Carabid Beetles (Coleoptera) as Indicators of Sustainability in Agroecosystems: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search and Selection of Publications
2.2. Data Extraction and Synthesis
3. Results
3.1. General Overview
3.2. Trends in Carabid Beetle Studies and Status in Agricultural Management Systems
3.3. Carabid Response Variables to Agricultural Systems
Response Variables | Agricultural Management Type | ||||||||
---|---|---|---|---|---|---|---|---|---|
Effect | CF | OF | DFS | CA | INT | SNH | Total | % Total | |
Functional diversity | |||||||||
Body size: small, medium, and large | Positive | 1 | - | 2 | - | 1 | 2 | 6 | 8.7 |
Negative | 1 | - | 1 | - | - | - | 2 | 2.9 | |
Neutral | - | - | - | - | 1 | - | 1 | 1.4 | |
Trophic guilds: predators, omnivores, and granivores | Positive | 2 | 2 | - | 1 | 2 | 1 | 8 | 11.6 |
Negative | 1 | - | 1 | - | - | 2 | 4 | 5.8 | |
Neutral | 1 | - | - | - | - | - | 1 | 1.4 | |
Dispersal ability (wing type): flightless, immobile, | Positive | 1 | 1 | - | 2 | - | 1 | 5 | 7.2 |
macropterous, brachypterous, wingless, and apterous | Negative | 1 | - | - | - | - | - | 1 | 1.4 |
Neutral | - | - | - | - | - | - | - | - | |
Biodiversity indices | |||||||||
Richness | Positive | 1 | 3 | 1 | 1 | 2 | 1 | 9 | 13.0 |
Negative | 1 | - | 1 | - | - | - | 2 | 2.9 | |
Neutral | 1 | - | - | - | - | 1 | 2 | 2.9 | |
Diversity | Positive | - | - | 3 | - | - | 1 | 4 | 5.8 |
Negative | 2 | - | 1 | - | 1 | - | 4 | 5.8 | |
Neutral | 1 | - | - | - | - | - | 1 | 1.4 | |
Abundance/active density | Positive | 2 | 1 | 1 | 2 | 1 | - | 7 | 10.1 |
Negative | 1 | - | - | - | - | - | 1 | 1.4 | |
Neutral | 1 | - | - | - | 1 | - | 2 | 2.9 | |
Composition | Positive | 1 | - | 1 | - | 1 | - | 3 | 4.3 |
Negative | 1 | - | - | - | - | - | 1 | 1.4 | |
Neutral | - | - | 1 | - | - | 1 | 2 | 2.9 | |
Evenness | Positive | 1 | 1 | - | - | - | - | 2 | 2.9 |
Negative | - | - | - | - | - | - | - | 0.0 | |
Neutral | - | - | - | 1 | - | - | 1 | 1.4 | |
Grand total | 19 | 9 | 12 | 7 | 11 | 11 | 69 | 100 |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sánchez-Bayo, F.; Wyckhuys, K.A.G. Worldwide Decline of the Entomofauna: A Review of Its Drivers. Biol. Conserv. 2019, 232, 8–27. [Google Scholar] [CrossRef]
- Basedow, T. Conventional Agriculture (in Its Present Form) or Ecological Agriculture? - For the Maximal Biodiversity Both Are Necessary | Konventionelle Landwirtschaft (in Ihrer Gegenwärtigen Ausprägung) Oder Ökologische Landwirtschaft? - Für Die Maximale Biodiversit. Gesunde Pflanz. 2002, 54, 177–182. [Google Scholar] [CrossRef]
- Tscharntke, T.; Tylianakis, J.M.; Rand, T.A.; Didham, R.K.; Fahrig, L.; Batáry, P.; Bengtsson, J.; Clough, Y.; Crist, T.O.; Dormann, C.F.; et al. Landscape Moderation of Biodiversity Patterns and Processes - Eight Hypotheses. Biol. Rev. 2012, 87, 661–685. [Google Scholar] [CrossRef] [PubMed]
- Benton, T.G.; Vickery, J.A.; Wilson, J.D. Farmland Biodiversity: Is Habitat Heterogeneity the Key? Trends Ecol. Evol. 2003, 18, 182–188. [Google Scholar] [CrossRef]
