Šmilauer, P. CANOCO Reference Manual and User’s Guide: Software for Ordination, Version 5.0; Microcomputer Power: Ithaca, NY, USA, 2012; p. 500. [Google Scholar]
- Ellenberg, H.; Weber, H.E.; Düll, R.; Wirth, V.; Werner, W.; Paulissen, D. Zeigerwerte von Pflanzen in Mitteleuropa. Scr. Geobot. 1992, 18, 1–258. [Google Scholar]
- Zarzycki, K.; Trzcińska-Tacik, H.; Różański, W.; Szeląg, Z.; Wołek, J.; Korzeniak, U. Ecological Indicator Values of Vascular Plants of Poland. In Biodiversity of Poland; Mirek, Z., Ed.; W. Szafer Institute of Botany, Polish Academy of Sciences: Krakow, Poland, 2002; Volume 2. [Google Scholar]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Illinois, IL, USA, 1963. [Google Scholar]
- Pielou, E.C. Ecological Diversity; John Wiley & Sons: New York, NY, USA, 1975; p. 165. [Google Scholar]
- Kovach, W.L. MVSP–A MultiVariate Statistical Package for Windows, Version 3.1; Kovach Computing Services: Wales, UK, 2005. [Google Scholar]
- van der Maarel, E. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 1979, 39, 97–114. [Google Scholar]
- StatSoft. STATISTICA for Windows; Computer Program Manual. StatSoft: Tulsa, OK, USA, 2010. [Google Scholar]
- Dufrêne, M.; Legendre, P. Species Assemblages and Indicator Species: The Need for a Flexible Asymmetrical Approach. Ecol. Monogr. 1997, 67, 345–366. [Google Scholar] [CrossRef]
- McCune, B.; Mefford, M.J. PC-ORD Multivariate Analysis of Ecological Data. Version 4; MjM Software Design: Gleneden Beach, OR, USA, 1999. [Google Scholar]
- Ho, L.T.; Goethals, P.L.M. Opportunities and Challenges for the Sustainability of Lakes and Reservoirs in Relation to the Sustainable Development Goals (SDGs). Water 2019, 11, 1462. [Google Scholar] [CrossRef] [Green Version]
- Panagopoulos, Y.; Dimitriou, E. A Large-Scale Nature-Based Solution in Agriculture for Sustainable Water Management: The Lake Karla Case. Sustainability 2020, 12, 6761. [Google Scholar] [CrossRef]
- Chappuis, E.; Gacia, E.; Ballesteros, E. Changes in aquatic macrophyte flora over the last century in Catalani water bodies (NE Spain). Aquat. Bot. 2011, 95, 268–277. [Google Scholar] [CrossRef]
- Choiński, A.; Ławniczak, A.; Ptak, M.; Sobkowiak, L. Causes of lake area changes in Poland. J. Resour. Ecol. 2011, 2, 175–180. [Google Scholar] [CrossRef]
- Ot’ahel’owá, H.; Ot’ahel’, J.; Pazúr, R.; Hrivnák, R.; Valachovič, M. Spatio-temporal changes in land cover and aquatic macrophytes of the Dunabe floodplain lake. Limnologica 2011, 41, 316–324. [Google Scholar] [CrossRef] [Green Version]
- Ranta, P.; Toivonen, H. Changes in Aquatic Macrophytes since 1933 in an Urban Lake, Idesjärvi, SW Finland. Ann. Bot. Fennici. 2008, 45, 359–371. [Google Scholar] [CrossRef]
- Ziaja, M.; Wójcik, T. Changes in vascular flora of the Rzeszow Reservoir after 20 years (SE Poland). Pol. J. Environ. Stud. 2015, 24, 1845–1854. [Google Scholar] [CrossRef]
