Regional Differences in Tourism Eco-Efficiency in the Beijing–Tianjin–Hebei Region: Based on Data from 13 Cities
Abstract
:1. Introduction
2. Research Methods and Data Sources
2.1. Research Methods
2.1.1. Super-Efficiency SBM-DEA Model
2.1.2. Global Malmquist–Luenberger Index
2.1.3. Coefficient of Variation and Theil Index
2.1.4. Geographically and Temporally Weighted Regression Model
2.2. Indicators Selection
2.2.1. Input and Output Variables
- (1)
- Input indicators
- (2)
- Desired output indicators
- (3)
- Undesired output indicators
2.2.2. Influencing Factor Variables
2.3. Data Sources
3. Research Results and Analysis
3.1. Statistical Analysis of Tourism Eco-Efficiency
3.2. Dynamic Analysis of Tourism Eco-Efficiency
3.3. Driving Factors Analysis of Tourism Eco-Efficiency
3.4. Regional Difference Analysis of Tourism Eco-Efficiency
3.4.1. Overall Regional Differences
3.4.2. Overall Difference Decomposition
3.5. Analysis of the Influencing Factors of Tourism Eco-Efficiency
4. Conclusions and Discussion
4.1. Conclusions
4.2. Limitations and Future Scope of the Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ye, D.; Zhang, Y.; Li, Q.; Zhang, X.; Chu, C.; Ju, M. Assessing the Spatiotemporal Development of Ecological Civilization for China’s Sustainable Development. Sustainability 2022, 14, 8776. [Google Scholar] [CrossRef]
- Colglazier, W.; Maskus, K.E.; Mungiupippidi, A. Sustainable development agenda: 2030. Science 2015, 349, 1048. [Google Scholar] [CrossRef] [PubMed]
- Huan, Q.; Chen, Y.; Huan, X. A Frugal Eco-Innovation Policy? Ecological Poverty Alleviation in Contemporary China from a Perspective of Eco-Civilization Progress. Sustainability 2022, 14, 4570. [Google Scholar] [CrossRef]
- Ministry of Foreign Affairs of the People’s Republic of China. China Implements the 2030 Agenda for Sustainable Development. Available online: http://new.fmprc.gov.cn/ziliao_674904/zt_674979/dnzt_674981/qtzt/2030kcxfzyc_686343/zw/ (accessed on 17 September 2021).
- Wang, R.; Xia, B.; Dong, S.; Li, Y.; Li, Z.; Ba, D.; Zhang, W. Research on the Spatial Differentiation and Driving Forces of Eco-Efficiency of Regional Tourism in China. Sustainability 2021, 13, 280. [Google Scholar] [CrossRef]
- Candia, S.; Pirlone, F. Tourism Environmental Impacts Assessment to Guide Public Authorities towards Sustainable Choices for the Post-COVID Era. Sustainability 2022, 14, 18. [Google Scholar] [CrossRef]
- Li, B.; Ma, X.; Chen, K. Eco-efficiency measurement and spatial–temporal evolution of forest tourism. Arab. J. Geosci. 2021, 14, 568. [Google Scholar] [CrossRef]
- Wang, Z.; Han, H. Analysis on Tourism Environmental Pollution and Tourism Economy-Ecological Environmental Coordination Degree: A Case Study from China. Nat. Environ. Pollut. Technol. 2021, 20, 1353–1361. [Google Scholar] [CrossRef]
- Tang, C.; Wan, Z.; Ng, P.; Dai, X.; Sheng, Q.; Chen, D. Temporal and Spatial Evolution of Carbon Emissions and Their Influencing Factors for Tourist Attractions at Heritage Tourist Destinations. Sustainability 2019, 11, 5944. [Google Scholar] [CrossRef]
- Li, Z.; Wu, W. Study on Spatial Consistency of Tourism Eco-efficiency and Regional Eco-security in Middle Reaches of Yangtze River. Resour. Environ. Yangtze Basin 2022, 31, 537–550. [Google Scholar]
- Gössling, S.; Peeters, P.; Ceron, J.P.; Dubois, G.; Patterson, T.; Richardson, R.B. The eco-efficiency of tourism. Ecol. Econ. 2005, 54, 417–434. [Google Scholar] [CrossRef]
- Wang, Z.F.; Wang, Z.Y. The impact of environmental regulation on ecological efficiency of tourism industry and its spatial differentiation: Taking the urban agglomeration in the middle reaches of the Yangtze River as an example. Acta Ecol. Sin. 2021, 41, 3917–3928. [Google Scholar]
- Zhang, F.; Yang, X.; Wu, J.; Ma, D.; Xiao, Y.; Gong, G.; Zhang, J. How New Urbanization Affects Tourism Eco-Efficiency in China: An Analysis Considering the Undesired Outputs. Sustainability 2022, 14, 10820. [Google Scholar] [CrossRef]