- Purtauf, T.; Roschewitz, I.; Dauber, J.; Thies, C.; Tscharntke, T.; Wolters, V. Landscape Context of Organic and Conventional Farms: Influences on Carabid Beetle Diversity. Agric. Ecosyst. Environ. 2005, 108, 165–174. [Google Scholar] [CrossRef]
- Gallé, R.; Happe, A.A.-K.A.K.; Baillod, A.B.A.B.; Tscharntke, T.; Batáry, P. Landscape Configuration, Organic Management, and within-Field Position Drive Functional Diversity of Spiders and Carabids. J. Appl. Ecol. 2019, 56, 63–72. [Google Scholar] [CrossRef]
- Rusch, A.; Birkhofer, K.; Rusch, A.; Andersson, G.K.S.; Bommarco, R. A Framework to Identify Indicator Species for Ecosystem Services in Agricultural Landscapes A Framework to Identify Indicator Species for Ecosystem Services in Agricultural Landscapes. Ecol. Indic. 2018, 91, 278–286. [Google Scholar] [CrossRef]
- El Chami, D.; Daccache, A.; El Moujabber, M. How Can Sustainable Agriculture Increase Climate Resilience? A Systematic Review. Sustainability 2020, 12, 3119. [Google Scholar] [CrossRef] [Green Version]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2020. Transforming Food Systems for Affordable Healthy Diets. Rome. 2020. Available online: https://doi.org/10.4060/ca9692en (accessed on 12 January 2019).
- Massaloux, D.; Sarrazin, B.; Roume, A.; Tolon, V.; Wezel, A. Complementarity of Grasslands and Cereal Fields Ensures Carabid Regional Diversity in French Farmlands. Biodivers. Conserv. 2020, 29, 2861–2882. [Google Scholar] [CrossRef]
- Cajaiba, R.L.; Périco, E.; da Silva, W.B.; Vieira, T.B.; Dalzochio, M.S.; Bastos, R.; Cabral, J.A.; Santos, M. How Informative Is the Response of Ground Beetles’ (Coleoptera: Carabidae) Assemblages to Anthropogenic Land Use Changes? Insights for Ecological Status Assessments from a Case Study in the Neotropics. Sci. Total Environ. 2018, 636, 1219–1227. [Google Scholar] [CrossRef] [Green Version]
- Rainio, J.; Niemela, J. Ground Beetles ( Coleoptera: Carabidae ) as Bioindicators. Biol. Conserv. 2003, 487–506. [Google Scholar]
- Gerlach, J.; Samways, M.; Pryke, J. Terrestrial Invertebrates as Bioindicators: An Overview of Available Taxonomic Groups. J. Insect Conserv. 2013, 17, 831–850. [Google Scholar] [CrossRef]
- Gioria, M.; Schaffers, A.; Bacaro, G.; Feehan, J. The Conservation Value of Farmland Ponds: Predicting Water Beetle Assemblages Using Vascular Plants as a Surrogate Group. Biol. Conserv. 2010, 143, 1125–1133. [Google Scholar] [CrossRef]
- Govender, A.; Willows-Munro, S. The Utility of DNA Barcoding as a Tool to Assess the Success of Ecological Restoration Using Hemiptera as a Biological Indicator. Restor. Ecol. 2019, 27, 1409–1419. [Google Scholar] [CrossRef]
- Backus-Freer, J.; Pyron, M. Concordance among Fish and Macroinvertebrate Assemblages in Streams of Indiana, USA. Hydrobiologia 2015, 758, 141–150. [Google Scholar] [CrossRef]
- Andersen, A.N.; Hoffmann, B.D.; Müller, W.J.; Griffiths, A.D. Using Ants as Bioindicators in Land Management: Simplifying Assessment of Ant Community Responses. J. Appl. Ecol. 2002, 39, 8–17. [Google Scholar] [CrossRef]
