Fermentation and Biogas Production of Alkaline Wasted Sludge Enhanced in a Bioelectrolysis-Assisted Anaerobic Digestion Reactor under Increasing Organic Loads
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Storage and Pretreatment of WAS
2.2. Reactor Setup and Operation
2.3. Analysis and Calculation Method
2.3.1. Chemical Analysis Method
2.3.2. Calculation Method
3. Results and Discussion
3.1. Effect of Organic Matter Concentration on the Electrochemical Behaviors of the Bioelectrolysis System
3.2. Effect of Bioelectrolysis and Organic Matter Concentration on Biogas Production
3.3. Substrate Metabolism and Conversion
3.4. The Contribution and Energy Benefit of Bioelectrolysis to Methanogenesis
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yin, C.; Shen, Y.; Yuan, R.; Zhu, N.; Yuan, H.; Lou, Z. Sludge-based biochar-assisted thermophilic anaerobic digestion of waste-activated sludge in microbial electrolysis cell for methane production. Bioresour. Technol. 2019, 284, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Zhi, Z.; Pan, Y.; Lu, X.; Wang, J.; Zhen, G. Bioelectrochemical regulation accelerates biomethane production from waste activated sludge: Focusing on operational performance and microbial community. Sci. Total. Environ. 2022, 814, 152736. [Google Scholar] [CrossRef]
- Lin, C.; Wu, P.; Liu, Y.; Wong, J.W.; Yong, X.; Wu, X.; Xie, X.; Jia, H.; Zhou, J. Enhanced biogas production and bio-degradation of phenanthrene in wastewater sludge treated anaerobic digestion reactors fitted with a bioelectrode system. Chem. Eng. J. 2019, 365, 1–9. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, Y.; Chen, S.; Quan, X. Enhanced production of methane from waste activated sludge by the combination of high-solid anaerobic digestion and microbial electrolysis cell with iron–graphite electrode. Chem. Eng. J. 2015, 259, 787–794. [Google Scholar] [CrossRef]
- Wang, B.; Liu, W.; Liang, B.; Jiang, J.; Wang, A. Microbial fingerprints of methanation in hybrid electric-biological an-aerobic digestion. Water Res. 2022, 226, 119270. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, B.S.; Dhar, B.R. Intermittent energization catalyzes direct interspecies electron transfer in electro-anaerobic digestion of sewage sludge. Chem. Eng. J. 2022, 442, 136177. [Google Scholar] [CrossRef]
- Zeng, Q.; Huang, H.; Tan, Y.; Chen, G.; Hao, T. Emerging electrochemistry-based process for sludge treatment and resources recovery: A review. Water Res. 2022, 209, 117939. [Google Scholar] [CrossRef]
- Pang, H.; Jiao, Q.; An, L.; Yang, T.; He, J.; Xie, B.; Yan, Z.; Lu, J. New insight into selective Na+ stress on acidogenic fermentation of waste activated sludge from microbial perspective: Hydrolase secretion, fermentative bacteria screening, and metabolism modification. Chem. Eng. J. 2022, 442, 136098. [Google Scholar] [CrossRef]
- Pan, X.; Li, J.; He, R.; Tian, Y.; Pang, H. Reconsidering operation pattern for cation-exchange resin assistant anaerobic fermentation of waste activated sludge: Shorting residence period towards dosage-reduction and anti-fouling. Chemosphere 2022, 307, 135920. [Google Scholar] [CrossRef]
- Wang, Q.; Li, X.; Liu, W.; Zhai, S.; Xu, Q.; Huan, C.; Nie, S.; Ouyang, Q.; Wang, H.; Wang, A. Carbon source recovery from waste sludge reduces greenhouse gas emissions in a pilot-scale industrial wastewater treatment plant. Environ. Sci. Ecotechnol. 2022, 14, 100235. [Google Scholar] [CrossRef]
- Ren, N.Q.; Guo, W.Q.; Wang, X.J.; Xiang, W.S.; Liu, B.F.; Wang, X.Z.; Chen, Z.B. Effects of different pretreatment methods on fermentation types and dominant bacte-ria for hydrogen production. Int. J. Hydrog. Energy 2008, 33, 4318–4324. [Google Scholar] [CrossRef]
- Pang, H.; Jiao, Q.; An, L.; Xu, Y.; He, J.; Zhang, Z.; Lu, J. Insight into Na+ assistant anaerobic fermentation of waste activated sludge from carbon migration, bio-transformation and recovery perspectives. Sep. Purif. Technol. 2023, 306, 122609. [Google Scholar] [CrossRef]