- Zhou, Y.; Kong, Y.; Zhang, T. The spatial and temporal evolution of provincial eco-efficiency in China based on SBM modified three-stage data envelopment analysis. Environ. Sci. Pollut. Res. 2020, 27, 8557–8569. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, C.; Mao, J.; Sun, D.; Li, H.; Lu, C. Spatial–Temporal Heterogeneity and the Related Influencing Factors of Tourism Efficiency in China. Sustainability 2021, 13, 5825. [Google Scholar] [CrossRef]
- Qian, H.; Fang, Y.; Lu, L.; Cao, W. Spatial-temporal evolution characteristics and influencing factors of tourism eco-efficiency in Changjiang River Delta Urban Agglomeration. Resour. Dev. Mark. 2022, 38, 350–359. [Google Scholar]
- Yao, Z.; Chen, T. Review on Overseas Tourism Eco-Efficiency Studies. J. Nat. Resour. 2015, 30, 1222–1231. [Google Scholar]
- Sabine, P.; Ana, S.; Matthias, S. The greenhouse gas intensity of the tourism sector: The case of Switzerland. Environ. Sci. Policy 2010, 13, 131–140. [Google Scholar]
- María-Ángeles, C.; Nuria, G.; Luis-Antonio, L. Quantifying Spanish tourism’s carbon footprint: The contributions of residents and visitors: A longitudinal study. J. Sustain. Tour. 2015, 23, 922–946. [Google Scholar]
- Lado-Sestayo, R.; Fernández-Castro, Á.S. The impact of tourist destination on hotel efficiency: A data envelopment analysis approach. Eur. J. Oper. Res. 2019, 272, 674–686. [Google Scholar] [CrossRef]
- Chen, H.B.; Dong, K.; Wang, F.F.; Emmanuel, C.A. The spatial effect of tourism economic development on regional ecological efficiency. Environ. Sci. Pollut. Res. 2020, 27, 38241–38258. [Google Scholar]
- Öender, I.; Wöber, K.; Zekan, B. Towards a sustainable urban tourism development in Europe: The role of benchmarking and tourism management information systems—A partial model of destination competitiveness. Tour. Econ. 2017, 23, 243–259. [Google Scholar]
- Zha, J.P.; Yuan, W.W.; Dai, J.Q. Eco-efficiency, eco-productivity and tourism growth in China: A non-convex metafrontier DEA-based decomposition model. J. Sustain. Tour. 2020, 28, 663–685. [Google Scholar] [CrossRef]
- Peng, H.; Zhang, J.; Lu, L. Eco-efficiency and its determinants at a tourism destination: A case study of Huangshan National Park, China. Tour. Manag. 2017, 60, 201–211. [Google Scholar] [CrossRef]
- Li, S.; Ren, T.; Jia, B. The Spatial Pattern and Spillover Effect of the Eco-Efficiency of Regional Tourism from the Perspective of Green Development: An Empirical Study in China. Forests 2022, 13, 1324. [Google Scholar] [CrossRef]
- Relly, J.; Williams, P.; Haider, W. Moving towards more eco-efficient tourist transportation to a resort destination: The case of Whistler, British Columbia. Res. Transp. Econ. 2010, 26, 66–73. [Google Scholar] [CrossRef]
- Sun, Y.; Hou, G.; Huang, Z. Spatial-Temporal Differences and Influencing Factors of Tourism Eco-Efficiency in China’s Three Major Urban Agglomerations Based on the Super-EBM Model. Sustainability 2020, 12, 4156. [Google Scholar] [CrossRef]
- Fan, Y.; Bai, B.; Qiao, Q. Study on eco-efficiency of industrial parks in China based on data envelopment analysis. J. Environ. Manag. 2017, 192, 107–115. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef]
- Oh, D.H. A global Malmquist-Luenberger productivity index. J. Prod. Anal. 2010, 34, 183–197. [Google Scholar] [CrossRef]
- Zofio, J.L. Malmquist productivity index decompositions: A unifying framework. Appl. Econ. 2007, 39, 2371–2387. [Google Scholar] [CrossRef]
- Theil, H. Economics and Information Theory; North Holland Publishing Company: Amsterdam, The Netherlands, 1967. [Google Scholar]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically weighted regression: A method for exploring spatial nonstation-arity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Huang, B.; Wu, B.; Barry, M. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. Int. J. Geogr. Inf. Sci. 2010, 24, 383–401. [Google Scholar] [CrossRef]
- Cheng, L.; Zhou, F. Spatial and Temporal Pattern of Tourism Ecological Efficiency and Its Growth Effect in the Yangtze River Economic Belt [J/OL]. Journal of Chongqing Technology and Business University (Social Science Edition): 1–16. Available online: http://kns.cnki.net/kcms/detail/50.1154.C.20210325 (accessed on 24 August 2021).