- Horne, P.A. Carabids as Potential Indicators of Sustainable Farming Systems. Aust. J. Exp. Agric. 2007, 47, 455. [Google Scholar] [CrossRef]
- Work, T.T.; Koivula, M.; Klimaszewski, J.; Langor, D.; Spence, J.; Sweeney, J.; Hébert, C. Evaluation of Carabid Beetles as Indicators of Forest Change in Canada. Can. Entomol. 2008, 140, 393–414. [Google Scholar] [CrossRef]
- Barriga, J.C.; Lassaletta, L.; Moreno, A.G. Ground-Living Spider Assemblages from Mediterranean Habitats under Different Management Conditions. J. Arachnol. 2010, 38, 258–269. [Google Scholar] [CrossRef]
- Koivula, M.J. Carabidae Reflecting Environmental Conditions Useful Model Organisms, Indicators, or Both ? Ground Beetles (Coleoptera, Carabidae) Reflecting Environmental Conditions. Zookeys 2014. [Google Scholar] [CrossRef] [Green Version]
- Joseph, G.S.; Mauda, E.V.; Seymour, C.L.; Munyai, T.C.; Dippenaar-Schoeman, A.; Foord, S.H. Landuse Change in Savannas Disproportionately Reduces Functional Diversity of Invertebrate Predators at the Highest Trophic Levels: Spiders as an Example. Ecosystems 2018, 21, 930–942. [Google Scholar] [CrossRef]
- Joseph, G.S.; Muluvhahothe, M.M.; Seymour, C.L.; Munyai, T.C.; Bishop, T.R.; Foord, S.H. Stability of Afromontane Ant Diversity Decreases across an Elevation Gradient. Glob. Ecol. Conserv. 2019, 17, e00596. [Google Scholar] [CrossRef]
- Karyl, M. Carabid Beetles as Biodiversity and Ecological Indicators. Ph.D. Thesis, University of Tasminia, Tasminia, Australia, 1999. Available online: https://eprints.utas.edu.au/20894/ (accessed on 3 March 2019).
- Niemelä, J. Biodiversity Monitoring for Decision-Making. Ann. Zool. Fennici 2000, 37, 307–317. [Google Scholar]
- Döring, T.F.F.; Hiller, A.; Wehke, S.; Schulte, G.; Broll, G. Biotic Indicators of Carabid Species Richness on Organically and Conventionally Managed Arable Fields. Agric. Ecosyst. Environ. 2003, 98, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Holland, J.M.; Frampton, G.K.; Brink van den, P.J. Carabids as Indicators within Temperate Arable Farming Systems: Implications from SCARAB and LINK Integrated Farming Systems Projects. In The Agroecology of Carabid Beetles; Holland, J.M., Ed.; Intercept: Andover, UK, 2002; pp. 251–277. ISBN 1898298769. [Google Scholar]
- Döring, T.F.T.F.; Kromp, B. Which Carabid Species Benefit from Organic Agriculture? - A Review of Comparative Studies in Winter Cereals from Germany and Switzerland. Agric. Ecosyst. Environ. 2003, 98, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Shearin, A.F.; Reberg-Horton, S.C.; Gallandt, E.R. Direct Effects of Tillage on the Activity Density of Ground Beetle (Coleoptera: Carabidae) Weed Seed Predators. Environ. Entomol. 2007, 36, 1140–1146. [Google Scholar] [CrossRef] [PubMed]
- Botha, M. Arthropod and Plant Diversity in Maize Agro-Ecosystems of South Africa. Ph.D. Thesis, NorthWest University, Potchefstroom, South Africa, 2017. Available online: http://hdl.handle.net/10394/25058 (accessed on 10 October 2020).