- Hrivnák, R.; Kochjarová, J.; Oťaheľová, H.; Paľove-Balang, P.; Slezák, M.; Slezák, P. Environmental drivers of macrophyte species richness in artificial and natural aquatic water bodies—Comparative approach from two central European regions. Ann. Limnol.-Int. J. Lim. 2014, 50, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Sand-Jensen, K.; Riis, T.; Vestergaard, O.; Larsen, S.E. Macrophyte decline in Danish lakes and streams over the past 100 years. J. Ecol. 2000, 88, 1030–1040. [Google Scholar] [CrossRef]
- Ziaja, M.; Wójcik, T. Występowanie Leersia oryzoides (Poaceae) w zbiorowiskach szuwarowych Zalewu Rzeszowskiego. Fragm. Flor. Geobot. Polon. 2014, 21, 123–132. [Google Scholar]
- Bakker, E.S.; Sarneel, J.M.; Gulati, R.D.; Liu, Z.; van Donk, E.V. Restoring macrophyte diversity in shallow temperate lakes: Biotic versus abiotic constraints. Hydrobiologia 2013, 710, 23–37. [Google Scholar] [CrossRef] [Green Version]
- Murphy, K.J. Plant communities and plant diversity in softwater lakes of northern Europe. Aquat. Bot. 2002, 73, 287–324. [Google Scholar] [CrossRef]
- Mäemets, H.; Palmik, K.; Haldna, M.; Sudnitsyna, D.; Melnik, M. Eutrophication and macrophyte species richness in the large shallow North-European Lake Peipsi. Aquat. Bot. 2010, 92, 273–280. [Google Scholar] [CrossRef]
- Naselli-Flores, L. Mediterranean Climate and Eutrophication of Reservoirs: Limnological Skills to Improve Management. In Eutrophication: Causes, Consequences and Control; Ansari, A.A., Gill, S.S., Lanza, G.R., Rast., W., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 131–142. [Google Scholar]
- Phillips, G.; Willby, N.; Moss, B. Submerged macrophyte decline in shallow lakes: What have we learnt in the last forty years? Aquat. Bot. 2016, 135, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Lauridsen, T.L.; Jensen, J.P.; Jeppesen, E.; Søndergaard, M. Response of submerged macrophytes in Danish lakes to nutrient loading reductions and biomanipulation. Hydrobiologia 2003, 506–509, 641–649. [Google Scholar] [CrossRef]
- Søndergaard, M.; Johansson, L.S.; Lauridsen, T.L.; Jørgensen, T.B.; Liboriussen, L.; Jeppesen, E. Submerged macrophytes as indicators of the ecological quality of lakes. Freshw. Biol. 2010, 55, 893–908. [Google Scholar] [CrossRef]
- Topuzović, M.; Pavlović, D.; Ostojić, A. Temporal and habitat distribution of macrophytes in lowland eutrophic reservoir Gruža in Serbia. Period. Biol. 2015, 117, 67–73. [Google Scholar] [CrossRef]
- Bilz, M.; Kell, S.P.; Maxted, N.; Lansdown, R.V. European Red List of Vascular Plants; Publication Office of the European Union: Luxembourg, 2011. [Google Scholar]
- Kaźmierczakowa, R.; Bloch-Orłowska, J.; Celka, Z.; Cwener, A.; Dajdok, Z.; Michalska-Hejduk, D.; Pawlikowski, P.; Szczęśniak, E.; Ziarnek, K. Polish Red List of Pteridophytes and Flowering Plants; Institute of Nature Conservation, Polish Academy of Sciences: Krakow, Poland, 2016. [Google Scholar]
- Kukuła, K.; Bylak, A. Expansion of water chestnut in a small dam reservoir: From pioneering colony to dense floating mat. Period. Biol. 2017, 119, 137–140. [Google Scholar] [CrossRef]
- Li, L.; Zerbe, S.; Han, W.; Thevs, N.; Li, W.; He, P.; Schmitt, A.O.; Liu, Y.; Ji, C. Nitrogen and phosphorus stoichiometry of common reed (Phragmites australis) and its relationship to nutrient availability in northern China. Aquat. Bot. 2014, 112, 84–90. [Google Scholar] [CrossRef]
