Minimizing Lentil Harvest Loss through Improved Agronomic Practices in Sustainable Agro-Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Agronomic Parameter Measurements
2.4. Statistical Analysis
3. Results
3.1. Impacts of Rolling Timing on Lentil Plant Density and Seed Lost
3.2. Stubble Management Impact on Lentil Plant Height, Lowest Pod Position and Seed Loss
3.3. The Impact of Pesticide Application on Lentil Growth
4. Discussion
4.1. Optimized Timing of Rolling Can Reduce Lentil Seed Lost
4.2. Stubble Management Can Impact Seed Loss by Affecting Lentil Plant Height and Lowest Pod Position
4.3. Pesticide Application Can Influence Lentil Seed Loss
4.4. Interactions among Agronomic Activities
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Joshi, M.; Timilsena, Y.; Adhikari, B. Global production, processing and utilization of lentil: A review. J. Integr. Agric. 2017, 16, 2898–2913. [Google Scholar] [CrossRef]
- Warne, T.; Ahmed, S.; Shanks, C.B.; Miller, P. Sustainability Dimensions of a North American Lentil System in a Changing World. Front. Sustain. Food Syst. 2019, 3, 88. [Google Scholar] [CrossRef] [Green Version]
- Erskine, W.; Tufail, M.; Russell, A.; Tyagi, M.C.; Rahman, M.M.; Saxena, M.C. Current and future strategies in breeding lentil for resistance to biotic and abiotic stresses. Euphytica 1994, 73, 127–135. [Google Scholar] [CrossRef]
- Bansal, R.K.; Monroe, G.E.; Dahan, R.; El Gharras, O.; Bahri, A. Mechanization of Lentil Harvesting in Morocco. Appl. Eng. Agric. 1994, 10, 641–646. [Google Scholar] [CrossRef]
- Gharakhani, H.; Alimardani, R.; Jafari, A. Design a new cutter-bar mechanism with flexible blades and its evaluation on harvesting of lentil. Eng. Agric. Environ. Food 2017, 10, 198–207. [Google Scholar] [CrossRef]
- Gürsoy, S.; Türk, Z. Effects of land rolling on soil properties and plant growth in chickpea production. Soil Tillage Res. 2019, 195, 104425. [Google Scholar] [CrossRef]
- Bandyopadhyay, P.; Singh, K.; Mondal, K.; Nath, R.; Ghosh, P.; Kumar, N.; Basu, P.; Singh, S. Effects of stubble length of rice in mitigating soil moisture stress and on yield of lentil (Lens culinaris Medik) in rice-lentil relay crop. Agric. Water Manag. 2016, 173, 91–102. [Google Scholar] [CrossRef]
- Cutforth, H.W.; McConkey, B.G.; Ulrich, D.; Miller, P.R.; Angadi, S.V. Yield and water use efficiency of pulses seeded directly into standing stubble in the semiarid Canadian Prairie. Can. J. Plant Sci. 2002, 82, 681–686. [Google Scholar] [CrossRef]
- Cutforth, H.W.; McConkey, B.G. Stubble height effects on microclimate, yield and water use efficiency of spring wheat grown in a semiarid climate on the Canadian prairies. Can. J. Plant Sci. 1997, 77, 359–366. [Google Scholar] [CrossRef]
- Nilsen, E.T.; Orcutt, D.M. Physiology of Plants under Stress: Soil and Biotic Factors; John Wiley & Sons: Blacksburg, VA, USA, 1996. [Google Scholar]
- Sarkar, S.; Singh, S. Interactive effect of tillage depth and mulch on soil temperature, productivity and water use pattern of rainfed barley (Hordium vulgare L.). Soil Tillage Res. 2007, 92, 79–86. [Google Scholar] [CrossRef]
- Buchwaldt, L.; Dzananovic, E.; Durkin, J. Lentil anthracnose: Epidemiology, fungicide decision support system, resistance and pathogen races. Can. J. Plant Pathol. 2018, 40, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Kasper, K.M. The Effect of Seeding Rate and Fungicide Applications on Lentil Cultivars; University of Saskatchewan: Saskatoon, SK, Canada, 2019. Available online: https://harvest.usask.ca/bitstream/handle/10388/11909/KASPER-THESIS-2019.pdf?sequence=1&isAllowed=y (accessed on 18 August 2020).