- Lemic, D.; Čačija, M.; Virić Gašparić, H.; Drmić, Z.; Bažok, R.; Pajač Živković, I. The Ground Beetle (Coleoptera: Carabidae) Community in an Intensively Managed Agricultural Landscape. Appl. Ecol. Environ. Res. 2017, 15, 661–674. [Google Scholar] [CrossRef]
- Rivers, A.; Mullen, C.; Wallace, J.; Barbercheck, M. Cover Crop-Based Reduced Tillage System Influences Carabidae (Coleoptera) Activity, Diversity and Trophic Group during Transition to Organic Production. Renew. Agric. Food Syst. 2017, 32, 538–551. [Google Scholar] [CrossRef]
- Lyons, A.; Oxbrough, A.; Ashton, P. Managing Biodiversity in Upland Calcareous Grassland Landscapes: A Case Study of Spiders and Ground Beetles; Edge Hill University: Lancashire, UK, 2018; ISBN 9781900230629. [Google Scholar]
- Trichard, A.; Ricci, B.; Ducourtieux, C.; Petit, S. The Spatio-Temporal Distribution of Weed Seed Predation Differs between Conservation Agriculture and Conventional Tillage. Agric. Ecosyst. Environ. 2014, 188, 40–47. [Google Scholar] [CrossRef]
- Irmler, U. Which Carabid Species (Coleoptera: Carabidae) Profit from Organic Farming after a Succession of 15 Years? Agric. Ecosyst. Environ. 2018, 263, 1–6. [Google Scholar] [CrossRef]
- Kotze, D.J.; O’Hara, R.B. Species Decline - But Why? Explanations of Carabid Beetle (Coleoptera, Carabidae) Declines in Europe. Oecologia 2003, 135, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Schoeman, C.S.; Foord, S.; Hamer, M. Annotated Checklist of Carabidae (Insecta: Coleoptera) of the Vhembe Biosphere Reserve, South Africa. 2018. [CrossRef]
- Yekwayo, I.; Pryke, J.S.; Roets, F.; Samways, M.J. Contrast and Context in a Forest-Grassland Mosaic. Biodivers. Conserv. 2017, 26, 631–651. [Google Scholar] [CrossRef]
- Gaigher, R. The Effect of Different Vineyard Management Systems on the Epigaeic Arthropod Assemblages in the Cape Floristic Region. Msc Thesis, Stellenbosch University, Stellenbosch, South Africa, 2008. Available online: http://hdl.handle.net/10019.1/1565 (accessed on 29 January 2020).
- Makwela, M.M. Biodiversity of Predatory Beetle Groups, Carabidae and Coccinellidae and Their Role as Bioindicators. Msc Thesis, University of South Africa, Pretoria, South Africa, 2019. Available online: http://hdl.handle.net/10500/26902 (accessed on 1 March 2019).
- Taboada, A.; Kotze, D.J.; Salgado, J.M.; Tárrega, R. The Value of Semi-Natural Grasslands for the Conservation of Carabid Beetles in Long-Term Managed Forested Landscapes. J. Insect Conserv. 2011, 15, 573–590. [Google Scholar] [CrossRef]
- Gailis, J.; Turka, I. The Diversity and Structure of Ground Beetles (Coleoptera: Carabidae) Assemblages in Differently Managed Winter Wheat Fields The Diversity and Structure of Ground Beetles (Coleoptera: Carabidae) Assemblages in Differently Managed Winter Wheat Fields. Balt. J. Coleopterol. 2014, 14, 33–46. [Google Scholar]
- Eyre, M.D.; Mcmillan, S.D.; Critchley, C.N.R. Ground Beetles ( Coleoptera, Carabidae ) as Indicators of Change and Pattern in the Agroecosystem: Longer Surveys Improve Understanding. Ecol. Indic. 2016, 68, 82–88. [Google Scholar] [CrossRef]
- Jowett, K.; Milne, A.E.; Metcalfe, H.; Hassall, K.L.; Potts, S.G.; Senapathi, D.; Storkey, J. Species Matter When Considering Landscape Effects on Carabid Distributions. Agric. Ecosyst. Environ. 2019, 285, 106631. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, T.P. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann. Intern. Med. 2009, 6. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; Mckenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews Systematic Reviews and Meta-Analyses. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef]