- Zhang, W.; Zhan, Y.; Yin, R.; Yuan, X. The Tourism Eco-Efficiency Measurement and Its Influencing Factors in the Yellow River Basin. Sustainability 2022, 14, 15654. [Google Scholar] [CrossRef]
- Yang, Y.; Yan, J.; Yang, Y. The spatio-temporal evolution and spatial spillover effect of tourism eco-efficiency in the Yellow River Basin: Based on data from the 73 cities. Acta Ecol. Sin. 2022, 42, 8202–8212. Available online: http://kns.cnki.net/kcms/detail/11.2031.Q.20220613.1951.036.html (accessed on 16 June 2022).
- Pan, Y.; Weng, G.; Li, C.; Li, J. Coupling coordination and influencing factors among tourism carbon emission, tourism economic and tourism innovation. Int. J. Environ. Res. Public Health 2021, 18, 1601. [Google Scholar] [CrossRef]
- Central People’s Government of the People’s Republic of China. National Eco-Tourism Development Plan (2016–2025) [EB/OL]. [2016-8-22]. Available online: http://www.gov.cn/gongbao/content/2017/content_5194900.htm (accessed on 16 September 2022).
- Weng, G.; Tang, Y.; Pan, Y.; Mao, Y. Spatiotemporal Evolution and Spatial Difference of Tourism-Ecology-Urbanization Coupling Coordination in Beijing–Tianjin–Hebei Urban Agglomeration. Econ. Geogr. 2021, 41, 196–204. [Google Scholar]
Category | Indicator Name | Variable | Unit |
---|---|---|---|
Input indicators | Tourism resource input | Number of class A and above scenic spots | - |
Labor input | Number of employees in tertiary industry | Ten thousand people | |
Capital input | Tourism fixed-asset investment | CNY 100 million | |
Desired output indicators | Tourism income | Total tourism revenue | CNY 100 million |
Undesired output indicators | Tourism environmental pollution | Tourism wastewater discharge | Ten thousand cubic meters |
Tourism SO2 emission | Ten thousand tons | ||
Tourism domestic garbage removal volume | Ten thousand tons |
City | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 1.116 | 1.132 | 1.162 | 1.176 | 1.179 | 1.202 | 1.196 | 1.188 | 1.212 | 1.268 | 1.183 |
Tianjin | 1.211 | 1.204 | 1.193 | 1.188 | 1.175 | 1.142 | 1.114 | 1.177 | 1.080 | 1.040 | 1.152 |
Shijiazhuang | 0.385 | 0.447 | 0.459 | 0.498 | 0.464 | 0.570 | 0.594 | 0.453 | 0.659 | 0.779 | 0.531 |
Tangshan | 1.032 | 1.075 | 1.066 | 1.058 | 0.800 | 1.032 | 1.035 | 0.415 | 0.869 | 1.013 | 0.939 |
Qinhuangdao | 1.017 | 1.003 | 0.592 | 0.635 | 1.001 | 1.016 | 1.037 | 1.098 | 1.098 | 1.125 | 0.962 |
Handan | 0.541 | 0.538 | 0.607 | 0.649 | 0.528 | 0.646 | 0.621 | 0.350 | 0.672 | 0.571 | 0.572 |
