Development of Performance Evaluation Indicators for Table Grape Packaging Units
Abstract
:1. Introduction
2. TGPUS, Performance Objectives, Indicator Development Techniques, and Sustainability
2.1. TGPU
2.2. Measurement Systems and Selection of Performance Objectives
2.2.1. Performance Measurement Matrix
2.2.2. Strategic Measurement, Analysis, and Reporting Technique (SMART)—Performance Pyramid
2.2.3. Balanced Scorecard
2.2.4. Performance Prism
2.2.5. Strategic Production Objectives
2.2.6. Final Considerations of Measurement Systems
2.3. Techniques for Developing Indicators
2.3.1. Cost Performance Objective
- minimum delivery time/average delivery time,
- variation against the budget,
- use of resources,
- labor productivity,
- added value, and
- efficiency.
2.3.2. Quality Performance Objective
- number of defects per unit,
- consumer complaint level,
- waste level,
- warranty claims,
- average failure time, and
- consumer satisfaction score.
2.3.3. Flexibility Performance Objective
- time required to develop new products/services,
- average batch or order size,
- time to increase the activity rate,
- average capacity/maximum capacity, and
- time to change schedules.
2.3.4. Speed Performance Objective
- consumer quote time,
- order lead time,
- delivery frequency,
- actual versus theoretical traversal time, and
- cycle time.
2.3.5. Reliability Performance Objective
- percentage of the orders delivered on time,
- average order delay,
- proportion of stock orders, and
- average deviation from arrival time promised.
2.3.6. Hypotheses
- null hypothesis, most or all of the performance indicators are expressed in a correlated way to assess the performance objectives of TGPUs, and
- alternative hypothesis, most or all of the performance indicators are not expressed in a correlated way to assess the performance objectives of TGPUs.
2.4. Performance Indicators Impact on Sustainability Dimensions and Sustainable Business Models
3. VSSF Case Study, Results and Discussion
3.1. VSSF Grape Production
3.2. Calculation of Indicators for Each Performance Objective
3.2.1. Selection of TGPUs, Process and Type of Packaging
3.2.2. Data Collection and Indicator Selection
3.2.3. Cost Performance Objective Indicator
3.2.4. Quality Performance Objective Indicator
3.2.5. Flexibility, Speed, and Reliability Performance Goal Indicators
3.2.6. Correlations and Standard Deviations
4. Conclusions
4.1. Concluding Remarks
4.2. Suggestion for Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Lima, E.P.; da Costa, S.E.G.; Angelis, J.J.; Munik, J. Performance measurement systems: A consensual analysis of their roles. Int. J. Prod. Econ. 2013, 146, 524–542. [Google Scholar] [CrossRef]
- Dienstmann, J.S.; Lacerda, R.T.D.O.; Ensslin, L.; Ensslin, S.R. Gestão da inovação e avaliação de desempenho: Processo estruturado de revisão da literatura. Rev. Produção Online 2014, 14, 2–30. [Google Scholar] [CrossRef] [Green Version]
- Domínguez Serrano, M.; Blancas Pera, F.J.; Guerrero Casas, F.M.; González Lozano, M. Uma revisión crítica para la construcción de indicadores sintéticos. Rev. Métodos Cuantitativos Para Econ. Empresa 2011, 11, 41–70. [Google Scholar]
- Callado, A.L.C.; Callado, A.A.C.; Almeida, A. A utilização de indicadores de desempenho não-financeiros em organizações agroindustriais: Um estudo exploratório. Rural Agro Ind. Organ. 2008, 10, 1–14. [Google Scholar] [CrossRef]