- Eyre, M.D.; Luff, M.L.; Leifert, C. Crop, Field Boundary, Productivity and Disturbance Influences on Ground Beetles (Coleoptera, Carabidae) in the Agroecosystem. Agric. Ecosyst. Environ. 2013, 165, 60–67. [Google Scholar] [CrossRef]
- Lyons, A.; Ashton, P.A.; Powell, I.; Oxbrough, A. Habitat Associations of Epigeal Spiders in Upland Calcareous Grassland Landscapes: The Importance for Conservation. Biodivers. Conserv. 2018, 27, 1201–1219. [Google Scholar] [CrossRef] [Green Version]
- Schirmel, J.; Thiele, J.; Entling, M.H.; Buchholz, S. Trait Composition and Functional Diversity of Spiders and Carabids in Linear Landscape Elements. Agric. Ecosyst. Environ. 2016, 235, 318–328. [Google Scholar] [CrossRef]
- Woodcock, B.A.; Redhead, J.; Vanbergen, A.J.; Hulmes, L.; Hulmes, S.; Peyton, J.; Nowakowski, M.; Pywell, R.F.; Heard, M.S. Impact of Habitat Type and Landscape Structure on Biomass, Species Richness and Functional Diversity of Ground Beetles. Ecosyst. Environ. 2010, 139, 181–186. [Google Scholar] [CrossRef]
- Diehl, E.; Wolters, V.; Birkhofer, K. Arable Weeds in Organically Managed Wheat Fields Foster Carabid Beetles by Resource- and Structure-Mediated Effects. Arthropod. Plant. Interact. 2012, 6, 75–82. [Google Scholar] [CrossRef]
- Gayer, C.; Lövei, G.L.; Magura, T.; Dieterich, M.; Batáry, P. Carabid Functional Diversity Is Enhanced by Conventional Flowering Fields, Organic Winter Cereals and Edge Habitats. Agric. Ecosyst. Environ. 2019, 284, 106579. [Google Scholar] [CrossRef] [Green Version]
- White, S.S.; Renner, K.A.; Menalled, F.D.; Landis, D.A. Feeding Preferences of Weed Seed Predators and Effect on Weed Emergence. Weed Sci. 2007, 55, 606–612. [Google Scholar] [CrossRef]
- Petit, S.; Trichard, A.; Biju-Duval, L.; McLaughlin, B.; Bohan, D.A.A.; McLaughlin, Ó.B.; Bohan, D.A.A. Interactions between Conservation Agricultural Practice and Landscape Composition Promote Weed Seed Predation by Invertebrates. Agric. Ecosyst. Environ. 2017, 240, 45–53. [Google Scholar] [CrossRef]
- Marrec, R.; Badenhausser, I.; Bretagnolle, V.; Börger, L.; Roncoroni, M.; Guillon, N.; Gauffre, B. Crop Succession and Habitat Preferences Drive the Distribution and Abundance of Carabid Beetles in an Agricultural Landscape. Agric. Ecosyst. Environ. 2015, 199, 282–289. [Google Scholar] [CrossRef] [Green Version]
- Caro, G.; Marrec, R.; Gauffre, B.; Roncoroni, M.; Augiron, S.; Bretagnolle, V. Multi-Scale Effects of Agri-Environment Schemes on Carabid Beetles in Intensive Farmland. Agric. Ecosyst. Environ. 2016, 229, 48–56. [Google Scholar] [CrossRef]
- Aviron, S.; Lalechère, E.; Duflot, R.; Parisey, N.; Poggi, S.; Du, R.; Parisey, N.; Poggi, S. Connectivity of Cropped vs. Semi-Natural Habitats Mediates Biodiversity: A Case Study of Carabid Beetles Communities. Agric. Ecosyst. Environ. 2018, 268, 34–43. [Google Scholar] [CrossRef]
- Djoudi, E.A.; Marie, A.; Mangenot, A.; Puech, C.; Aviron, S.; Plantegenest, M.; Pétillon, J. Farming System and Landscape Characteristics Differentially Affect Two Dominant Taxa of Predatory Arthropods. Agric. Ecosyst. Environ. 2018, 259, 98–110. [Google Scholar] [CrossRef]