- Ahmadi, A.R.; Shahbazi, S.; Diyanat, M. Efficacy of Five Herbicides for Weed Control in Rain-Fed Lentil (Lens culinaris Med-ik.). Weed Technol. 2017, 30, 448–455. [Google Scholar] [CrossRef]
- Subedi, M.; Vandenberg, B. Efficacy of Strobilurin fungicides on yield and milling quality traits in red lentil. In Soils and Crops Workshop; University of Saskatchewan: Saskatoon, SK, Canada, 2017. [Google Scholar]
- Hillel, D. Environmental Soil physics: Fundamentals, Applications, and Environmental Considerations; Elsevier: Amstredam, The Netherlands, 1998. [Google Scholar]
- Bengough, A.G.; Mullins, C.E. Mechanical impedance to root growth: A review of experimental techniques and root growth responses. J. Soil Sci. 1990, 41, 341–358. [Google Scholar] [CrossRef]
- Cook, A.; Marriott, C.; Seel, W.; Mullins, C. Effects of soil mechanical impedance on root and shoot growth ofLolium perenneL, Agrostis capillarisandTrifolium repensL. J. Exp. Bot. 1996, 47, 1075–1084. [Google Scholar] [CrossRef] [Green Version]
- Ishaq, M.; Hassan, A.N.; Saeed, M.; E Ibrahim, M.; Lal, R. Subsoil compaction effects on crops in Punjab, Pakistan. Soil Tillage Res. 2001, 59, 57–65. [Google Scholar] [CrossRef]
- Oussible, M.; Crookston, R.K.; Larson, W.E. Subsurface Compaction Reduces the Root and Shoot Growth and Grain Yield of Wheat. Agron. J. 1992, 84, 34–38. [Google Scholar] [CrossRef]
- Langworthy, A.D.; Rawnsley, R.P.; Freeman, M.J.; Corkrey, R.; Harrison, M.T.; Pembleton, K.G.; Lane, P.A.; Henry, D.A. Effect of stubble-height management on crown temperature of perennial ryegrass, tall fescue and chicory. Crop Pasture Sci. 2019, 70, 183–194. [Google Scholar] [CrossRef]
- López, Y.; Moraes, B.; Inosroza, L.; Quesenberry, K.H.; Munoz, P.R.; Rios, E.F. Adoption of Alfalfa in Florida: Effects of Stub-ble Height and Cultivar on Yield and Persistence. In ASA, CSSA and SSSA International Annual Meetings; ASA-CSSA-SSSA: Madison, WI, USA, 2017. [Google Scholar]
- Khatun, A.; Bhuiyan, M.; Tahmid, A. Effect of fungicides on seed quality of lentil (Lens culinaris L.) during storage. Jahangirnagar Univ. J. Biol. Sci. 2017, 5, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Johnson, E.N.; Mueller, T.C.; Willenborg, C.J. Early Application of Harvest Aid Herbicides Adversely Impacts Lentil. Agron. J. 2017, 109, 239–248. [Google Scholar] [CrossRef]
- Bastiaans, L.; Kropff, M. Weed Competition. In Encyclopedia of Applied Plant Sciences; Elsevier: Amsterdam, The Netherlands, 2017; pp. 473–478. [Google Scholar]
- Mattox, C.M.; Kowalewski, A.R.; McDonald, B.W.; Lambrinos, J.G.; Pscheidt, J.W. Rolling and Biological Control Products Affect Microdochium Patch Severity on a Sand-Based Annual Bluegrass Putting Green. Agron. J. 2018, 110, 2124–2129. [Google Scholar] [CrossRef]
- Jørgensen, L.N.; Kudsk, P.; Ørum, J.E. Links between pesticide use pattern and crop production in Denmark with special reference to winter wheat. Crop Prot. 2019, 119, 147–157. [Google Scholar] [CrossRef]
- Khalil, Y.; Flower, K.; Siddique, K.H.; Ward, P. Pyroxasulfone efficacy for annual ryegrass control is affected by wheat residue height, amount and orientation. Pest. Manag. Sci. 2020, 76, 861–867. [Google Scholar] [CrossRef]
- Paraschivu, M.; Cotuna, O.; Paraschivu, M.; Olaru, A. Effects of interaction between abiotic stress and pathogens in cereals in the context of climate change: An overview.Ann. J. Univ. Craiova Agric. Montanol. Cadastre Ser. 2020, 49, 413–424. [Google Scholar]
- Subedi, M.; Willenborg, C.J.; Vandenberg, A. Influence of Harvest Aid Herbicides on Seed Germination, Seedling Vigor and Milling Quality Traits of Red Lentil (Lens culinaris L.). Front. Plant Sci. 2017, 8, 311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowness, R.; Olson, M.A.; Pauly, D.; Mckenzie, R.H.; Hoy, C.; Gill, K.S.; Bremer, E. Agronomic practices for red lentil in Al-berta. Can. J. Plant Sci. 2019, 99, 834–840. [Google Scholar] [CrossRef]
- Das V., J.; Sharma, S.; Kaushik, A. Views of Irish Farmers on Smart Farming Technologies: An Observational Study. AgriEngineering 2019, 1, 13. [Google Scholar] [CrossRef] [Green Version]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.-J. Big Data in Smart Farming—A review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.; Liu, K.; Poppy, L.; Mulenga, A.; Gampe, C. Minimizing Lentil Harvest Loss through Improved Agronomic Practices in Sustainable Agro-Systems. Sustainability 2021, 13, 1896. https://doi.org/10.3390/su13041896
Yang T, Liu K, Poppy L, Mulenga A, Gampe C. Minimizing Lentil Harvest Loss through Improved Agronomic Practices in Sustainable Agro-Systems. Sustainability. 2021; 13(4):1896. https://doi.org/10.3390/su13041896
Chicago/Turabian StyleYang, Tony, Kui Liu, Lee Poppy, Alick Mulenga, and Cindy Gampe. 2021. "Minimizing Lentil Harvest Loss through Improved Agronomic Practices in Sustainable Agro-Systems" Sustainability 13, no. 4: 1896. https://doi.org/10.3390/su13041896
APA StyleYang, T., Liu, K., Poppy, L., Mulenga, A., & Gampe, C. (2021). Minimizing Lentil Harvest Loss through Improved Agronomic Practices in Sustainable Agro-Systems. Sustainability, 13(4), 1896. https://doi.org/10.3390/su13041896