- Leão, P.C.S. Novas tecnologias para a produção de uvas de mesa. In Proceedings of the 9th Semana Internacional da Fruticultura, Floricultura e Agroindústria, Ceará, Brazil, 16–19 September 2002. [Google Scholar]
- Blanco, A.; Masini, G.; Petracci, N.; Bandoni, J. Operations management of a packaging plant in the fruit industry. J. Food Eng. 2005, 70, 299–307. [Google Scholar] [CrossRef]
- Lambert, G.F.; Lasserre, A.A.A.; Ackerman, M.M.; Sánchez, C.G.M.; Rivera, B.O.I.; Azzaro-Pantel, C. An expert system for predicting orchard yield and fruit quality and its impact on the Persian lime supply chain. Eng. Appl. Artif. Intell. 2014, 33, 21–30. [Google Scholar] [CrossRef]
- Freires, F.G.M.; Marinho, S.V.; Walter, F. Canais de Distribuição da Manga e da Uva de Mesa Produzidas no Vale do São Francisco: Uma Análise Comparative; ENEGEP: Bento Gonçalves, RS, Brazil, 2000. [Google Scholar]
- Emídio, T.F.D.; Pires, W.E.L.; Leite, A.A.M. O Processo de Modernização das Fazendas Produtoras e Exportadoras de Uvas de Mesa da Microrregiao de Juazeiro–BA.; ENEGEP: Fortaleza, CE, Brazil, 2015. [Google Scholar]
- Vasconcelos, O.; Turco, S.; Dacanal, C.; Luz, S.; Freitas, S. Thermal Environment of Table Grape Packing Houses in the São Francisco Valley. Engenharia Agrícola 2017, 37, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Smit, R.; Treurnicht, N.; Blanckenberg, M. Table Grape Punnet Packaging: The Influence of Check-Weighing. S. Afr. J. Ind. Eng. 2012, 23, 196. [Google Scholar] [CrossRef] [Green Version]
- Mesabbah, M.; Rahoui, S.; Ragab, M.A.F.; Mahfouz, A.; Arisha, A. Seasonal recruiting policies for table grape packing operations: A hybrid simulation modelling study. In Proceedings of the Winter Simulation Conference (WSC), Las Vegas, NV, USA, 3–6 December 2017. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Food and Agriculture Organization of the United Nations Production Quantities by Country. 2016. Available online: http://faostat3.fao.org/ (accessed on 6 September 2020).
- Mesabbah, M.; Mahfouz, A.; Ragab, M.A.F.; Arisha, A. Hybrid modeling for vineyard harvesting operations. In Proceedings of the Winter Simulations Conference (WSC), Washington, DC, USA, 11–14 December 2016. [Google Scholar] [CrossRef] [Green Version]
- Bititci, U.S.; Turner, T.J.; Begemann, C. Dynamics of performance measurement systems. Int. J. Oper. Prod. Manag. 2000, 20, 692–704. [Google Scholar] [CrossRef]
- Martins, R.A. Sistemas de Medição de Desempenho: Um Modelo para Estruturação do Uso. PhD. Thesis, Escola Politécnica da Universidade de São Paulo, São Paulo, Brazil, 1999. [Google Scholar]
- Tezza, R.; Bornia, A.C.; Vey, I.H. Sistemas de medição de desempenho: Uma revisão e classificação da literatura. Gestão Produção 2010, 17, 75–93. [Google Scholar] [CrossRef]
- Santos, L.A. Integração do Balanced Scorecard e Modelo de Slack com ênfase na gestão do Desempenho Organizacional para o ramo de Telecomunicações. Master’s Thesis, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil, 2016. [Google Scholar]
- Keegan, D.P.; Eiler, R.G.; Jones, C.R. Are your performance measures obsolete? Manag. Account. 1989, 70, 45–50. [Google Scholar]