- Jonason, D.; Smith, H.G.; Bengtsson, J.; Birkhofer, K. Landscape Simplification Promotes Weed Seed Predation by Carabid Beetles (Coleoptera: Carabidae). Landsc. Ecol. 2013, 28, 487–494. [Google Scholar] [CrossRef]
- Melnychuk, N.A.; Olfert, O.; Youngs, B.; Gillott, C. ScienceDirect.Com—Agriculture, Ecosystems & Environment—Abundance and Diversity of Carabidae (Coleoptera) in Different Farming Systems. Eur. J. Agron. 2013, 95, 69–72. [Google Scholar]
- Andersen, A.; Eltun, R. Long-Term Developments in the Carabid and Staphylinid (Col., Carabidae and Staphylinidae) Fauna during Conversion from Conventional to Biological Farming. J. Appl. Entomol. 2000, 124, 51–56. [Google Scholar] [CrossRef]
- Hussain, M.; Ulrich, R.; Ranjha, M.H.; Irmler, U. Movement of Carabids from Grassy Strips to Crop Land in Organic Agriculture. J. Insect Conserv. 2014, 18, 457–467. [Google Scholar] [CrossRef]
- Chungu, D. Converting Forests to Agriculture Decreases Body Size of Carabid Assemblages Converting Forests to Agriculture Decreases Body Size of Carabid Assemblages in Zambia. Afr. J. Ecol. 2018, 56, 216–224. [Google Scholar] [CrossRef]
- Ng, K.; Barton, P.S.; Blanchard, W.; Evans, M.J.; Lindenmayer, D.B.; Macfadyen, S.; McIntyre, S.; Driscoll, D.A. Disentangling the Effects of Farmland Use, Habitat Edges, and Vegetation Structure on Ground Beetle Morphological Traits. Oecologia 2018, 188, 645–657. [Google Scholar] [CrossRef]
- Schröter, L.; Irmler, U. Organic Cultivation Reduces Barrier Effect of Arable Fields on Species Diversity. Agric. Ecosyst. Environ. 2013, 164, 176–180. [Google Scholar] [CrossRef]
- Pfiffner, L.; Luka, H. Effects of Low-Input Farming Systems on Carabids and Epigeal Spiders - A Paired Farm Approach. Basic Appl. Ecol. 2003, 4, 117–127. [Google Scholar] [CrossRef]
- Boetzl, F.A.; Krimmer, E.; Krauss, J.; Steffan-Dewenter, I. Agri-Environmental Schemes Promote Ground-Dwelling Predators in Adjacent Oilseed Rape Fields: Diversity, Species Traits and Distance-Decay Functions. J. Appl. Ecol. 2019, 56, 10–20. [Google Scholar] [CrossRef]
- Rouabah, A.; Villerd, J.; Amiaud, B.; Plantureux, S.; Lasserre-Joulin, F. Response of Carabid Beetles Diversity and Size Distribution to the Vegetation Structure within Differently Managed Field Margins. Agric. Ecosyst. Environ. 2015, 200, 21–32. [Google Scholar] [CrossRef]
- Labruyere, S.; Ricci, B.; Lubac, A.; Petit, S. Crop Type, Crop Management and Grass Margins Affect the Abundance and the Nutritional State of Seed-Eating Carabid Species in Arable Landscapes. Agric. Ecosyst. Environ. 2016, 231, 183–192. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Duan, M.; Yu, Z.; Axmacher, J.C. Different Response Patterns of Epigaeic Spiders and Carabid Beetles to Varying Environmental Conditions in Fields and Semi-Natural Habitats of an Intensively Cultivated Agricultural Landscape. Agric. Ecosyst. Environ. 2018, 264, 54–62. [Google Scholar] [CrossRef]
- Liu, Y.; Duan, M.; Zhang, X.; Zhang, X.I.N. Effects of Plant Diversity, Habitat and Agricultural Landscape Structure on the Functional Diversity of Carabid Assemblages in the North China Plain. Insect Conserv. Divers. 2015, 8, 163–176. [Google Scholar] [CrossRef] [Green Version]
- Hanson, H.I.; Palmu, E.; Birkhofer, K.; Smith, H.G.; Hedlund, K. Agricultural Land Use Determines the Trait Composition of Ground Beetle Communities. PLoS ONE 2016, 11, 1–13. [Google Scholar] [CrossRef]