Xingtai | 0.475 | 0.534 | 0.565 | 0.570 | 0.553 | 0.588 | 0.625 | 0.172 | 0.561 | 1.022 | 0.567 |
Baoding | 0.793 | 0.814 | 0.865 | 1.051 | 1.048 | 0.847 | 1.019 | 0.494 | 1.057 | 1.043 | 0.903 |
Zhangjiakou | 0.358 | 0.321 | 0.381 | 0.427 | 0.432 | 0.509 | 0.590 | 1.017 | 0.589 | 0.556 | 0.518 |
Chengde | 0.670 | 1.026 | 1.044 | 1.042 | 1.071 | 1.058 | 1.085 | 1.004 | 1.112 | 1.089 | 1.020 |
Cangzhou | 1.212 | 1.155 | 1.149 | 1.168 | 1.138 | 1.053 | 1.121 | 0.255 | 1.137 | 1.110 | 1.050 |
Langfang | 1.107 | 1.117 | 1.081 | 1.076 | 1.106 | 1.145 | 1.141 | 1.060 | 1.152 | 1.113 | 1.110 |
Hengshui | 0.516 | 0.517 | 0.538 | 0.507 | 0.458 | 0.507 | 0.566 | 0.255 | 0.611 | 0.488 | 0.496 |
Mean | 0.803 | 0.837 | 0.823 | 0.850 | 0.843 | 0.870 | 0.903 | 0.688 | 0.908 | 0.940 | 0.846 |
City | 2010–2011 | 2011–2012 | 2012–2013 | 2013–2014 | 2014–2015 | 2015–2016 | 2016–2017 | 2017–2018 | 2018–2019 | Mean |
---|---|---|---|---|---|---|---|---|---|---|
Beijing | 1.132 | 1.084 | 1.064 | 1.052 | 1.015 | 1.098 | 1.066 | 1.109 | 1.283 | 1.100 |
Tianjin | 1.178 | 1.165 | 1.054 | 1.043 | 0.877 | 1.120 | 1.117 | 1.146 | 1.000 | 1.078 |
Shijiazhuang | 1.392 | 1.041 | 1.091 | 0.942 | 1.223 | 1.147 | 0.842 | 1.580 | 1.192 | 1.161 |
Tangshan | 2.041 | 0.988 | 0.752 | 0.998 | 0.998 | 1.050 | 0.453 | 2.287 | 1.005 | 1.175 |
Qinhuangdao | 1.085 | 0.967 | 1.037 | 1.095 | 1.032 | 1.237 | 0.933 | 1.810 | 1.052 | 1.139 |
Handan | 1.259 | 1.037 | 1.117 | 0.823 | 1.095 | 1.059 | 0.657 | 1.928 | 1.080 | 1.117 |
Xingtai | 1.273 | 1.014 | 0.965 | 0.970 | 1.105 | 1.070 | 0.273 | 4.212 | 1.267 | 1.350 |
Baoding | 1.256 | 1.048 | 1.432 | 0.817 | 0.890 | 1.129 | 0.664 | 2.102 | 1.169 | 1.167 |
Zhangjiakou | 1.254 | 1.147 | 1.147 | 1.064 | 1.054 | 1.216 | 0.786 | 1.637 | 1.074 | 1.153 |
Chengde | 1.374 | 0.927 | 0.991 | 1.081 | 1.017 | 1.245 | 0.656 | 2.464 | 1.237 | 1.221 |
Cangzhou | 1.400 | 0.990 | 0.996 | 0.991 | 0.856 | 1.164 | 0.130 | 8.094 | 0.759 | 1.709 |
Langfang | 1.119 | 1.007 | 1.050 | 1.453 | 0.964 | 1.017 | 0.209 | 4.912 | 1.038 | 1.419 |
Hengshui | 1.281 | 1.078 | 1.001 | 0.924 | 1.092 | 1.011 | 0.549 | 2.236 | 0.942 | 1.124 |
Mean | 1.311 | 1.038 | 1.054 | 1.020 | 1.017 | 1.120 | 0.641 | 2.732 | 1.085 | 1.224 |
City | GML | EC | PEC | SEC | TC | PTC | STC |
---|---|---|---|---|---|---|---|
Beijing | 1.100 | 1.014 | 1.008 | 1.019 | 0.999 | 1.009 | 0.991 |
Tianjin | 1.078 | 0.984 | 0.998 | 0.977 | 1.034 | 1.020 | 1.014 |
Shijiazhuang | 1.161 | 1.097 | 1.113 | 1.191 | 1.079 | 1.113 | 0.975 |