- Cross, K.F.; Lynch, R.L. The “SMART” way to define and sustain success. Natl. Prod. Rev. 1988, 8, 23–33. [Google Scholar] [CrossRef]
- Kaplan, R.S.; Norton, D.P. strategic learning and the balanced scorecard. Strat. Leadersh. 1996, 24, 18–24. [Google Scholar] [CrossRef]
- Neely, A.; Adams, C.; Crowe, P. The performance prism in practice. Meas. Bus. Excel. 2001, 5, 6–13. [Google Scholar] [CrossRef]
- Slack, N.; Chanbers, S.; Harland, C.; Harrison, A.; Johnson, R.V. Admisnitração da Produção; Atlas: São Paulo, SP, Brazil, 2006. [Google Scholar]
- Ferreira, L.M.D.F.; Silva, C.; Azevedo, S.G. An environmental balanced scorecard for supply chain performance measurement (Env_BSC_4_SCPM). Benchmarking Int. J. 2016, 23, 1398–1422. [Google Scholar] [CrossRef]
- Lucero, A.G.R. Um método para desenvolvimento de medidas de desempenho como apoio à gestão de sistemas de manufatura. PhD. Thesis, Universidade Federal de Santa Catarina, Florianópolis, Brazil, 2016. [Google Scholar]
- Thomas, L.J.; Hayes, R.H.; Wheelwright, S.C. Restoring Our Competitive Edge: Competing through Manufacturing. Adm. Sci. Q. 1985, 30, 305. [Google Scholar] [CrossRef]
- Platts, K.; Gregory, M. Manufacturing Audit in the Process of Strategy Formulation. Int. J. Oper. Prod. Manag. 1990, 10, 5–26. [Google Scholar] [CrossRef]
- Spring, M.; Boaden, R. “One more time: How do you win orders?”: A critical reappraisal of the Hill manufacturing strategy framework. Int. J. Oper. Prod. Manag. 1997, 17, 757–779. [Google Scholar] [CrossRef]
- Farrell, M.J. The Measurement of Productive Efficiency. J. R. Stat. Soc. 1957, 120, 253–290. [Google Scholar] [CrossRef]
- Almeida, M.; Rebelatto, D. Sistematização das técnicas para avaliar a eficiência: Variáveis que influenciam a tomada de decisão estratégica. In Proceedings of the II SEGeT, Simpósio de Excelência em Gestão e Tecnologia, Rezende RJ, Brazil, 26–28 October 2005; Available online: https://www.aedb.br/seget/arquivos/artigos06/799_Tecnicas%20para%20avaliar%20a%20eficiencia%20em%20infra%20-%20final.pdf (accessed on 20 June 2020).
- Daraio, C.; Simar, L. Conditional nonparametric frontier models for convex and nonconvex technologies: A unifying approach. J. Prod. Anal. 2007, 28, 13–32. [Google Scholar] [CrossRef] [Green Version]
- Mastromarco, C.; Simar, L. Effect of FDI and Time on Catching Up: New Insights from a Conditional Nonparametric Frontier Analysis. J. Appl. Econ. 2014, 30, 826–847. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Bagchi, M.; Zhuang, L. Analysis of farm household technical efficiency in Chinese litchi farm using bootstrap DEA. Custos e Agronegócio Online 2016, 12, 378–393. [Google Scholar]
- Cooper, W.W.; Seiford, L.M.; Tone, K. Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-SOLVER Software; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Dong, F.; Mitchell, P.D.; Knuteson, D.; Wyman, J.; Bussan, A.; Conley, S. Assessing sustainability and improvements in US Midwestern soybean production systems using a PCA–DEA approach. Renew. Agric. Food Syst. 2015, 31, 524–539. [Google Scholar] [CrossRef] [Green Version]
- Cui, N.; Sang, H.; Yu, X. Research on the Development Efficiency of Family Farm based on DEA Model: A Case Study. Int. J. Smart Home 2016, 10, 93–104. [Google Scholar] [CrossRef]