- Bertrand, C.; Burel, F.; Baudry, J. Spatial and Temporal Heterogeneity of the Crop Mosaic Influences Carabid Beetles in Agricultural Landscapes. Landsc. Ecol. 2016, 31, 451–466. [Google Scholar] [CrossRef]
- Mashavakure, N.; Mashingaidze, A.B.; Musundire, R.; Nhamo, N.; Gandiwa, E.; Thierfelder, C.; Muposhi, V.K. Soil Dwelling Beetle Community Response to Tillage, Fertilizer and Weeding Intensity in a Sub-Humid Environment in Zimbabwe. Appl. Soil Ecol. 2019, 135, 120–128. [Google Scholar] [CrossRef]
- Hof, A.R.; Bright, P.W. The Impact of Grassy Field Margins on Macro-Invertebrate Abundance in Adjacent Arable Fields. Agric. Ecosyst. Environ. 2010, 139, 280–283. [Google Scholar] [CrossRef]
- Diekötter, T.; Wamser, S.; Wolters, V.; Birkhofer, K. Landscape and Management Effects on Structure and Function of Soil Arthropod Communities in Winter Wheat. Agric. Ecosyst. Environ. 2010, 137, 108–112. [Google Scholar] [CrossRef]
- Pardon, P.; Reheul, D.; Mertens, J.; Reubens, B.; De Frenne, P.; De Smedt, P.; Proesmans, W.; Van Vooren, L.; Verheyen, K. Gradients in Abundance and Diversity of Ground Dwelling Arthropods as a Function of Distance to Tree Rows in Temperate Arable Agroforestry Systems. Agric. Ecosyst. Environ. 2019, 270–271, 114–128. [Google Scholar] [CrossRef]
- Cardarelli, E.; Bogliani, G. Effects of Grass Management Intensity on Ground Beetle Assemblages in Rice Field Banks. Agric. Ecosyst. Environ. 2014, 195, 120–126. [Google Scholar] [CrossRef]
- Hummel, J.D.; Dosdall, L.M.; Clayton, G.W.; Harker, K.N.; O’Donovan, J.T. Ground Beetle (Coleoptera: Carabidae) Diversity, Activity Density, and Community Structure in a Diversified Agroecosystem. Environ. Entomol. 2012, 41, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Hatten, T.D.; Bosque-Pérez, N.A.; Labonte, J.R.; Guy, S.O.; Eigenbrode, S.D. Effects of Tillage on the Activity Density and Biological Diversity of Carabid Beetles in Spring and Winter Crops. Environ. Entomol. 2007, 36, 356–368. [Google Scholar] [CrossRef] [PubMed]
- Maisonhaute, J.-É.É.; Peres-Neto, P.; Lucas, É. Influence of Agronomic Practices, Local Environment and Landscape Structure on Predatory Beetle Assemblage. Agric. Ecosyst. Environ. 2010, 139, 500–507. [Google Scholar] [CrossRef]
- Barber, N.A.; Lamagdeleine-Dent, K.A.; Willand, J.E.; Jones, H.P.; McCravy, K.W. Species and Functional Trait Re-Assembly of Ground Beetle Communities in Restored Grasslands. Biodivers. Conserv. 2017, 26, 3481–3498. [Google Scholar] [CrossRef]
- Alignier, A.; Aviron, S. Time-Lagged Response of Carabid Species Richness and Composition to Past Management Practices and Landscape Context of Semi-Natural Field Margins. J. Environ. Manage. 2017, 204, 282–290. [Google Scholar] [CrossRef]
- Knapp, M.; Řezáč, M. Even the Smallest Non-Crop Habitat Islands Could Be Beneficial: Distribution of Carabid Beetles and Spiders in Agricultural Landscape. PLoS ONE 2015, 10. [Google Scholar] [CrossRef]
- Shah, P.A.; Brooks, D.R.; Ashby, J.E.; Perry, J.N.; Woiwod, I.P. Diversity and Abundance of the Coleopteran Fauna from Organic and Conventional Management Systems in Southern England. Agric. For. Entomol. 2003, 5, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Cole, L.J.; McCracken, D.I.; Dennis, P.; Downie, I.S.; Griffin, A.L.; Foster, G.N.; Murphy, K.J.; Waterhouse, T. Relationships between Agricultural Management and Ecological Groups of Ground Beetles (Coleoptera: Carabidae) on Scottish Farmland. Agric. Ecosyst. Environ. 2002, 93, 323–336. [Google Scholar] [CrossRef]