- He, D.; Xiao, J.; Wang, D.; Liu, X.; Fu, Q.; Li, Y.; Du, M.; Yang, Q.; Liu, Y.; Wang, Q.; et al. Digestion liquid based alkaline pretreatment of waste activated sludge promotes methane production from anaerobic digestion. Water Res. 2021, 199, 117198. [Google Scholar] [CrossRef] [PubMed]
- Khanh Nguyen, V.; Kumar Chaudhary, D.; Hari Dahal, R.; Hoang Trinh, N.; Kim, J.; Chang, S.W.; Hong, Y.; Duc La, D.; Nguyen, X.C.; Hao Ngo, H.; et al. Review on pretreatment techniques to improve anaerobic digestion of sewage sludge. Fuel 2021, 285, 119105. [Google Scholar] [CrossRef]
- Singh, N.K.; Singh, R. Evaluation of pretreatment potential and hydrogen recovery from lignocellulosic biomass in an anoxic double-staged bioelectrochemical system. Int. J. Hydrogen Energy 2021, 46, 39122–39135. [Google Scholar] [CrossRef]
- Zakaria, B.S.; Lin, L.; Dhar, B.R. Shift of biofilm and suspended bacterial communities with changes in anode potential in a microbial electrolysis cell treating primary sludge. Sci. Total. Environ. 2019, 689, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Cheng, J.; Li, H.; Yue, L.; Xia, R.; Zhou, J. Electron transfer from Geobacter sulfurreducens to mixed meth-anogens improved methane production with feedstock gases of H2 and CO2. Bioresour. Technol. 2022, 347, 126680. [Google Scholar] [CrossRef] [PubMed]
- Baek, G.; Saikaly, P.E.; Logan, B.E. Addition of a carbon fiber brush improves anaerobic digestion compared to external voltage application. Water Res. 2021, 188, 116575. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhang, Y.; Quan, X.; Zhao, H. Evaluation on direct interspecies electron transfer in anaerobic sludge digestion of microbial electrolysis cell. Bioresour. Technol. 2016, 200, 235–244. [Google Scholar] [CrossRef]
- Wang, B.; Liu, W.; Zhang, Y.; Wang, A. Natural solar intermittent-powered electromethanogenesis towards green carbon reduction. Chem. Eng. J. 2022, 432, 134369. [Google Scholar] [CrossRef]
- Baek, G.; Kim, K.-Y.; Logan, B.E. Impact of surface area and current generation of microbial electrolysis cell electrodes inserted into anaerobic digesters. Chem. Eng. J. 2021, 426, 131281. [Google Scholar] [CrossRef]
- Baek, G.; Rossi, R.; Saikaly, P.E.; Logan, B.E. The impact of different types of high surface area brush fibers with different electrical conductivity and biocompatibility on the rates of methane generation in anaerobic digestion. Sci. Total. Environ. 2021, 787, 147683. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Li, J.; Zhang, Y.; Liu, W.; Wang, A. Exerting applied voltage promotes microbial activity of marine anammox bacteria for nitrogen removal in saline wastewater treatment. Water Res. 2022, 215, 118285. [Google Scholar] [CrossRef]
- Wu, W.; Li, R. Degradation and solid–liquid distribution of antibiotics in microbial electrolysis cells treating sewage sludge: Effects of temperature and applied voltage. Bioresour. Technol. 2023, 368, 128352. [Google Scholar] [CrossRef]
- Wang, A.-J.; Wang, H.-C.; Cheng, H.-Y.; Liang, B.; Liu, W.-Z.; Han, J.-L.; Zhang, B.; Wang, S.-S. Electrochemistry-stimulated environmental bioremediation: Development of applicable modular electrode and system scale-up. Environ. Sci. Ecotechnol. 2020, 3, 100050. [Google Scholar] [CrossRef]
- Braguglia, C.M.; Gianico, A.; Gallipoli, A.; Mininni, G. The impact of sludge pre-treatments on mesophilic and thermo-philic anaerobic digestion efficiency: Role of the organic load. Chem. Eng. J. 2015, 270, 362–371. [Google Scholar] [CrossRef]
- Tsui, T.H.; Wu, H.; Song, B.; Liu, S.-S.; Bhardwaj, A.; Wong, J.W. Food waste leachate treatment using an Upflow An-aerobic Sludge Bed (UASB): Effect of conductive material dosage under low and high organic loads. Bioresour. Technol. 2020, 304, 122738. [Google Scholar] [CrossRef] [PubMed]