- Alrwis, K.N.; Aldawdahi, N.M.; Ahamad, S.A.B. Estimate the production efficiency of the dairy plants in Saudi Arabia using Data Envelopment Analysis (DEA). Custos Agronegócio Online 2015, 11, 298–316. [Google Scholar]
- Kočišová, K. Application of the DEA on the measurement of efficiency in the EU countries. Agric. Econ. 2016, 61, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Nowak, A.; Kijek, T.; Domańska, K. Technical efficiency and its determinants in the European Union. Agric. Econ. 2016, 61, 275–283. [Google Scholar] [CrossRef] [Green Version]
- Toma, E.; Dobre, C.; Dona, I.; Cofas, E. DEA Applicability in Assessment of Agriculture Efficiency on Areas with Similar Geographically Patterns. Agric. Agric. Sci. Procedia 2015, 6, 704–711. [Google Scholar] [CrossRef] [Green Version]
- Toma, P.; Miglietta, P.P.; Zurlini, G.; Valente, D.; Petrosillo, I. A non-parametric bootstrap-data envelopment analysis approach for environmental policy planning and management of agricultural efficiency in EU countries. Ecol. Indic. 2017, 83, 132–143. [Google Scholar] [CrossRef]
- Semeoshenkova, V.; Newton, A.; Contin, A.; Greggio, N. Development and application of an Integrated Beach Quality Index (BQI). Ocean Coast. Manag. 2017, 143, 74–86. [Google Scholar] [CrossRef]
- Robati, M.; Monavari, S.M.; Majedi, H. Urban environment quality assessment by using composite index model. Environ. Prog. Sustain. Energy 2015, 34, 1473–1480. [Google Scholar] [CrossRef]
- Ribeiro, R.J.C. Índice composto de qualidade de vida urbana: Aspectos de configuração espacial, socioeconômicos e ambientais urbanos. PhD. Thesis, Universidade de Brasília, Brasilia, Brazil, 2008. [Google Scholar]
- Boccuzzo, G.; Gianecchini, M. Measuring Young Graduates’ Job Quality Through a Composite Indicator. Soc. Indic. Res. 2014, 122, 453–478. [Google Scholar] [CrossRef]
- Kubrusly, L.S. Um Procedimento Para Calcular Índices a Partir de Uma Base de Dados Multivariados. Pesqui. Oper. 2001, 21, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo Filho, D.B.; Paranhos, R.; Rocha, E.C.; Silva, J.A.; Maia, R.G. Análise de componentes principais para construção de indicadores sociais. Rev. Bras. Biom. 2013, 31, 61–78. [Google Scholar]
- Liu, K.; Jain, S.; Shi, J. Physician performance assessment using a composite quality index. Stat. Med. 2012, 32, 2661–2680. [Google Scholar] [CrossRef] [PubMed]
- Nardo, M.; Saisana, M.; Saltelli, A.; Tarantola, S.; Hoffman, A.; Giovannini, E.; Handbook on Constructing Composite Indicators: Methodology and User Guide. OECD Statistics Working Papers 2005/03. 2008. Available online: https://www.oecd.org/sdd/42495745.pdf (accessed on 10 June 2019).
- Field, A. Descobrindo a Estatística Usando o SPSS, 2nd ed.; Viali, L., Ed.; Artmed: Porto Alegre, RS, Brazil, 2009. [Google Scholar]
- Kaiser, H.F. The Application of Electronic Computers to Factor Analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
- Mingoti, S.A. Análise de Dados Através de Métodos de Estatística Multivariada, Uma Abordagem Aplicada; UFMG: Belo Horizonte, MG, Brazil, 2007. [Google Scholar]
- Manly, B.F.J. Métodos Estatísticos Multivariados: Uma Introdução, 3rd ed.; Bookman: Porto Alegre, RS, Brazil, 2008. [Google Scholar]
- Upward, A.; Jones, P.H. An Ontology for Strongly Sustainable Business Models. Organ. Environ. 2016, 29, 97–123. [Google Scholar] [CrossRef] [Green Version]