- Gobbi, M.; Fontaneto, D. Biodiversity of Ground Beetles (Coleoptera: Carabidae) in Different Habitats of the Italian Po Lowland. Agric. Ecosyst. Environ. 2008, 127, 273–276. [Google Scholar] [CrossRef]
- Duflot, R.; Ernoult, A.; Burel, F.; Aviron, S. Landscape Level Processes Driving Carabid Crop Assemblage in Dynamic Farmlands. Popul. Ecol. 2016, 58, 265–275. [Google Scholar] [CrossRef]
- Weibull, A.; Östman, Ö. Basic and Applied Ecology Species Composition in Agroecosystems: The Effect of Landscape, Habitat, and Farm Management. Biodivers. Conserv. 2003, 361, 349–361. [Google Scholar]
- Kulkarni, S.S.; Dosdall, L.M.; Spence, J.R.; Willenborg, C.J. Field Density and Distribution of Weeds Are Associated with Spatial Dynamics of Omnivorous Ground Beetles (Coleoptera: Carabidae). Agric. Ecosyst. Environ. 2017, 236, 134–141. [Google Scholar] [CrossRef]
- Ekroos, J.; Hyvönen, T.; Tiainen, J.; Tiira, M. Responses in Plant and Carabid Communities to Farming Practises in Boreal Landscapes. Agric. Ecosyst. Environ. 2010, 135, 288–293. [Google Scholar] [CrossRef]
- Menalled, F.D.; Smith, R.G.; Dauer, J.T.; Fox, T.B. Impact of Agricultural Management on Carabid Communities and Weed Seed Predation. Agric. Ecosyst. Environ. 2007, 118, 49–54. [Google Scholar] [CrossRef]
- Purtauf, T.; Dauber, J.; Wolters, V. The Response of Carabids to Landscape Simplification Differs between Trophic Groups. Oecologia 2005, 142, 458–464. [Google Scholar] [CrossRef]
- Hanson, H.I.; Birkhofer, K.; Smith, H.G.; Palmu, E.; Hedlund, K. Agricultural Land Use Affects Abundance and Dispersal Tendency of Predatory Arthropods. Basic Appl. Ecol. 2017, 18, 40–49. [Google Scholar] [CrossRef]
Category Items | Description |
---|---|
Agricultural management | Studies on organic and diversified farming, conventional tillage, conservation, grazing practices, and grassland effects on carabid beetles |
Field crops | Soybean, wheat, peas, maize, clover, sunflower, oats, barley, alfalfa, rice, millet, and sorghum |
Biodiversity indices | Studies including diversity: abundance, richness, evenness, and composition |
Functional guilds | The trophic level of carabids: predators/carnivores, omnivores, and granivores and their functions in agroecosystems |
Functional traits | Studies that recorded dispersal ability and morphometrics |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makwela, M.M.; Slotow, R.; Munyai, T.C. Carabid Beetles (Coleoptera) as Indicators of Sustainability in Agroecosystems: A Systematic Review. Sustainability 2023, 15, 3936. https://doi.org/10.3390/su15053936
Makwela MM, Slotow R, Munyai TC. Carabid Beetles (Coleoptera) as Indicators of Sustainability in Agroecosystems: A Systematic Review. Sustainability. 2023; 15(5):3936. https://doi.org/10.3390/su15053936
Chicago/Turabian StyleMakwela, Maria M., Rob Slotow, and Thinandavha C. Munyai. 2023. "Carabid Beetles (Coleoptera) as Indicators of Sustainability in Agroecosystems: A Systematic Review" Sustainability 15, no. 5: 3936. https://doi.org/10.3390/su15053936
APA StyleMakwela, M. M., Slotow, R., & Munyai, T. C. (2023). Carabid Beetles (Coleoptera) as Indicators of Sustainability in Agroecosystems: A Systematic Review. Sustainability, 15(5), 3936. https://doi.org/10.3390/su15053936