- Poddubnyi, A.; Papchenkov, V.G.; Chemeris, E.V.; Bobro, A.A. Overgrowing of Protected Shallow Waters in the Upper Volga Reservoirs in Relation to Their Morphometry. Inland Water Biol. 2017, 10, 64–72. [Google Scholar] [CrossRef]
- Arthaud, F.; Vallod, D.; Robin, J.; Wezel, A.; Bornette, G. Short-term succession of aquatic plant species richness along ecosystem productivity and dispersal gradients in shallow lakes. J. Veg. Sci. 2013, 24, 148–156. [Google Scholar] [CrossRef]
Syntaxonomic Composition | 1994 | 2016 |
---|---|---|
No. of Relevés | No. of Relevés | |
Cl. Lemnetea minoris R.Tx. 1955 O. Lemnetalia minoris R.Tx. 1955 All. Lemnion gibbae R.Tx. et A. Schwabe 1974 in R.Tx. 1974 | ||
Lemnetum gibbae Miy. et J. Tx. 1960 | 2 | |
community with Lemna gibba and Lemna minor | 1 | |
community with Lemna minor and Spirodela polyrhiza | 7 | |
Spirodeletum polyrhizae (Kelhofer 1915) W.Koch 1954 em. R.Tx. et A.Schwabe 1974 in R.Tx. 1974 | 2 | |
community with Lemna minor and Lemna trisulca | 3 | |
Cl. Potametea R.Tx. et Prsg O. Potametalia Koch 1926 | ||
All. Potamion Koch 1926 em. Oberd. 1957 | ||
community with Potamogeton crispus | 1 | |
Potametum pectinati Carstensen 1955 | 5 | |
Ranunculetum circinati (Bennema et West. 1943) Segal 1965 | 2 | |
Elodeetum canadensis (Pign. 1953) Pass. 1964 | 3 | |
community with Elodea canadensis and Potamogeton natans | 2 | |
community with Utricularia vulgaris | 2 | |
Ceratophylletum demersi Hild. 1956 | 6 | |
All. Nymphaeion Oberd. 1953 | ||
Hydrocharitetum morsus-ranae Langendonck 1935 | 3 | |
Potametum natantis Soó 1923 | 3 | |
community with Potamogeton natans and Myriophyllum verticillatum | 1 | |
Myriophylletum verticillati Soó 1927 | 2 | |
Trapetum natantis Müll. et Görs 1969 | 8 | |
Cl. Phragmitetea R.Tx. et Prsg 1942 O. Phragmitetalia Koch 1926 | ||
All. Phragmition Koch 1926 | ||
Scirpetum lacustris (Allorge 1922) Chouard 1924 | 3 | |
Typhetum angustifoliae (Allorge 1922) Soó 1927 | 6 | 10 |
Sparganietum erecti Roll 1938 | 3 | 8 |
Eleocharitetum palustris Šennikov 1919 | 2 | 1 |
Equisetetum fluviatilis Steffen 1931 | 7 | |
Phragmitetum australis (Gams 1927) Schmale 1939 | 2 | 7 |
Typhetum latifoliae Soó 1927 | 18 | 19 |
Oenantho-Rorippetum Lohm. 1950 | 10 | |
Glycerietum maximae Hueck 1931 | 5 | 8 |
Scirpetum maritimi (Br.-Bl. 1931) R.Tx. 1937 | 2 | |
All. Magnocaricion Koch 1926 | ||
Caricetum ripariae Soó 1928 | 1 | 4 |
Caricetum gracilis (Graebn. et Hueck 1931) R.Tx. 1937 | 2 | |
Phalaridetum arundinaceae (Koch 1926 n.n.) Libb. 1931 | 11 | 7 |
All. Sparganio-Glycerion fluitantis Br.-Bl. et Siss. in Boer 1942 | ||
Leersietum oryzoidis (Krause in R.Tx. 1955) Pass. 1957 | 8 | |
Cl. Scheuchzerio-Caricetea nigrae (Nordh. 1937) R.Tx. 1937 O. Caricetalia nigrae Koch 1926 em. Nordh. 1937 All. Caricion nigrae Koch 1926 em. Klika 1934 | ||
community with Juncus articulatus | 2 | |
Cl. Bidentetea tripartiti R.Tx., Lohm. et Prsg 1950 O. Bidentetalia tripartiti Br.-Bl. et R.Tx. 1943 All. Bidention tripartiti Nordh. 1940 | ||
community with Polygonum nodosum | 1 | |
Cl. Molinio-Arrhenatheretea R.Tx. 1937 O. Molinietalia careuleae W.Koch 1926 All. Calthion palustris R.Tx. 1936 em. Oberd. 1957 | ||