- Pucci, T.; Casprini, E.; Galati, A.; Zanni, L. The virtuous cycle of stakeholder engagement in developing a sustainability culture: Salcheto winery. J. Bus. Res. 2020, 119, 364–376. [Google Scholar] [CrossRef]
- Chin, T.A.; Tat, H.H.; Sulaiman, Z. Green Supply Chain Management, Environmental Collaboration and Sustainability Performance. Procedia CIRP 2015, 26, 695–699. [Google Scholar] [CrossRef] [Green Version]
- Hamprecht, J.; Corsten, D.; Noll, M.; Meier, E. Controlling the sustainability of food supply chains. Supply Chain Manag. Int. J. 2005, 10, 7–10. [Google Scholar] [CrossRef]
- Fiore, M.; Galati, A.; Gołębiewski, J.; Drejerska, N. Stakeholders’ involvement in establishing sustainable business models. Br. Food J. 2020, 122, 1671–1691. [Google Scholar] [CrossRef]
- Stubbs, W.; Cocklin, C. Conceptualizing a “Sustainability Business Model”. Organ. Environ. 2008, 21, 103–127. [Google Scholar] [CrossRef]
- Giacomarra, M.; Crescimanno, M.; Sakka, G.; Galati, A. Stakeholder engagement toward value co-creation in the F&B packaging industry. EuroMed J. Bus. 2019, 15, 315–331. [Google Scholar] [CrossRef]
- Rodrigues, J. Competitividade das Exportações Brasileiras de Frutas para o Mercado Europeu. Master’s Thesis, Universidade Federal Rural de Pernambuco, DLCH, Recife, PE, Brazil, 2012. [Google Scholar]
- Julião, L. Competitividade da Viticultura Regional e Brasileira: Uma Análise Setorial e Comparativa com Produtores Mundiais. Master’s Thesis, Universidade de Sao Paulo, FEA, Sao Paulo, SP, Brazil, 2015. [Google Scholar]
- Zhou, P.; Ang, B.W. Comparing MCDA Aggregation Methods in Constructing Composite Indicators Using the Shannon-Spearman Measure. Soc. Indic. Res. 2008, 94, 83–96. [Google Scholar] [CrossRef]
TGPUs | QP Output | HW Input | UW Input | NW Input | C_I Efficiency |
---|---|---|---|---|---|
A | 973,325 | 37,272 | 39 | 60 | 0.745 |
B | 533,335 | 19,728 | 26 | 40 | 0.769 |
C | 2,214,920 | 65,185 | 36 | 65 | 1.000 |
D | 2,029,925 | 59,447 | 27 | 60 | 1.000 |
E | 61,220 | 2789 | 24 | 40 | 0.606 |
F | 764,240 | 29,343 | 29 | 60 | 0.742 |
G | 149,300 | 6567 | 37 | 60 | 0.629 |
H | 320,680 | 13,755 | 38 | 60 | 0.657 |
I | 1,466,700 | 41,879 | 24 | 60 | 1.000 |
J | 1,641,430 | 47,975 | 18 | 60 | 1.000 |
K | 438,500 | 12,839 | 36 | 48 | 0.962 |
L | 417,705 | 11,533 | 69 | 84 | 1.000 |
M | 68,900 | 3859 | 30 | 40 | 0.493 |
TGPUs | Var_1 | Var_2 | Var_3 | Var_4 | Var_5 | Var_6 |
---|---|---|---|---|---|---|
A | 100.00 | 98.44 | 41.60 | 99.54 | 95.82 | 100.00 |
B | 100.00 | 99.10 | 21.72 | 99.28 | 97.02 | 99.76 |
C | 99.96 | 89.19 | 89.34 | 96.84 | 98.75 | 99.31 |
D | 99.93 | 88.26 | 72.07 | 99.10 | 98.35 | 97.55 |
E | 100.00 | 89.47 | 65.93 | 99.45 | 99.12 | 96.95 |
F | 100.00 | 91.06 | 82.68 | 99.55 | 99.02 | 95.23 |
G | 100.00 | 90.11 | 82.07 | 99.85 | 99.95 | 97.99 |
H | 99.80 | 93.82 | 82.20 | 98.51 | 99.82 | 98.30 |
I | 99.30 | 87.24 | 33.99 | 97.95 | 93.94 | 99.07 |
J | 98.78 | 89.89 | 14.81 | 95.32 | 92.37 | 97.90 |
K | 99.92 | 88.73 | 83.25 | 98.72 | 99.09 | 98.35 |
L | 100.00 | 93.43 | 71.56 | 97.67 | 99.38 | 98.01 |
M | 99.72 | 94.44 | 83.06 | 98.89 | 99.81 | 98.89 |
Eigenvalues | TGPU | Q_I Quality | Q_I [0,1] | |||||||
---|---|---|---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | A | 0.526 | 0.932 | ||