Tangshan | 1.175 | 1.082 | 1.021 | 1.258 | 1.010 | 1.010 | 1.001 |
Qinhuangdao | 1.139 | 1.038 | 1.003 | 1.042 | 1.124 | 1.006 | 1.116 |
Handan | 1.117 | 1.058 | 1.024 | 1.188 | 1.127 | 1.100 | 1.032 |
Xingtai | 1.350 | 1.295 | 1.115 | 1.724 | 1.106 | 0.992 | 1.235 |
Baoding | 1.167 | 1.103 | 1.033 | 1.258 | 1.069 | 1.073 | 1.000 |
Zhangjiakou | 1.153 | 1.089 | 1.059 | 1.003 | 1.240 | 1.179 | 1.061 |
Chengde | 1.221 | 1.067 | 1.007 | 1.071 | 1.114 | 1.094 | 1.018 |
Cangzhou | 1.709 | 1.288 | 1.215 | 1.787 | 1.029 | 0.629 | 3.841 |
Langfang | 1.419 | 1.002 | 0.996 | 1.028 | 1.097 | 1.055 | 1.133 |
Hengshui | 1.124 | 1.085 | 1.021 | 1.278 | 1.116 | 1.028 | 1.223 |
Year | Global Theil Index | Theil Index between Groups | Proportion of Differences between Groups | Group Theil Index | Proportion of Intra-Group Differences | Northern Area Theil Index | Central Area Theil Index | Southern Area Theil Index |
---|---|---|---|---|---|---|---|---|
2010 | 0.035 | 0.025 | 71.2% | 0.010 | 28.8% | 0.035 | 0.004 | 0.003 |
2011 | 0.032 | 0.020 | 63.4% | 0.012 | 36.6% | 0.044 | 0.003 | 0.001 |
2012 | 0.029 | 0.020 | 69.8% | 0.009 | 30.2% | 0.036 | 0.002 | 0.002 |
2013 | 0.026 | 0.020 | 76.0% | 0.006 | 24.0% | 0.028 | 0.001 | 0.003 |
2014 | 0.029 | 0.020 | 69.3% | 0.009 | 30.7% | 0.029 | 0.003 | 0.001 |
2015 | 0.020 | 0.013 | 67.9% | 0.006 | 32.1% | 0.020 | 0.003 | 0.002 |
2016 | 0.017 | 0.013 | 77.9% | 0.004 | 22.1% | 0.014 | 0.001 | 0.000 |
2017 | 0.073 | 0.038 | 52.9% | 0.034 | 47.1% | 0.000 | 0.059 | 0.026 |
2018 | 0.016 | 0.011 | 67.3% | 0.005 | 32.7% | 0.016 | 0.002 | 0.001 |
2019 | 0.016 | 0.007 | 43.1% | 0.009 | 56.9% | 0.019 | 0.001 | 0.018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Li, Y. Regional Differences in Tourism Eco-Efficiency in the Beijing–Tianjin–Hebei Region: Based on Data from 13 Cities. Sustainability 2023, 15, 2907. https://doi.org/10.3390/su15042907
Zhang Y, Li Y. Regional Differences in Tourism Eco-Efficiency in the Beijing–Tianjin–Hebei Region: Based on Data from 13 Cities. Sustainability. 2023; 15(4):2907. https://doi.org/10.3390/su15042907
Chicago/Turabian StyleZhang, Ying, and Yunyan Li. 2023. "Regional Differences in Tourism Eco-Efficiency in the Beijing–Tianjin–Hebei Region: Based on Data from 13 Cities" Sustainability 15, no. 4: 2907. https://doi.org/10.3390/su15042907
APA StyleZhang, Y., & Li, Y. (2023). Regional Differences in Tourism Eco-Efficiency in the Beijing–Tianjin–Hebei Region: Based on Data from 13 Cities. Sustainability, 15(4), 2907. https://doi.org/10.3390/su15042907