Scirpetum sylvatici Ralski 1931 | 2 | 5 |
Cl. Salicetea purpurea Moor 1958 O. Salicetalia purpurea Moor 1958 All. Salicion albae R.Tx. 1955 | ||
Salicetum triandro-viminalis Lohm. 1952 | 18 |
Period | U | p | ||||
---|---|---|---|---|---|---|
1994 | 2016 | |||||
Mean | ±SD | Mean | ±SD | |||
Species richness (S) | 8.89 | 4.01 | 9.03 | 4.26 | 7111 | ns |
Diversity (H’) | 2.01 | 0.39 | 2.03 | 0.51 | 6606 | ns |
Evenness (J’) | 0.954 | 0.014 | 0.972 | 0.018 | 2440 | <0.05 |
Ellenberg indicator values | ||||||
Light (L) | 4.06 | 0.19 | 4.01 | 0.06 | 5342 | <0.05 |
Moisture (F) | 5.33 | 0.57 | 5.29 | 0.51 | 7111 | ns |
Nitrogen (N) | 3.82 | 0.25 | 3.74 | 0.21 | 5952 | <0.05 |
Reaction (R) | 4.04 | 0.31 | 4.32 | 0.58 | 4578 | <0.05 |
Diagnostic Species Groups | 1994 | 2016 | ||
---|---|---|---|---|
No. of Species | Cover Index | No. of Species | Cover Index | |
ChCl. Lemnetea minoris | 5 | 2912.94 | 4 | 773.37 |
ChCl. Potametea | 9 | 1772.57 | 10 | 579.19 |
ChCl. Phragmitetea | 26 | 5022.60 | 32 | 5492.37 |
ChCl. Bidentetea tripartiti | 5 | 5.49 | 4 | 26.71 |
ChCl. Molinio-Arrhenatheretea | 33 | 291.17 | 16 | 222.75 |
ChCl. Artemisietea | 12 | 35.70 | 15 | 205.89 |
ChCl. Salicetea purpurea | 6 | 57.54 | 7 | 844.92 |
ChCl. Alnetea glutinosae | 4 | 3.36 | 9 | 193.93 |
Others | 25 | 6697.91 | 10 | 238.63 |
Species | Period | IndVal | p-Value |
---|---|---|---|
Rorippa amphibia (L.) Besser | A | 61.8 | 0.015 |
Phalaris arundinaceae L. | A | 59.9 | 0.019 |
Lemna minor L. | A | 55.6 | 0.017 |
Alisma plantago-aquatica L. | A | 39.3 | 0.121 |
Glyceria maxima (Hartm.) Holmb. | B | 58.6 | 0.009 |
Berula erecta (Huds.) Coville | B | 53.2 | 0.006 |
Mentha aquatica L. | B | 42.9 | 0.071 |
Typha latifoliae L. | B | 40.7 | 0.006 |
Rumex hydrolapathum Huds. | B | 32.5 | 0.053 |
Galium palustre L. | B | 27.9 | 0.046 |
Hydrocharis morsus-ranae L. | B | 26.4 | 0.043 |
Leersia oryzoides (L.) Sw. | B | 25.3 | 0.042 |
Carex pseudocyperus L. | B | 18.7 | 0.003 |
Phragmites australis (Cav.) Trin. ex Steud | B | 18.6 | 0.025 |
Spirodela polyrhiza (L.) Shleid. | B | 18.1 | 0.031 |
Trapa natans L. s. l. | B | 15.4 | 0.025 |
Sparganium erectum L. Emden. Rchb. s. str. | B | 15.3 | 0.025 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziaja, M.; Wójcik, T.; Wrzesień, M. Phytosociological Data in Assessment of Anthropogenic Changes in Vegetation of Rzeszów Reservoir. Sustainability 2021, 13, 9071. https://doi.org/10.3390/su13169071
Ziaja M, Wójcik T, Wrzesień M. Phytosociological Data in Assessment of Anthropogenic Changes in Vegetation of Rzeszów Reservoir. Sustainability. 2021; 13(16):9071. https://doi.org/10.3390/su13169071
Chicago/Turabian StyleZiaja, Maria, Tomasz Wójcik, and Małgorzata Wrzesień. 2021. "Phytosociological Data in Assessment of Anthropogenic Changes in Vegetation of Rzeszów Reservoir" Sustainability 13, no. 16: 9071. https://doi.org/10.3390/su13169071
APA StyleZiaja, M., Wójcik, T., & Wrzesień, M. (2021). Phytosociological Data in Assessment of Anthropogenic Changes in Vegetation of Rzeszów Reservoir. Sustainability, 13(16), 9071. https://doi.org/10.3390/su13169071