3.056 | 1.687 | 0.686 | 0.377 | 0.145 | 0.049 | B | 0.466 | 0.917 | ||
50.940 | 79.057 | 90.487 | 96.765 | 99.184 | 100.000 | C | 0.144 | 0.831 | ||
D | 0.101 | 0.820 | ||||||||
Eigenvectors | Loads | Communalities | E | 0.286 | 0.869 | |||||
PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | F | 0.337 | 0.882 | ||
Var_1 | 0.512 | 0.242 | 0.013 | 0.894 | 0.314 | 0.011 | 0.899 | G | 0.780 | 1.000 |
Var_2 | 0.040 | 0.695 | −0.120 | 0.070 | 0.903 | −0.099 | 0.829 | H | 0.548 | 0.938 |
Var_3 | 0.475 | −0.287 | 0.444 | 0.830 | −0.373 | 0.368 | 0.964 | I | −1.580 | 0.373 |
Var_4 | 0.425 | 0.269 | −0.533 | 0.743 | 0.350 | −0.441 | 0.870 | J | −2.982 | 0.000 |
Var_5 | 0.542 | −0.046 | 0.259 | 0.948 | −0.060 | 0.214 | 0.947 | K | 0.338 | 0.883 |
Var_6 | −0.191 | 0.549 | 0.662 | −0.334 | 0.713 | 0.548 | 0.920 | L | 0.374 | 0.892 |
M | 0.663 | 0.969 |
TGPU | F_I | S_I | R_I |
---|---|---|---|
A | 1.153 | 116 | 76.6 |
B | 0.697 | 85 | 79.4 |
C | 1.642 | 155 | 91.1 |
D | 2.230 | 191 | 90.2 |
E | 0.318 | 87 | 99.4 |
F | 1.815 | 145 | 86.2 |
G | 1.857 | 91 | 89.0 |
H | 0.955 | 73 | 90.4 |
I | 1.992 | 226 | 89.7 |
J | 1.931 | 255 | 89.1 |
K | 1.920 | 110 | 89.5 |
L | 2.333 | 81 | 88.1 |
M | 1.371 | 52 | 87.0 |
TGPU | C_I | Q_I | F_I | R_I | S_I |
---|---|---|---|---|---|
A | 0.497 | 0.932 | 0.414 | 0.000 | 0.316 |
B | 0.545 | 0.917 | 0.188 | 0.123 | 0.162 |
C | 1.000 | 0.831 | 0.657 | 0.634 | 0.507 |
D | 1.000 | 0.820 | 0.949 | 0.594 | 0.683 |
E | 0.223 | 0.869 | 0.000 | 1.000 | 0.175 |
F | 0.491 | 0.882 | 0.743 | 0.422 | 0.455 |
G | 0.268 | 1.000 | 0.764 | 0.541 | 0.192 |
H | 0.323 | 0.938 | 0.316 | 0.603 | 0.102 |
I | 1.000 | 0.373 | 0.831 | 0.574 | 0.854 |
J | 1.000 | 0.000 | 0.800 | 0.548 | 1.000 |
K | 0.926 | 0.883 | 0.795 | 0.565 | 0.286 |
L | 1.000 | 0.892 | 1.000 | 0.503 | 0.144 |
M | 0.000 | 0.969 | 0.523 | 0.456 | 0.000 |
C_I | Q_I | F_I | R_I | S_I | |
---|---|---|---|---|---|
C_I | 1 | ||||
Q_I | −0.53 | 1 | |||
F_I | 0.66 | −0.31 | 1 | ||
R_I | 0.03 | −0.15 | 0.00 | 1 | |
S_I | 0.70 | −0.86 | 0.49 | 0.10 | 1 |
Significance | |||||
C_I | - | ||||
Q_I | 0.0608 | - | |||
F_I | 0.0151 | 0.3095 | - | ||
R_I | 0.9109 | 0.6212 | 0.9946 | - | |
S_I | 0.0080 | 0.0002 | 0.0917 | 0.7431 | - |
TGPU | C_I | Q_I | F_I | R_I | S_I |
---|---|---|---|---|---|
Standard deviation | 0.366 | 0.284 | 0.304 | 0.242 | 0.308 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kogachi, E.; Ferreira, A.; Cavalcante, C.; Embiruçu, M. Development of Performance Evaluation Indicators for Table Grape Packaging Units. Sustainability 2021, 13, 2177. https://doi.org/10.3390/su13042177
Kogachi E, Ferreira A, Cavalcante C, Embiruçu M. Development of Performance Evaluation Indicators for Table Grape Packaging Units. Sustainability. 2021; 13(4):2177. https://doi.org/10.3390/su13042177
Chicago/Turabian StyleKogachi, Edson, Adonias Ferreira, Carlos Cavalcante, and Marcelo Embiruçu. 2021. "Development of Performance Evaluation Indicators for Table Grape Packaging Units" Sustainability 13, no. 4: 2177. https://doi.org/10.3390/su13042177
APA StyleKogachi, E., Ferreira, A., Cavalcante, C., & Embiruçu, M. (2021). Development of Performance Evaluation Indicators for Table Grape Packaging Units. Sustainability, 13(4), 2177. https://doi.org/10.3390/su13042177