- Martin, E.; Savadogo, O.; Guiot, S.; Tartakovsky, B. The influence of operational conditions on the performance of a microbial fuel cell seeded with mesophilic anaerobic sludge. Biochem. Eng. J. 2010, 51, 132–139. [Google Scholar] [CrossRef]
- Wang, L.; Yang, C.; Sangeetha, T.; He, Z.; Guo, Z.; Gao, L.; Wang, A.; Liu, W. Methane production in a bioelectrochemistry integrated anaerobic reactor with layered nickel foam electrodes. Bioresour. Technol. 2020, 313, 123657. [Google Scholar] [CrossRef]
- Wang, L.; He, Z.; Guo, Z.; Sangeetha, T.; Yang, C.; Gao, L.; Wang, A.; Liu, W. Microbial community development on different cathode metals in a bioelectrolysis enhanced methane production system. J. Power Sources 2019, 444, 227306. [Google Scholar] [CrossRef]
- Yang, C.-X.; Wang, L.; Zhong, Y.-J.; Guo, Z.-C.; Liu, J.; Yu, S.-P.; Sangeetha, T.; Liu, B.-L.; Ni, C.; Guo, H. Efficient methane production from waste activated sludge and Fenton-like pretreated rice straw in an integrated bio-electrochemical system. Sci. Total. Environ. 2022, 813, 152411. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.-C.; Zhang, X.-Y.; Wang, R.; Wang, T.-Y.; He, Z.-W.; Wang, X.C. Calcium ions-effect on performance, growth and extracellular nature of microalgal-bacterial symbiosis system treating wastewater. Environ. Res. 2022, 207, 112228. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Chen, Y.; Zhou, Q. Effect of sodium dodecyl sulfate on waste activated sludge hydrolysis and acidification. Chem. Eng. J. 2007, 132, 311–317. [Google Scholar] [CrossRef]
- Wang, A.; Shi, K.; Ning, D.; Cheng, H.; Wang, H.; Liu, W.; Gao, S.; Li, Z.; Han, J.; Liang, B.; et al. Electrical selection for planktonic sludge microbial community function and assembly. Water Res. 2021, 206, 117744. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, W.; Kang, L.; Yang, C.; Zhou, A.; Wang, A. Enhanced biohydrogen production from waste activated sludge in combined strategy of chemical pretreatment and microbial electrolysis. Int. J. Hydrog. Energy 2014, 39, 11913–11919. [Google Scholar] [CrossRef]
- Zhang, Y.; Angelidaki, I. Microbial electrolysis cells turning to be versatile technology: Recent advances and future challenges. Water Res. 2014, 56, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-G.; Lee, B.; Lee, U.-J.; Jun, H.-B. An anaerobic digester with microbial electrolysis cell enhances relative abundance of methylotrophic methanogens in bulk solution. Environ. Eng. Res. 2022, 27, 210666. [Google Scholar] [CrossRef]
Sludge Concentrations | 14 g/L | 10 g/L | 8 g/L | 6 g/L | 14 g/L (Control) |
---|---|---|---|---|---|
VSS removal/% | 71.6 | 79.2 | 82.1 | 100 | 56 |
Methanogenic rate /mL·d−1 | 47.1 | 34.6 | 11.7 | 7.9 | 37.0 |
Cumulative methane/mL·gVSS− | 96.2 | 88.8 | 58.3 | 36.6 | 46.3 |
Gp/d | 23 | 17 | 17 | 15 | 31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, X.; Liu, Y.; Liu, W.; Wang, L.; Li, C. Fermentation and Biogas Production of Alkaline Wasted Sludge Enhanced in a Bioelectrolysis-Assisted Anaerobic Digestion Reactor under Increasing Organic Loads. Sustainability 2023, 15, 1443. https://doi.org/10.3390/su15021443
Kang X, Liu Y, Liu W, Wang L, Li C. Fermentation and Biogas Production of Alkaline Wasted Sludge Enhanced in a Bioelectrolysis-Assisted Anaerobic Digestion Reactor under Increasing Organic Loads. Sustainability. 2023; 15(2):1443. https://doi.org/10.3390/su15021443
Chicago/Turabian StyleKang, Xu, Yu Liu, Wenzong Liu, Ling Wang, and Chaolin Li. 2023. "Fermentation and Biogas Production of Alkaline Wasted Sludge Enhanced in a Bioelectrolysis-Assisted Anaerobic Digestion Reactor under Increasing Organic Loads" Sustainability 15, no. 2: 1443. https://doi.org/10.3390/su15021443
APA StyleKang, X., Liu, Y., Liu, W., Wang, L., & Li, C. (2023). Fermentation and Biogas Production of Alkaline Wasted Sludge Enhanced in a Bioelectrolysis-Assisted Anaerobic Digestion Reactor under Increasing Organic Loads. Sustainability, 15(2), 1443. https://doi.org/10.3390/su15021443